f {\displaystyle f} U {\displaystyle U} U {\displaystyle U} U {\displaystyle U} f : U → C {\displaystyle f\colon U\to \mathbb {C} } C {\displaystyle \mathbb {C} } z ↦ f ( z ) {\displaystyle z\mapsto f(z)} w {\displaystyle w} U {\displaystyle U} z ↦ f ( w ) + f ′ ( w ) ( z − w ) {\displaystyle z\mapsto f(w)+f'(w)(z-w)} f ′ ( w ) {\displaystyle f'(w)} f {\displaystyle f} w {\displaystyle w} x 2 + 1 = 0 {\displaystyle x^{2}+1=0} i {\displaystyle i} i 2 = − 1 {\displaystyle i^{2}=-1} z {\displaystyle z} z = x + i y {\displaystyle z=x+iy} x {\displaystyle x} y {\displaystyle y} x {\displaystyle x} y {\displaystyle y} x + i y {\displaystyle x+iy} ( x , y ) {\displaystyle (x,y)} x {\displaystyle x} y {\displaystyle y} z {\displaystyle z} i 2 = − 1 {\displaystyle i^{2}=-1} ( − 3 + 2 i ) + ( 4 + 10 i ) = 1 + 12 i {\displaystyle (-3+2i)+(4+10i)=1+12i} ( a + b i ) ( c + d i ) = ( a c − b d ) + ( a d + b c ) i . {\displaystyle (a+bi)(c+di)=(ac-bd)+(ad+bc)i.} − b d {\displaystyle -bd} b i d i {\displaystyle bidi} 1 + i 1 − 2 i = ( 1 + i ) ( 1 + 2 i ) ( 1 − 2 i ) ( 1 + 2 i ) = − 1 + 3 i 5 = − 1 5 + 3 5 i . {\displaystyle {\frac {1+i}{1-2i}}={\frac {(1+i)(1+2i)}{(1-2i)(1+2i)}}={\frac {-1+3i}{5}}=-{\frac {1}{5}}+{\frac {3}{5}}i.} C {\displaystyle \mathbb {C} } R {\displaystyle \mathbb {R} } M {\displaystyle M} N {\displaystyle N} f : M → N {\displaystyle f\colon M\rightarrow N} M {\displaystyle M} N {\displaystyle N} f ( z ) = z 2 {\displaystyle f(z)=z^{2}} x ↦ x 2 {\displaystyle x\mapsto x^{2}} ( x , f ( x ) ) {\displaystyle (x,f(x))} x {\displaystyle x} f {\displaystyle f} x {\displaystyle x} f ( x ) {\displaystyle f(x)} ( x , f ( x ) ) {\displaystyle (x,f(x))} ( x , y ) {\displaystyle (x,y)} z ↦ z {\displaystyle z\mapsto z} x 0 {\displaystyle x_{0}} x 0 {\displaystyle x_{0}} f : R → R {\displaystyle f\colon \mathbb {R} \to \mathbb {R} } a {\displaystyle a} a {\displaystyle a} x ↦ m ( x − a ) + c {\displaystyle x\mapsto m(x-a)+c} h {\displaystyle h} f ( a + h ) ≈ m h + c {\displaystyle f(a+h)\approx mh+c} h = 0 {\displaystyle h=0} c = f ( a ) {\displaystyle c=f(a)} f {\displaystyle f} a {\displaystyle a} lim h → 0 f ( a + h ) − f ( a ) h = f ′ ( a ) {\displaystyle \lim _{h\to 0}{\frac {f(a+h)-f(a)}{h}}=f'(a)} f {\displaystyle f} a {\displaystyle a} lim h → 0 f ( c + h ) − f ( c ) h =: f ′ ( c ) {\displaystyle \lim _{h\to 0}{\frac {f(c+h)-f(c)}{h}}=:f'(c)\,\,\,} h {\displaystyle h} h > 0 {\displaystyle h>0} c {\displaystyle c} c {\displaystyle c} f ( c + h ) ≈ f ′ ( c ) h + f ( c ) , {\displaystyle f(c+h)\approx f'(c)h+f(c),} h {\displaystyle h} f {\displaystyle f} z ↦ 1 3 ( 2 z + 1 ) 2 {\displaystyle \textstyle z\mapsto {\frac {1}{3}}(2z+1)^{2}} z + 2 {\displaystyle z+2} z 3 − 4 z 2 + 3 z − 1 {\displaystyle z^{3}-4z^{2}+3z-1} a n z n + a n − 1 z n − 1 + ⋯ + a 0 . {\displaystyle a_{n}z^{n}+a_{n-1}z^{n-1}+\cdots +a_{0}.} z n {\displaystyle z^{n}} π {\displaystyle \pi } f ( z ) := 3 + z + 4 z 2 + z 3 + 5 z 4 + 9 z 5 + 2 z 6 + 6 z 7 + ⋯ , {\displaystyle f(z):=3+z+4z^{2}+z^{3}+5z^{4}+9z^{5}+2z^{6}+6z^{7}+\cdots ,} f ( 1 10 ) = 3 + 1 10 + 4 100 + 1 1000 + 5 10000 + ⋯ = 3,141 5926 … = π . {\displaystyle f\left({\frac {1}{10}}\right)=3+{\frac {1}{10}}+{\frac {4}{100}}+{\frac {1}{1000}}+{\frac {5}{10000}}+\cdots =3{,}1415926\dotsc =\pi .} f ( z ) {\displaystyle f(z)} | z | {\displaystyle |z|} z {\displaystyle z} C {\displaystyle \mathbb {C} } f ( z ) = 1 1 − z {\displaystyle f(z)={\tfrac {1}{1-z}}} z = 1 {\displaystyle z=1} z {\displaystyle z} 1 + z + z 2 + z 3 + z 4 + z 5 + ⋯ = 1 1 − z . {\displaystyle 1+z+z^{2}+z^{3}+z^{4}+z^{5}+\cdots ={\frac {1}{1-z}}.} 2 π {\displaystyle 2\pi } z ↦ sin ( z ) {\displaystyle z\mapsto \sin(z)} z {\displaystyle z} sin ( z ) ≈ z − z 3 6 . {\displaystyle \sin(z)\approx z-{\frac {z^{3}}{6}}.} z ↦ z − z 3 6 {\displaystyle \textstyle z\mapsto z-{\frac {z^{3}}{6}}} sin ( 0 ) = 0 {\displaystyle \sin(0)=0} sin ( 0 , 2 ) = 0,198 6693308 … {\displaystyle \sin(0{,}2)=0{,}1986693308\dots } 0 , 2 − 0 , 2 3 6 = 0,198 6666 … {\displaystyle \textstyle 0{,}2-{\frac {0{,}2^{3}}{6}}=0{,}1986666\dots } sin ( z ) = z − z 3 6 + z 5 120 − z 7 5040 + z 9 362880 − z 11 39916800 + z 13 6227020800 − z 15 1307674368000 + ⋯ = ∑ n = 0 ∞ ( − 1 ) n z 2 n + 1 ( 2 n + 1 ) ! , {\displaystyle \sin(z)=z-{\frac {z^{3}}{6}}+{\frac {z^{5}}{120}}-{\frac {z^{7}}{5040}}+{\frac {z^{9}}{362880}}-{\frac {z^{11}}{39916800}}+{\frac {z^{13}}{6227020800}}-{\frac {z^{15}}{1307674368000}}+\cdots =\sum _{n=0}^{\infty }{\frac {(-1)^{n}z^{2n+1}}{(2n+1)!}},} ! {\displaystyle !} Σ {\displaystyle \Sigma } z n {\displaystyle z^{n}} f ( z ) = f ( c ) + f ′ ( c ) ( z − c ) + f ″ ( c ) 2 ( z − c ) 2 + f ‴ ( c ) 6 ( z − c ) 3 + ⋯ {\displaystyle f(z)=f(c)+f'(c)(z-c)+{\frac {f''(c)}{2}}(z-c)^{2}+{\frac {f'''(c)}{6}}(z-c)^{3}+\cdots } z {\displaystyle z} c {\displaystyle c} z ↦ z {\displaystyle z\mapsto {\sqrt {z}}} c = 25 {\displaystyle c=25} ( z ) ′ = 1 2 z {\displaystyle \textstyle ({\sqrt {z}})'={\frac {1}{2{\sqrt {z}}}}} ( z ) ″ = − 1 4 z 3 {\displaystyle \textstyle ({\sqrt {z}})''=-{\frac {1}{4{\sqrt {z}}^{3}}}} z ≈ 25 + 1 2 25 ( z − 25 ) − 1 8 ⋅ 25 3 ( z − 25 ) 2 = 5 + 1 10 ( z − 25 ) − 1 1000 ( z − 25 ) 2 {\displaystyle {\sqrt {z}}\approx {\sqrt {25}}+{\frac {1}{2{\sqrt {25}}}}(z-25)-{\frac {1}{8\cdot {\sqrt {25}}^{3}}}(z-25)^{2}=5+{\frac {1}{10}}(z-25)-{\frac {1}{1000}}(z-25)^{2}} z {\displaystyle z} 25 {\displaystyle 25} 5 + 1 10 ( z − 25 ) − 1 1000 ( z − 25 ) 2 {\displaystyle \textstyle 5+{\tfrac {1}{10}}(z-25)-{\tfrac {1}{1000}}(z-25)^{2}} z = 25 {\displaystyle z=25} 5 {\displaystyle 5} 25 {\displaystyle 25} 26 ≈ 5 + 1 10 − 1 1000 = 5,099 {\displaystyle {\sqrt {26}}\approx 5+{\frac {1}{10}}-{\frac {1}{1000}}=5{,}099} 26 = 5,099 0195 … {\displaystyle {\sqrt {26}}=5{,}0990195\dots } 25 + 0 , 4 i {\displaystyle 25+0{,}4i} 5,000 16 + 0 , 04 i {\displaystyle 5{,}00016+0{,}04i} 25 + 0 , 4 i {\displaystyle {\sqrt {25+0{,}4i}}} ( 5,000 16 + 0 , 04 i ) 2 = 25,000 0000256 + 0,400 0128 i {\displaystyle (5{,}00016+0{,}04i)^{2}=25{,}0000000256+0{,}4000128i} z n {\displaystyle z^{n}} z n {\displaystyle z^{n}} n z n − 1 {\displaystyle nz^{n-1}} z n {\displaystyle z^{n}} 1 + z + z 2 + z 3 + ⋯ = 1 1 − z {\displaystyle 1+z+z^{2}+z^{3}+\cdots ={\frac {1}{1-z}}} 1 + 2 z + 3 z 2 + 4 z 3 + ⋯ = 1 ( 1 − z ) 2 {\displaystyle 1+2z+3z^{2}+4z^{3}+\cdots ={\frac {1}{(1-z)^{2}}}} f {\displaystyle f} 0,001 {\displaystyle 0{,}001} p {\displaystyle p} z {\displaystyle z} p k ( z ) := ∑ n = 0 k ( − 1 ) n z 2 n + 1 ( 2 n + 1 ) ! . {\displaystyle \textstyle p_{k}(z):=\sum _{n=0}^{k}{\frac {(-1)^{n}z^{2n+1}}{(2n+1)!}}.} p 0 ( z ) {\displaystyle p_{0}(z)} sin ( z ) {\displaystyle \sin(z)} p 0 ( z ) = z {\displaystyle p_{0}(z)=z} p 1 ( z ) = z − z 3 6 {\displaystyle p_{1}(z)=z-{\tfrac {z^{3}}{6}}} p 2 ( z ) = z − z 3 6 + z 5 120 {\displaystyle p_{2}(z)=z-{\tfrac {z^{3}}{6}}+{\tfrac {z^{5}}{120}}} p 3 ( z ) {\displaystyle p_{3}(z)} p 4 ( z ) {\displaystyle p_{4}(z)} p 5 ( z ) {\displaystyle p_{5}(z)} p 6 ( z ) {\displaystyle p_{6}(z)} z n + 1 n + 1 {\displaystyle {\tfrac {z^{n+1}}{n+1}}} z n {\displaystyle z^{n}} − log ( 1 − z ) = ∫ 1 1 − z d z {\displaystyle \textstyle -\log(1-z)=\int \!{\frac {1}{1-z}}\,\mathrm {d} z} ∫ ( 1 + z + z 2 + z 3 + z 4 + ⋯ ) d z = ∫ 1 1 − z d z ⟹ ( ∗ ) z + z 2 2 + z 3 3 + z 4 4 + ⋯ = − log ( 1 − z ) . {\displaystyle \int \!\left(1+z+z^{2}+z^{3}+z^{4}+\cdots \right)\,\mathrm {d} z=\int \!{\frac {1}{1-z}}\,\mathrm {d} z{\overset {(*)}{\implies }}z+{\frac {z^{2}}{2}}+{\frac {z^{3}}{3}}+{\frac {z^{4}}{4}}+\cdots =-\log(1-z).} ( ∗ ) {\displaystyle (*)} ∫ ( 1 + z + z 2 + ⋯ ) = ∫ 1 + ∫ z + ∫ z 2 + ⋯ {\displaystyle \textstyle \int (1+z+z^{2}+\cdots )=\int 1+\int z+\int z^{2}+\cdots } z ↦ a z + b {\displaystyle z\mapsto az+b} z 1 , z 2 , z 3 , … , z n , … {\displaystyle z_{1},z_{2},z_{3},\dots ,z_{n},\dots } z ∞ {\displaystyle z_{\infty }} z ∞ {\displaystyle z_{\infty }} z ∞ {\displaystyle z_{\infty }} 1 , 2 , 3 , 4 , … {\displaystyle 1,2,3,4,\dots } z 1 , z 2 , … → z ∞ {\displaystyle z_{1},z_{2},\dotsc \to z_{\infty }} ∫ − ∞ ∞ e − t 2 d t = π {\displaystyle \int _{-\infty }^{\infty }\!\mathrm {e} ^{-t^{2}}\,\mathrm {d} t={\sqrt {\pi }}} t ↦ e − t 2 {\displaystyle t\mapsto \mathrm {e} ^{-t^{2}}} a 1 + a 2 + a 3 + ⋯ {\displaystyle a_{1}+a_{2}+a_{3}+\cdots } a n {\displaystyle a_{n}} 1 + 1 10 + 1 10 2 + 1 10 3 + 1 10 4 + ⋯ = 1 + 0 , 1 + 0 , 01 + 0,001 + 0,000 1 + ⋯ = 1,111 11 … = 10 9 . {\displaystyle 1+{\frac {1}{10}}+{\frac {1}{10^{2}}}+{\frac {1}{10^{3}}}+{\frac {1}{10^{4}}}+\cdots =1+0{,}1+0{,}01+0{,}001+0{,}0001+\cdots =1{,}11111\ldots ={\frac {10}{9}}.} 1 + 1 2 2 + 1 3 2 + 1 4 2 + 1 5 2 + ⋯ = π 2 6 {\displaystyle 1+{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}+{\frac {1}{4^{2}}}+{\frac {1}{5^{2}}}+\cdots ={\frac {\pi ^{2}}{6}}} 1 + 1 2 3 + 1 3 3 + 1 4 3 + 1 5 3 + ⋯ = 7 π 3 180 − 2 ( 1 e 2 π − 1 + 1 / 8 e 4 π − 1 + 1 / 27 e 6 π − 1 + ⋯ ) {\displaystyle 1+{\frac {1}{2^{3}}}+{\frac {1}{3^{3}}}+{\frac {1}{4^{3}}}+{\frac {1}{5^{3}}}+\cdots ={\frac {7\pi ^{3}}{180}}-2\left({\frac {1}{\mathrm {e} ^{2\pi }-1}}+{\frac {1/8}{\mathrm {e} ^{4\pi }-1}}+{\frac {1/27}{\mathrm {e} ^{6\pi }-1}}+\cdots \right)} x > 0 {\displaystyle x>0} ∑ n = − ∞ ∞ e − π x n 2 = 1 + 2 e − π x + 2 e − 4 π x + 2 e − 9 π x + ⋯ = 1 x ( 1 + 2 e − π / x + 2 e − 4 π / x + 2 e − 9 π / x + ⋯ ) = 1 x ∑ n = − ∞ ∞ e − π n 2 / x . {\displaystyle \sum _{n=-\infty }^{\infty }\mathrm {e} ^{-\pi xn^{2}}=1+2\mathrm {e} ^{-\pi x}+2\mathrm {e} ^{-4\pi x}+2\mathrm {e} ^{-9\pi x}+\cdots ={\frac {1}{\sqrt {x}}}\left(1+2\mathrm {e} ^{-\pi /x}+2\mathrm {e} ^{-4\pi /x}+2\mathrm {e} ^{-9\pi /x}+\cdots \right)={\frac {1}{\sqrt {x}}}\sum _{n=-\infty }^{\infty }\mathrm {e} ^{-\pi n^{2}/x}.} e {\displaystyle e} π {\displaystyle \pi } 78 = 8 2 + 3 2 + 2 2 + 1 2 {\displaystyle 78=8^{2}+3^{2}+2^{2}+1^{2}} 0 , 1 , 2 , 3 , 4 , … , n , … {\displaystyle 0,1,2,3,4,\dots ,n,\dots } a 0 , a 1 , a 2 , a 3 , a 4 , … , a n , … {\displaystyle a_{0},a_{1},a_{2},a_{3},a_{4},\dots ,a_{n},\dots } 0 , 1 , 4 , 9 , 16 , 25 , … {\displaystyle 0,1,4,9,16,25,\dots } 2 , 3 , 5 , 7 , … {\displaystyle 2,3,5,7,\dots } 1 , 1 , 2 , 3 , 5 , 8 , … {\displaystyle 1,1,2,3,5,8,\dots } a 0 , a 1 , a 2 , … {\displaystyle a_{0},a_{1},a_{2},\dots } f ( z ) = a 0 + a 1 z + a 2 z 2 + a 3 z 3 + ⋯ + a n z n + ⋯ {\displaystyle f(z)=a_{0}+a_{1}z+a_{2}z^{2}+a_{3}z^{3}+\cdots +a_{n}z^{n}+\cdots } a n {\displaystyle a_{n}} f {\displaystyle f} a n {\displaystyle a_{n}} f {\displaystyle f} a n {\displaystyle a_{n}} a n {\displaystyle a_{n}} n {\displaystyle n} p {\displaystyle p} 4 = 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1 {\displaystyle {\begin{aligned}4&=4\\&=3+1\\&=2+2\\&=2+1+1\\&=1+1+1+1\end{aligned}}} p ( 4 ) = 5 {\displaystyle p(4)=5} p ( 100 ) = 190 569 292 {\displaystyle p(100)=190\ 569\ 292} p ( 1000 ) = 24 061 467 864 032 622 473 692 149 727 991. {\displaystyle p(1000)=24\ 061\ 467\ 864\ 032\ 622\ 473\ 692\ 149\ 727\ 991.} p ( 0 ) = 1 {\displaystyle p(0)=1} P ( z ) = ∑ n = 0 ∞ p ( n ) z n = 1 + z + 2 z 2 + 3 z 3 + 5 z 4 + 7 z 5 + 11 z 6 + 15 z 7 + 22 z 8 + ⋯ {\displaystyle P(z)=\sum _{n=0}^{\infty }p(n)z^{n}=1+z+2z^{2}+3z^{3}+5z^{4}+{\color {red}{7}}z^{\color {blue}{5}}+11z^{6}+15z^{7}+22z^{8}+\cdots } P . {\displaystyle P.} P {\displaystyle P} p ( n ) {\displaystyle p(n)} z {\displaystyle z} | z | > 1 {\displaystyle |z|>1} p ( n ) ≈ 1 4 3 n e π 2 n 3 , {\displaystyle p(n)\approx {\frac {1}{4{\sqrt {3}}n}}\mathrm {e} ^{\pi {\sqrt {\frac {2n}{3}}}},} n {\displaystyle n} e x {\displaystyle e^{x}} π = 3,141 59 … {\displaystyle \pi =3{,}14159\dots } 3 {\displaystyle {\sqrt {3}}} 1 f ( z ) {\displaystyle {\tfrac {1}{f(z)}}} z → ∞ {\displaystyle z\to \infty } x ↦ 1 x 2 + 1 {\displaystyle x\mapsto {\tfrac {1}{x^{2}+1}}} R {\displaystyle \mathbb {R} } x ↦ c {\displaystyle x\mapsto c} sin ( 2 + 10 i ) = 10014,304 35528 … + 4583,122 02096 … i . {\displaystyle \sin(2+10i)=10014{,}30435528\ldots +4583{,}12202096\dots i.} a n z n + a n − 1 z n − 1 + ⋯ + a 1 z + a 0 = 0 {\displaystyle a_{n}z^{n}+a_{n-1}z^{n-1}+\cdots +a_{1}z+a_{0}=0} a n ≠ 0 {\displaystyle a_{n}\not =0} n ∈ N {\displaystyle n\in \mathbb {N} } z 4 − z 3 + 2 z 2 + 17 z + 20 = 0 {\displaystyle z^{4}-z^{3}+2z^{2}+17z+20=0} f ( z ) = z 4 − z 3 + 2 z 2 + 17 z + 20 {\displaystyle f(z)=z^{4}-z^{3}+2z^{2}+17z+20} z ↦ 1 f ( z ) {\displaystyle z\mapsto {\tfrac {1}{f(z)}}} z {\displaystyle z} f ( z ) ≠ 0 {\displaystyle f(z)\not =0} z 4 − z 3 + 2 z 2 + 17 z + 20 = 0 {\displaystyle z^{4}-z^{3}+2z^{2}+17z+20=0} z ↦ 1 f ( z ) = 1 z 4 − z 3 + 2 z 2 + 17 z + 20 {\displaystyle z\mapsto {\frac {1}{f(z)}}={\frac {1}{z^{4}-z^{3}+2z^{2}+17z+20}}} C {\displaystyle \mathbb {C} } f ( z ) {\displaystyle f(z)} z {\displaystyle z} 1 f ( z ) {\displaystyle {\tfrac {1}{f(z)}}} x + i y {\displaystyle x+iy} U {\displaystyle U} U {\displaystyle U} N {\displaystyle \mathbb {N} } Z {\displaystyle \mathbb {Z} } Q {\displaystyle \mathbb {Q} } R {\displaystyle \mathbb {R} } C {\displaystyle \mathbb {C} } U ⊂ C {\displaystyle U\subset \mathbb {C} } D ⊂ C {\displaystyle D\subset \mathbb {C} } c {\displaystyle c} r > 0 {\displaystyle r>0} ∂ M {\displaystyle \partial M} M {\displaystyle M} ∮ {\displaystyle \textstyle \oint } R 2 {\displaystyle \mathbb {R} ^{2}} | x + i y | = x 2 + y 2 {\displaystyle |x+iy|={\sqrt {x^{2}+y^{2}}}} U ⊂ C {\displaystyle U\subset \mathbb {C} } z 0 ∈ U {\displaystyle z_{0}\in U} z 0 ∈ U {\displaystyle z_{0}\in U} ε > 0 {\displaystyle \varepsilon >0} B ε ( z ) {\displaystyle B_{\varepsilon }(z)} U {\displaystyle U} U ⊆ C {\displaystyle U\subseteq \mathbb {C} } z 0 ∈ U {\displaystyle z_{0}\in U} f : U → C {\displaystyle f\colon U\to \mathbb {C} } z 0 {\displaystyle z_{0}} lim h → 0 f ( z 0 + h ) − f ( z 0 ) h {\displaystyle \lim _{h\to 0}{\frac {f(z_{0}+h)-f(z_{0})}{h}}} f ′ ( z 0 ) {\displaystyle f'(z_{0})} lim h → 0 {\displaystyle \textstyle \lim _{h\to 0}} h n {\displaystyle h_{n}} h n ≠ 0 {\displaystyle h_{n}\not =0} n {\displaystyle n} lim n → ∞ f ( z 0 + h n ) − f ( z 0 ) h n {\displaystyle \lim _{n\to \infty }{\frac {f(z_{0}+h_{n})-f(z_{0})}{h_{n}}}} h n {\displaystyle h_{n}} U {\displaystyle U} U {\displaystyle U} U {\displaystyle U} h {\displaystyle h} z + h {\displaystyle z+h} U {\displaystyle U} h {\displaystyle h} f {\displaystyle f} f ( z ) = Re ( f ( z ) ) + i Im ( f ( z ) ) = u ( x , y ) + i v ( x , y ) {\displaystyle f(z)=\operatorname {Re} (f(z))+i\operatorname {Im} (f(z))=u(x,y)+i\ v(x,y)} u , v : R 2 → R {\displaystyle u,v\colon \mathbb {R} ^{2}\rightarrow \mathbb {R} } f {\displaystyle f} z 0 = x 0 + i y 0 {\displaystyle z_{0}=x_{0}+i\ y_{0}} u ( x , y ) = u ( x 0 , y 0 ) + a Δ x + b Δ y + o ( Δ x , Δ y ) , {\displaystyle u(x,y)=u(x_{0},y_{0})+a\Delta x+b\Delta y+o(\Delta x,\Delta y),} v ( x , y ) = v ( x 0 , y 0 ) + c Δ x + d Δ y + o ( Δ x , Δ y ) , {\displaystyle v(x,y)=v(x_{0},y_{0})+c\Delta x+d\Delta y+o(\Delta x,\Delta y),} o {\displaystyle o} Δ x , Δ y {\displaystyle \Delta x,\Delta y} o ( Δ x , Δ y ) ( Δ x ) 2 + ( Δ y ) 2 → 0 {\displaystyle {\frac {o(\Delta x,\Delta y)}{\sqrt {(\Delta x)^{2}+(\Delta y)^{2}}}}\rightarrow 0} ( Δ x ) 2 + ( Δ y ) 2 → 0. {\displaystyle (\Delta x)^{2}+(\Delta y)^{2}\rightarrow 0.} a , b , c , d {\displaystyle a,b,c,d} u {\displaystyle u} v {\displaystyle v} f {\displaystyle f} R 2 {\displaystyle \mathbb {R} ^{2}} ( a b c d ) = ( ∂ u ∂ x ∂ u ∂ y ∂ v ∂ x ∂ v ∂ y ) . {\displaystyle {\begin{pmatrix}a&b\\c&d\end{pmatrix}}={\begin{pmatrix}{\frac {\partial u}{\partial x}}&{\frac {\partial u}{\partial y}}\\{\frac {\partial v}{\partial x}}&{\frac {\partial v}{\partial y}}\end{pmatrix}}.} Δ x {\displaystyle \Delta x} Δ y {\displaystyle \Delta y} f ( x 0 + i y 0 + i Δ y ) {\displaystyle f(x_{0}+iy_{0}+i\Delta y)} f ( x 0 + Δ x + i y 0 ) {\displaystyle f(x_{0}+\Delta x+iy_{0})} Δ x {\displaystyle \Delta x} Δ y {\displaystyle \Delta y} Δ x {\displaystyle \Delta x} Δ y {\displaystyle \Delta y} Δ z {\displaystyle \Delta z} z 0 {\displaystyle z_{0}} f ( z ) = f ( z 0 ) + ω Δ z + o ( Δ z ) , {\displaystyle f(z)=f(z_{0})+\omega \Delta z+o(\Delta z),} Δ z := z − z 0 {\displaystyle \Delta z:=z-z_{0}} C {\displaystyle \mathbb {C} } f ( z ) − f ( z 0 ) Δ z = ω + o ( Δ z ) Δ z {\displaystyle {\frac {f(z)-f(z_{0})}{\Delta z}}=\omega +{\frac {o(\Delta z)}{\Delta z}}} lim Δ z → 0 o ( Δ z ) Δ z = 0 {\displaystyle \lim _{\Delta z\to 0}{\frac {o(\Delta z)}{\Delta z}}=0} Δ z = Δ x + i Δ y {\displaystyle \Delta z=\Delta x+i\Delta y} ω = Re ( ω ) + i Im ( ω ) {\displaystyle \omega =\operatorname {Re} (\omega )+i\operatorname {Im} (\omega )} ω Δ z = ( Re ( ω ) + i Im ( ω ) ) ( Δ x + i Δ y ) = ( Re ( ω ) Δ x − Im ( ω ) Δ y ) + i ( Im ( ω ) Δ x + Re ( ω ) Δ y ) {\displaystyle \omega \Delta z=(\operatorname {Re} (\omega )+i\operatorname {Im} (\omega ))(\Delta x+i\Delta y)=(\operatorname {Re} (\omega )\Delta x-\operatorname {Im} (\omega )\Delta y)+i(\operatorname {Im} (\omega )\Delta x+\operatorname {Re} (\omega )\Delta y)} ( a b c d ) = ( Re ( ω ) − Im ( ω ) Im ( ω ) Re ( ω ) ) = ( ∂ u ∂ x ∂ u ∂ y ∂ v ∂ x ∂ v ∂ y ) . {\displaystyle {\begin{pmatrix}a&b\\c&d\end{pmatrix}}={\begin{pmatrix}\operatorname {Re} (\omega )&-\operatorname {Im} (\omega )\\\operatorname {Im} (\omega )&\operatorname {Re} (\omega )\end{pmatrix}}={\begin{pmatrix}{\frac {\partial u}{\partial x}}&{\frac {\partial u}{\partial y}}\\{\frac {\partial v}{\partial x}}&{\frac {\partial v}{\partial y}}\end{pmatrix}}.} ∂ u ∂ x = ∂ v ∂ y {\displaystyle {\frac {\partial u}{\partial x}}={\frac {\partial v}{\partial y}}} ∂ u ∂ y = − ∂ v ∂ x {\displaystyle {\frac {\partial u}{\partial y}}=-{\frac {\partial v}{\partial x}}} f : U → C {\displaystyle f\colon U\rightarrow \mathbb {C} } z 0 ∈ U {\displaystyle z_{0}\in U} f = u + i v {\displaystyle f=u+iv} U {\displaystyle U} u {\displaystyle u} v {\displaystyle v} U {\displaystyle U} O {\displaystyle {\mathcal {O}}} f {\displaystyle f} U {\displaystyle U} z ∈ U {\displaystyle z\in U} U = C {\displaystyle U=\mathbb {C} } f {\displaystyle f} U {\displaystyle U} U {\displaystyle U} U {\displaystyle U} O ( U ) {\displaystyle {\mathcal {O}}(U)} O {\displaystyle {\mathcal {O}}} f , g : U → C {\displaystyle f,g\colon U\to \mathbb {C} } z ∈ U {\displaystyle z\in U} f + g {\displaystyle f+g} f − g {\displaystyle f-g} f ⋅ g {\displaystyle f\cdot g} f g {\displaystyle {\tfrac {f}{g}}} z {\displaystyle z} g {\displaystyle g} f = u + i v {\displaystyle f=u+iv} det ( u x u y v x v y ) {\displaystyle \operatorname {det} {\begin{pmatrix}u_{x}&u_{y}\\v_{x}&v_{y}\end{pmatrix}}} f {\displaystyle f} Φ : C → R 2 × 2 {\displaystyle \Phi \colon \mathbb {C} \to \mathbb {R} ^{2\times 2}} Φ ( a + i b ) := ( a − b b a ) {\displaystyle \Phi (a+ib):={\begin{pmatrix}a&-b\\b&a\end{pmatrix}}} r > 0 {\displaystyle r>0} Φ ( r e i θ ) = r ( cos ( θ ) − sin ( θ ) sin ( θ ) cos ( θ ) ) . {\displaystyle \Phi (r\mathrm {e} ^{i\theta })=r{\begin{pmatrix}\cos(\theta )&-\sin(\theta )\\\sin(\theta )&\cos(\theta )\end{pmatrix}}.} D f ( x , y ) = Φ ( f ′ ( z ) ) {\displaystyle Df(x,y)=\Phi (f'(z))} z = x + i y {\displaystyle z=x+iy} f ( z ) = z n {\displaystyle f(z)=z^{n}} n ≥ 2 {\displaystyle n\geq 2} n {\displaystyle n} f : D → C {\displaystyle f\colon D\to \mathbb {C} } D {\displaystyle D} a , b ∈ D {\displaystyle a,b\in D} a ≠ b {\displaystyle a\not =b} z 1 , z 2 ∈ ( a , b ) := { z = a t + b ( 1 − t ) : t ∈ ( 0 , 1 ) } ⊂ D {\displaystyle z_{1},z_{2}\in (a,b):=\{z=at+b(1-t)\colon t\in (0,1)\}\subset D} Re ( f ( a ) − f ( b ) a − b ) = Re ( f ′ ( z 1 ) ) {\displaystyle \operatorname {Re} \left({\frac {f(a)-f(b)}{a-b}}\right)=\operatorname {Re} (f'(z_{1}))} Im ( f ( a ) − f ( b ) a − b ) = Im ( f ′ ( z 2 ) ) . {\displaystyle \operatorname {Im} \left({\frac {f(a)-f(b)}{a-b}}\right)=\operatorname {Im} (f'(z_{2})).} f : D → C {\displaystyle f\colon D\to \mathbb {C} } D {\displaystyle D} a , b ∈ D {\displaystyle a,b\in D} a ≠ b {\displaystyle a\not =b} f ( a ) = f ( b ) = 0 {\displaystyle f(a)=f(b)=0} z 1 , z 2 ∈ ( a , b ) := { z = a t + b ( 1 − t ) : t ∈ ( 0 , 1 ) } ⊂ D {\displaystyle z_{1},z_{2}\in (a,b):=\{z=at+b(1-t)\colon t\in (0,1)\}\subset D} Re ( f ′ ( z 1 ) ) = Im ( f ′ ( z 2 ) ) = 0. {\displaystyle \operatorname {Re} (f'(z_{1}))=\operatorname {Im} (f'(z_{2}))=0.} f , g : U → C {\displaystyle f,g\colon U\to \mathbb {C} } a ∈ U {\displaystyle a\in U} f ( a ) = f ′ ( a ) = ⋯ = f ( n − 1 ) ( a ) = 0 {\displaystyle f(a)=f'(a)=\cdots =f^{(n-1)}(a)=0} g ( a ) = g ′ ( a ) = ⋯ = g ( n − 1 ) ( a ) = 0 {\displaystyle g(a)=g'(a)=\cdots =g^{(n-1)}(a)=0} f ( n ) ( a ) ≠ 0 ≠ g ( n ) ( a ) {\displaystyle f^{(n)}(a)\not =0\not =g^{(n)}(a)} n ∈ N {\displaystyle n\in \mathbb {N} } lim z → a f ( z ) g ( z ) = f ( n ) ( a ) g ( n ) ( a ) . {\displaystyle \lim _{z\to a}{\frac {f(z)}{g(z)}}={\frac {f^{(n)}(a)}{g^{(n)}(a)}}.} a {\displaystyle a} b {\displaystyle b} a {\displaystyle a} b {\displaystyle b} ∮ {\displaystyle \textstyle \oint } D ⊂ C {\displaystyle D\subset \mathbb {C} } f : D → C {\displaystyle f\colon D\to \mathbb {C} } γ : [ 0 , 1 ] → D {\displaystyle \gamma \colon [0,1]\to D} ∫ γ f ( z ) d z := ∫ 0 1 f ( γ ( t ) ) γ ′ ( t ) d t . {\displaystyle \int _{\gamma }\!f(z)\,\mathrm {d} z:=\int _{0}^{1}\!f(\gamma (t))\gamma '(t)\,\mathrm {d} t.} Re ( f ) + i Im ( f ) {\displaystyle \operatorname {Re} (f)+i\operatorname {Im} (f)} γ ′ ( t ) d t {\displaystyle \gamma '(t)\mathrm {d} t} d γ ( t ) {\displaystyle \mathrm {d} \gamma (t)} γ ( 1 n ) − γ ( 0 ) , γ ( 2 n ) − γ ( 1 n ) , … , γ ( 1 ) − γ ( n − 1 n ) {\displaystyle \gamma ({\tfrac {1}{n}})-\gamma (0),\gamma ({\tfrac {2}{n}})-\gamma ({\tfrac {1}{n}}),\ldots ,\gamma (1)-\gamma ({\tfrac {n-1}{n}})} n → ∞ {\displaystyle n\to \infty } ∫ γ f ( z ) d z {\displaystyle \int _{\gamma }\!f(z)\,\mathrm {d} z} γ ( 0 ) = a {\displaystyle \gamma (0)=a} γ ( 1 ) = b {\displaystyle \gamma (1)=b} f {\displaystyle f} γ {\displaystyle \gamma } f {\displaystyle f} F {\displaystyle F} ∫ γ f ( z ) d z = F ( γ ( 1 ) ) − F ( γ ( 0 ) ) = F ( b ) − F ( a ) , {\displaystyle \int _{\gamma }\!f(z)\,\mathrm {d} z=F(\gamma (1))-F(\gamma (0))=F(b)-F(a),} x 0 {\displaystyle x_{0}} x ↦ ∫ x 0 x {\displaystyle \textstyle x\mapsto \int _{x_{0}}^{x}} γ {\displaystyle \gamma } D {\displaystyle D} F {\displaystyle F} D {\displaystyle D} F {\displaystyle F} f {\displaystyle f} D {\displaystyle D} ∫ γ f ( z ) d z = ∫ a b f ( z ) d z {\displaystyle \int _{\gamma }\!f(z)\,\mathrm {d} z=\int _{a}^{b}\!f(z)\,\mathrm {d} z} f {\displaystyle f} D = C ∖ { 0 } {\displaystyle D=\mathbb {C} \setminus \{0\}} f ( z ) = 1 z {\displaystyle f(z)={\tfrac {1}{z}}} f {\displaystyle f} D {\displaystyle D} f {\displaystyle f} D {\displaystyle D} D {\displaystyle D} f : D → C {\displaystyle f\colon D\to \mathbb {C} } z 0 ∈ D {\displaystyle z_{0}\in D} z ∈ D {\displaystyle z\in D} D {\displaystyle D} F ( z ) := ∫ z 0 z f ( w ) d w {\displaystyle F(z):=\int _{z_{0}}^{z}\!f(w)\,\mathrm {d} w} z 0 {\displaystyle z_{0}} z {\displaystyle z} D ⊆ C {\displaystyle D\subseteq \mathbb {C} } γ {\displaystyle \gamma } D {\displaystyle D} ∫ γ f ( z ) d z = 0. {\displaystyle \int _{\gamma }\!f(z)\,\mathrm {d} z=0.} D {\displaystyle D} γ {\displaystyle \gamma } D ⊂ C {\displaystyle D\subset \mathbb {C} } f : D → C {\displaystyle f\colon D\to \mathbb {C} } ⟨ z 1 , z 2 , z 3 ⟩ {\displaystyle \langle z_{1},z_{2},z_{3}\rangle } Δ {\displaystyle \Delta } D {\displaystyle D} ∮ ⟨ z 1 , z 2 , z 3 ⟩ f ( z ) d z = 0 , {\displaystyle \oint _{\langle z_{1},z_{2},z_{3}\rangle }\!f(z)\,\mathrm {d} z=0,} f {\displaystyle f} f : D → C {\displaystyle f\colon D\to \mathbb {C} } D {\displaystyle D} g : D → C {\displaystyle g\colon D\to \mathbb {C} } f = e g {\displaystyle f=e^{g}} g {\displaystyle g} f {\displaystyle f} f {\displaystyle f} n {\displaystyle n} n ∈ N {\displaystyle n\in \mathbb {N} } D {\displaystyle D} h : D → C {\displaystyle h\colon D\to \mathbb {C} } f = h n {\displaystyle f=h^{n}} U {\displaystyle U} B r ( a ) {\displaystyle B_{r}(a)} r {\displaystyle r} a ∈ U {\displaystyle a\in U} f : U → C {\displaystyle f\colon U\to \mathbb {C} } B r ( a ) {\displaystyle B_{r}(a)} U {\displaystyle U} z ∈ D {\displaystyle z\in D} f ( z ) = 1 2 π i ∮ ∂ B r ( a ) f ( w ) w − z d w . {\displaystyle f(z)={\frac {1}{2\pi i}}\oint _{\partial B_{r}(a)}\!{\frac {f(w)}{w-z}}\,\mathrm {d} w.} k ∈ N 0 {\displaystyle k\in \mathbb {N} _{0}} f ( k ) ( z ) = k ! 2 π i ∮ ∂ B r ( a ) f ( w ) ( w − z ) k + 1 d w . {\displaystyle f^{(k)}(z)={\frac {k!}{2\pi i}}\oint _{\partial B_{r}(a)}\!{\frac {f(w)}{(w-z)^{k+1}}}\,\mathrm {d} w.} k ! {\displaystyle k!} k {\displaystyle k} z 0 {\displaystyle z_{0}} z 0 {\displaystyle z_{0}} z 0 {\displaystyle z_{0}} z 0 {\displaystyle z_{0}} f ( a ) = 1 2 π ∫ 0 2 π f ( a + r e i φ ) d φ , {\displaystyle f(a)={\frac {1}{2\pi }}\int _{0}^{2\pi }\!f(a+re^{i\varphi })\,\mathrm {d} \varphi ,} | f ( a ) | ≤ sup | z − a | = r | f ( z ) | {\displaystyle |f(a)|\leq \sup _{|z-a|=r}|f(z)|} f {\displaystyle f} B r ( 0 ) ¯ {\displaystyle {\overline {B_{r}(0)}}} z ∈ B r ( 0 ) {\displaystyle z\in B_{r}(0)} f ( z ) = 1 2 π i ∮ ∂ B r ( 0 ) f ( w ) w r 2 − | z | 2 | w − z | 2 d w , {\displaystyle f(z)={\frac {1}{2\pi i}}\oint _{\partial B_{r}(0)}\!{\frac {f(w)}{w}}{\frac {r^{2}-|z|^{2}}{|w-z|^{2}}}\,\mathrm {d} w,} f ( z ) = 1 2 π i ∮ ∂ B r ( 0 ) Re ( f ( w ) ) w w + z w − z d w + i Im ( f ( 0 ) ) {\displaystyle f(z)={\frac {1}{2\pi i}}\oint _{\partial B_{r}(0)}\!{\frac {\operatorname {Re} (f(w))}{w}}{\frac {w+z}{w-z}}\,\mathrm {d} w+i\operatorname {Im} (f(0))} f {\displaystyle f} B R ( 0 ) ¯ {\displaystyle {\overline {B_{R}(0)}}} f ( r e i θ ) = 1 2 π ∫ 0 2 π f ( R e i Θ ) R 2 − r 2 R 2 − 2 R r cos ( Θ − θ ) + r 2 d Θ . {\displaystyle f(re^{i\theta })={\frac {1}{2\pi }}\int _{0}^{2\pi }f(Re^{i\Theta }){\frac {R^{2}-r^{2}}{R^{2}-2Rr\cos(\Theta -\theta )+r^{2}}}\mathrm {d} \Theta .} c ∈ U {\displaystyle c\in U} U {\displaystyle U} B r ( c ) {\displaystyle B_{r}(c)} c {\displaystyle c} U {\displaystyle U} f : U → C {\displaystyle f\colon U\to \mathbb {C} } f {\displaystyle f} c {\displaystyle c} ∑ n = 0 ∞ a n ( z − c ) n {\displaystyle \textstyle \sum _{n=0}^{\infty }a_{n}(z-c)^{n}} B r ( c ) {\displaystyle B_{r}(c)} a n = f ( n ) ( c ) n ! = 1 2 π i ∮ ∂ B d ( c ) f ( w ) ( w − c ) n + 1 d w {\displaystyle a_{n}={\frac {f^{(n)}(c)}{n!}}={\frac {1}{2\pi i}}\oint _{\partial B_{d}(c)}{\frac {f(w)}{(w-c)^{n+1}}}\mathrm {d} w} z ↦ ( z − c ) − k − 1 {\displaystyle z\mapsto (z-c)^{-k-1}} k = 0 {\displaystyle k=0} f ( z ) = ∑ n = 0 ∞ a n ( z − c ) n {\displaystyle \textstyle f(z)=\sum _{n=0}^{\infty }a_{n}(z-c)^{n}} R > 0 {\displaystyle R>0} f ( z ) {\displaystyle f(z)} | z − c | > R {\displaystyle |z-c|>R} R {\displaystyle R} R = 1 lim sup n → ∞ | a n | n . {\displaystyle R={\frac {1}{\limsup _{n\to \infty }{\sqrt[{n}]{|a_{n}|}}}}.} a n ≠ 0 {\displaystyle a_{n}\not =0} n ∈ N {\displaystyle n\in \mathbb {N} } lim inf n → ∞ | a n a n + 1 | ≤ R ≤ lim sup n → ∞ | a n a n + 1 | . {\displaystyle \liminf _{n\to \infty }\left|{\frac {a_{n}}{a_{n+1}}}\right|\leq R\leq \limsup _{n\to \infty }\left|{\frac {a_{n}}{a_{n+1}}}\right|.} + ∞ {\displaystyle +\infty } R = ∞ {\displaystyle R=\infty } ∞ ≤ R {\displaystyle \infty \leq R} f {\displaystyle f} B R ( 0 ) ¯ {\displaystyle {\overline {B_{R}(0)}}} f ( z ) = ∑ k = 0 N − 1 f ( k ) ( 0 ) k ! z k + z N 2 π i ∮ ∂ B R ( 0 ) f ( w ) w N ( w − z ) d w . {\displaystyle f(z)=\sum _{k=0}^{N-1}{\frac {f^{(k)}(0)}{k!}}z^{k}+{\frac {z^{N}}{2\pi i}}\oint _{\partial B_{R}(0)}{\frac {f(w)}{w^{N}(w-z)}}\mathrm {d} w.} | ∑ k = N ∞ f ( k ) ( 0 ) k ! z k | ≤ | z | N 2 π ∮ ∂ B R ( 0 ) | f ( w ) w N ( w − z ) d w | ≤ ( | z | R ) N R max | w | = R | f ( w ) w − z | {\displaystyle \left|\sum _{k=N}^{\infty }{\frac {f^{(k)}(0)}{k!}}z^{k}\right|\leq {\frac {|z|^{N}}{2\pi }}\oint _{\partial B_{R}(0)}\left|{\frac {f(w)}{w^{N}(w-z)}}\mathrm {d} w\right|\leq \left({\frac {|z|}{R}}\right)^{N}R\max _{|w|=R}\left|{\frac {f(w)}{w-z}}\right|} z {\displaystyle z} | ∑ k = N ∞ f ( k ) ( 0 ) k ! z k | ≪ R , N z N max | w | = R | f ( w ) | {\displaystyle \left|\sum _{k=N}^{\infty }{\frac {f^{(k)}(0)}{k!}}z^{k}\right|\ll _{R,N}z^{N}\max _{|w|=R}|f(w)|} R {\displaystyle R} N {\displaystyle N} z {\displaystyle z} f {\displaystyle f} 2 π i {\displaystyle 2\pi i} f ( z ) := 1 1 − z = ∑ n = 0 ∞ z n , {\displaystyle f(z):={\frac {1}{1-z}}=\sum _{n=0}^{\infty }z^{n},} z = 1 {\displaystyle z=1} C ∖ { 1 } {\displaystyle \mathbb {C} \setminus \{1\}} R = 1 {\displaystyle R=1} f ( 2 ) = − 1 {\displaystyle f(2)=-1} z = 2 {\displaystyle z=2} z {\displaystyle z} f : B 1 ( 0 ) ∪ B 1 ( 3 ) → C {\displaystyle f\colon B_{1}(0)\cup B_{1}(3)\to \mathbb {C} } f ( z ) = { e z , z ∈ B 1 ( 0 ) 0 , z ∈ B 1 ( 3 ) {\displaystyle f(z)={\begin{cases}e^{z},&\quad z\in B_{1}(0)\\0,&\quad z\in B_{1}(3)\end{cases}}} ∑ n = 0 ∞ z n n ! {\displaystyle \sum _{n=0}^{\infty }{\frac {z^{n}}{n!}}} f {\displaystyle f} B 1 ( 0 ) {\displaystyle B_{1}(0)} z = 3 {\displaystyle z=3} f : C ∖ R ≤ 0 → C {\displaystyle f\colon \mathbb {C} \setminus \mathbb {R} _{\leq 0}\to \mathbb {C} } f ( z ) := L o g ( z ) {\displaystyle f(z):=\mathrm {Log} (z)} z 0 = − 5 + i {\displaystyle z_{0}=-5+i} R = 26 {\displaystyle R={\sqrt {26}}} − 5 − i {\displaystyle -5-i} f ( z ) = ∑ n = 0 ∞ a n ( z − c ) n {\displaystyle f(z)=\sum _{n=0}^{\infty }a_{n}(z-c)^{n}} w ∈ ∂ B R ( c ) {\displaystyle w\in \partial B_{R}(c)} W {\displaystyle W} w {\displaystyle w} f ^ : W → C {\displaystyle {\widehat {f}}\colon W\to \mathbb {C} } f | B R ( c ) ∩ W = f ^ | B R ( c ) ∩ W {\displaystyle f|_{B_{R}(c)\cap W}={\widehat {f}}|_{B_{R}(c)\cap W}} ∂ B R ( c ) {\displaystyle \partial B_{R}(c)} f {\displaystyle f} ∂ B R ( c ) {\displaystyle \partial B_{R}(c)} f {\displaystyle f} B R ( c ) {\displaystyle B_{R}(c)} f {\displaystyle f} f ( z ) = ∑ ν = 0 ∞ b ν z λ ν {\displaystyle f(z)=\sum _{\nu =0}^{\infty }b_{\nu }z^{\lambda _{\nu }}} δ > 0 {\displaystyle \delta >0} λ ν + 1 − λ ν ≥ δ λ ν {\displaystyle \lambda _{\nu +1}-\lambda _{\nu }\geq \delta \lambda _{\nu }} ν ∈ N 0 {\displaystyle \nu \in \mathbb {N} _{0}} B R ( 0 ) {\displaystyle B_{R}(0)} f {\displaystyle f} ∑ n = 0 ∞ a n z n {\displaystyle \sum _{n=0}^{\infty }a_{n}z^{n}} R = 1 {\displaystyle R=1} E {\displaystyle \mathbb {E} } ε n ∈ { − 1 , 1 } {\displaystyle \varepsilon _{n}\in \{-1,1\}} z ↦ ∑ n = 0 ∞ ε n a n z n {\displaystyle z\mapsto \sum _{n=0}^{\infty }\varepsilon _{n}a_{n}z^{n}} E {\displaystyle \mathbb {E} } f {\displaystyle f} f ( z ) = g ( z ) + h ( 1 z ) {\displaystyle f(z)=g(z)+h\left({\frac {1}{z}}\right)} g : B R ( 0 ) → C {\displaystyle g\colon B_{R}(0)\to \mathbb {C} } h : B 1 r ( 0 ) → C {\displaystyle \textstyle h\colon B_{\frac {1}{r}}(0)\to \mathbb {C} } h ( 0 ) = 0 {\displaystyle h(0)=0} c {\displaystyle c} f ( z ) = ∑ n = − ∞ ∞ a n ( z − c ) n . {\displaystyle f(z)=\sum _{n=-\infty }^{\infty }a_{n}(z-c)^{n}.} f {\displaystyle f} f ( z + 1 ) = f ( z ) {\displaystyle f(z+1)=f(z)} f {\displaystyle f} f ( z ) = ∑ n = − ∞ ∞ a n e 2 π i z n . {\displaystyle f(z)=\sum _{n=-\infty }^{\infty }a_{n}e^{2\pi izn}.} D {\displaystyle D} a n = ∫ 0 1 f ( x + i y ) e − 2 π i n ( x + i y ) d x {\displaystyle a_{n}=\int _{0}^{1}f(x+iy)e^{-2\pi in(x+iy)}\mathrm {d} x} z ↦ e 2 π i z {\displaystyle z\mapsto e^{2\pi iz}} f ( z ) = z 2 {\displaystyle f(z)=z^{2}} lim h → 0 f ( z + h ) − f ( z ) h = lim h → 0 ( z + h ) 2 − z 2 h = lim h → 0 2 z h + h 2 h = lim h → 0 ( 2 z + h ) = 2 z = f ′ ( z ) . {\displaystyle \lim _{h\to 0}{\frac {f(z+h)-f(z)}{h}}=\lim _{h\to 0}{\frac {(z+h)^{2}-z^{2}}{h}}=\lim _{h\to 0}{\frac {2zh+h^{2}}{h}}=\lim _{h\to 0}(2z+h)=2z=f'(z).} lim h → 0 h ∈ R | 1 + h | − 1 h ≠ lim h → 0 h ∈ R | 1 + i h | − 1 i h , {\displaystyle \lim _{h\to 0 \atop h\in \mathbb {R} }{\frac {|1+h|-1}{h}}\not =\lim _{h\to 0 \atop h\in \mathbb {R} }{\frac {|1+ih|-1}{ih}},} p ( z ) = a n z n + a n − 1 z n − 1 + ⋯ + a 1 z + a 0 {\displaystyle p(z)=a_{n}z^{n}+a_{n-1}z^{n-1}+\cdots +a_{1}z+a_{0}} C {\displaystyle \mathbb {C} } x ↦ e x {\displaystyle x\mapsto e^{x}} C {\displaystyle \mathbb {C} } e z = ∑ n = 0 ∞ z n n ! = 1 + z + z 2 2 + z 3 6 + ⋯ . {\displaystyle e^{z}=\sum _{n=0}^{\infty }{\frac {z^{n}}{n!}}=1+z+{\frac {z^{2}}{2}}+{\frac {z^{3}}{6}}+\cdots .} z , w ∈ C {\displaystyle z,w\in \mathbb {C} } e z + w = e z e w {\displaystyle e^{z+w}=e^{z}e^{w}} ( e z ) ′ = e z {\displaystyle (e^{z})'=e^{z}} e i w = cos ( w ) + i sin ( w ) , {\displaystyle e^{iw}=\cos(w)+i\sin(w),} w {\displaystyle w} 2 π i {\displaystyle 2\pi i} z ∈ C {\displaystyle z\in \mathbb {C} } e z + 2 π i = e z {\displaystyle e^{z+2\pi i}=e^{z}} z ↦ exp ( z ) {\displaystyle z\mapsto \exp(z)} z = π i {\displaystyle z=\pi i} exp ( S ) = C ∖ R ≤ 0 =: C − , {\displaystyle \exp(S)=\mathbb {C} \setminus \mathbb {R} _{\leq 0}=:\mathbb {C} _{-},} L o g : C − → S {\displaystyle \mathrm {Log} \colon \mathbb {C} _{-}\rightarrow S} exp ( L o g ( z ) ) = z {\displaystyle \exp(\mathrm {Log} (z))=z} C − {\displaystyle \mathbb {C} _{-}} S {\displaystyle S} 2 π i {\displaystyle 2\pi i} A r g ( z ) {\displaystyle \mathrm {Arg} (z)} L o g ( z ) = log | z | + i A r g ( z ) {\displaystyle \mathrm {Log} (z)=\log |z|+i\mathrm {Arg} (z)} log ( x ) {\displaystyle \log(x)} lim z → a sgn ( Im ( z ) ) = ± 1 L o g ( z ) = log | a | ± π i , {\displaystyle \lim _{z\to a \atop \operatorname {sgn}(\operatorname {Im} (z))=\pm 1}\mathrm {Log} (z)=\log |a|\pm \pi i,} sgn ( x ) {\displaystyle \operatorname {sgn}(x)} C − {\displaystyle \mathbb {C} _{-}} L o g ′ ( z ) = 1 z . {\displaystyle \mathrm {Log} '(z)={\frac {1}{z}}.} sin ( z ) = e i z − e − i z 2 i {\displaystyle \sin(z)={\frac {e^{iz}-e^{-iz}}{2i}}} C {\displaystyle \mathbb {C} } { 2 k + 1 2 π i ∣ k ∈ Z } {\displaystyle \{{\tfrac {2k+1}{2}}\pi i\mid k\in \mathbb {Z} \}} z = 0 {\displaystyle z=0} s ∈ C {\displaystyle s\in \mathbb {C} } z ∈ C ∖ { 0 } {\displaystyle z\in \mathbb {C} \setminus \{0\}} z s := e s Log ( z ) . {\displaystyle z^{s}:=e^{s\operatorname {Log} (z)}.} C ∖ R ≤ 0 {\displaystyle \mathbb {C} \setminus \mathbb {R} _{\leq 0}} z s = e s ( π i + Log ( − z ) ) . {\displaystyle z^{s}=e^{s(\pi i+\operatorname {Log} (-z))}.} z ∈ C {\displaystyle z\in \mathbb {C} } z ↦ | z | {\displaystyle z\mapsto |z|} z ↦ Re ( z ) {\displaystyle z\mapsto \operatorname {Re} (z)} z ↦ Im ( z ) {\displaystyle z\mapsto \operatorname {Im} (z)} z ↦ z ¯ {\displaystyle z\mapsto {\overline {z}}} z ↦ | z | 2 {\displaystyle z\mapsto |z|^{2}} z = 0 {\displaystyle z=0} 0 {\displaystyle 0} U ⊆ C {\displaystyle U\subseteq \mathbb {C} } f : U → C {\displaystyle f\colon U\to \mathbb {C} } U {\displaystyle U} U {\displaystyle U} a ∈ U {\displaystyle a\in U} U ( a ) ⊂ U {\displaystyle U(a)\subset U} f | U ( a ) {\displaystyle f|_{U(a)}} U {\displaystyle U} f {\displaystyle f} ∂ f ∂ z ¯ = 0 , {\displaystyle \quad {\frac {\partial f}{\partial {\bar {z}}}}=0,} ∂ ∂ z ¯ {\displaystyle {\tfrac {\partial }{\partial {\bar {z}}}}} ∂ ∂ z ¯ := 1 2 ( ∂ ∂ x + i ∂ ∂ y ) {\displaystyle {\tfrac {\partial }{\partial {\bar {z}}}}:={\tfrac {1}{2}}\left({\tfrac {\partial }{\partial x}}+i{\tfrac {\partial }{\partial y}}\right)} D {\displaystyle D} a ∈ C {\displaystyle a\in \mathbb {C} } f : D → C {\displaystyle f\colon D\to \mathbb {C} } f − 1 ( a ) := { z ∈ D ∣ f ( z ) = a } {\displaystyle f^{-1}(a):=\{z\in D\mid f(z)=a\}} D {\displaystyle D} f {\displaystyle f} a {\displaystyle a} a = 0 {\displaystyle a=0} f {\displaystyle f} f , g {\displaystyle f,g} D {\displaystyle D} γ {\displaystyle \gamma } D {\displaystyle D} z ∈ γ ( [ 0 , 1 ] ) {\displaystyle z\in \gamma ([0,1])} f {\displaystyle f} f + g {\displaystyle f+g} γ ( [ 0 , 1 ] ) {\displaystyle \gamma ([0,1])} f ≠ 0 {\displaystyle f\not =0} D {\displaystyle D} D {\displaystyle D} B r ( 0 ) ¯ {\displaystyle {\overline {B_{r}(0)}}} z 1 , z 2 , … , z n {\displaystyle z_{1},z_{2},\dots ,z_{n}} f {\displaystyle f} B r ( 0 ) {\displaystyle B_{r}(0)} f ( 0 ) ≠ 0 {\displaystyle f(0)\not =0} log | f ( 0 ) | = − ∑ k = 1 n log ( r | z k | ) + 1 2 π ∫ 0 2 π log | f ( r e i θ ) | d θ . {\displaystyle \log |f(0)|=-\sum _{k=1}^{n}\log \left({\frac {r}{|z_{k}|}}\right)+{\frac {1}{2\pi }}\int _{0}^{2\pi }\log |f(re^{i\theta })|\mathrm {d} \theta .} f ( z ) ≠ 0 {\displaystyle f(z)\not =0} log | f ( z ) | = − ∑ k = 1 n log | r 2 − z k ¯ z r ( z − z k ) | + 1 2 π ∫ 0 2 π Re ( r e i θ + z r e i θ − z ) log | f ( r e i θ ) | d θ . {\displaystyle \log |f(z)|=-\sum _{k=1}^{n}\log \left|{\frac {r^{2}-{\overline {z_{k}}}z}{r(z-z_{k})}}\right|+{\frac {1}{2\pi }}\int _{0}^{2\pi }\operatorname {Re} \left({\frac {re^{i\theta }+z}{re^{i\theta }-z}}\right)\log |f(re^{i\theta })|\mathrm {d} \theta .} a ∈ U {\displaystyle a\in U} f : U ∖ { a } → C {\displaystyle f\colon U\setminus \{a\}\rightarrow \mathbb {C} } a {\displaystyle a} U {\displaystyle U} f {\displaystyle f} a {\displaystyle a} f : U ∖ { a } → C {\displaystyle f\colon U\setminus \{a\}\rightarrow \mathbb {C} } a {\displaystyle a} z ↦ sin ( z ) z {\displaystyle z\mapsto {\frac {\sin(z)}{z}}} z ↦ 1 z {\displaystyle z\mapsto {\frac {1}{z}}} z ↦ exp ( 1 z ) {\displaystyle z\mapsto \exp \left({\frac {1}{z}}\right)} C ∖ { 0 } {\displaystyle \mathbb {C} \setminus \{0\}} f {\displaystyle f} a {\displaystyle a} | f ( z ) | ≤ M {\displaystyle |f(z)|\leq M} z {\displaystyle z} a {\displaystyle a} U {\displaystyle U} f {\displaystyle f} U {\displaystyle U} f ^ : U → C {\displaystyle {\widehat {f}}\colon U\rightarrow \mathbb {C} } U ∖ { a } {\displaystyle U\setminus \{a\}} f {\displaystyle f} f ( z ) = z 2 − 1 z − 1 {\displaystyle f(z)={\frac {z^{2}-1}{z-1}}} a = 1 {\displaystyle a=1} f ^ ( z ) = z + 1 {\displaystyle {\widehat {f}}(z)=z+1} f ( z ) = sin ( z ) z {\displaystyle f(z)={\frac {\sin(z)}{z}}} a = 0 {\displaystyle a=0} 1 − z 2 6 + z 4 120 − ⋯ {\displaystyle 1-{\tfrac {z^{2}}{6}}+{\tfrac {z^{4}}{120}}-\cdots } f : U ∖ { c } → C {\displaystyle f\colon U\setminus \{c\}\rightarrow \mathbb {C} } m ∈ N {\displaystyle m\in \mathbb {N} } c {\displaystyle c} c {\displaystyle c} f ( z ) = h ( z ) ( z − c ) m {\displaystyle f(z)={\frac {h(z)}{(z-c)^{m}}}} h {\displaystyle h} h ( c ) ≠ 0 {\displaystyle h(c)\not =0} f {\displaystyle f} f {\displaystyle f} a {\displaystyle a} lim z → a | f ( z ) | = ∞ {\displaystyle \lim _{z\to a}|f(z)|=\infty } c {\displaystyle c} m {\displaystyle m} f ( z ) {\displaystyle f(z)} f {\displaystyle f} f ( z ) = a − m ( z − c ) m + a − m + 1 ( z − c ) m − 1 + ⋯ = ∑ n = − m ∞ a n ( z − c ) n , a − m ≠ 0. {\displaystyle f(z)={\frac {a_{-m}}{(z-c)^{m}}}+{\frac {a_{-m+1}}{(z-c)^{m-1}}}+\cdots =\sum _{n=-m}^{\infty }a_{n}(z-c)^{n},\qquad a_{-m}\not =0.} m {\displaystyle m} C ∖ { 0 } {\displaystyle \mathbb {C} \setminus \{0\}} f ( z ) = e z z 4 {\displaystyle f(z)={\tfrac {e^{z}}{z^{4}}}} z = 0 {\displaystyle z=0} z ↦ exp ( 1 z ) {\displaystyle z\mapsto \exp({\tfrac {1}{z}})} V ∖ { c } {\displaystyle V\setminus \{c\}} f {\displaystyle f} ε > 0 {\displaystyle \varepsilon >0} v ∈ C {\displaystyle v\in \mathbb {C} } w ∈ V ∖ { c } {\displaystyle w\in V\setminus \{c\}} c {\displaystyle c} f {\displaystyle f} c {\displaystyle c} f ( z ) = ∑ n = − ∞ ∞ a n ( z − c ) n {\displaystyle f(z)=\sum _{n=-\infty }^{\infty }a_{n}(z-c)^{n}} a n ≠ 0 {\displaystyle a_{n}\not =0} c {\displaystyle c} ∞ := 1 0 {\displaystyle \infty :={\tfrac {1}{0}}} f : D → C ∪ { ∞ } {\displaystyle f\colon D\to \mathbb {C} \cup \{\infty \}} S ( f ) := f − 1 ( { ∞ } ) {\displaystyle S(f):=f^{-1}(\{\infty \})} D {\displaystyle D} f 0 : D ∖ S ( f ) → C {\displaystyle f_{0}\colon D\setminus S(f)\to \mathbb {C} } S ( f ) {\displaystyle S(f)} f {\displaystyle f} C {\displaystyle \mathbb {C} } f {\displaystyle f} U ˙ δ ( c ) {\displaystyle {\dot {U}}_{\delta }(c)} c {\displaystyle c} f ( z ) = ∑ n = − ∞ ∞ a n ( z − c ) n {\displaystyle f(z)=\sum _{n=-\infty }^{\infty }a_{n}(z-c)^{n}} U ˙ δ ( c ) {\displaystyle {\dot {U}}_{\delta }(c)} a − 1 z − c . {\displaystyle {\tfrac {a_{-1}}{z-c}}.} R e s ( f ; c ) := a − 1 . {\displaystyle \mathrm {Res} (f;c):=a_{-1}.} U {\displaystyle U} a k {\displaystyle a_{k}} f {\displaystyle f} D {\displaystyle D} { a 1 , … , a n } ⊂ D {\displaystyle \{a_{1},\dots ,a_{n}\}\subset D} n {\displaystyle n} f : D ∖ { a 1 , … , a n } → C {\displaystyle f\colon D\setminus \{a_{1},\dots ,a_{n}\}\to \mathbb {C} } γ : [ 0 , 1 ] → D ∖ { a 1 , … , a n } {\displaystyle \gamma \colon [0,1]\to D\setminus \{a_{1},\dots ,a_{n}\}} 1 2 π i ∮ γ f ( z ) d z = ∑ j = 1 n χ ( γ ; a j ) Res ( f ; a j ) , {\displaystyle {\frac {1}{2\pi i}}\oint _{\gamma }f(z)\mathrm {d} z=\sum _{j=1}^{n}\chi (\gamma ;a_{j})\operatorname {Res} (f;a_{j}),} χ ( γ ; a j ) {\displaystyle \chi (\gamma ;a_{j})} γ {\displaystyle \gamma } a j {\displaystyle a_{j}} f {\displaystyle f} f {\displaystyle f} D {\displaystyle D} γ {\displaystyle \gamma } f {\displaystyle f} N ( 0 ) {\displaystyle N(0)} N ( ∞ ) {\displaystyle N(\infty )} 1 2 π i ∮ γ f ′ ( z ) f ( z ) d z = N ( 0 ) − N ( ∞ ) . {\displaystyle {\frac {1}{2\pi i}}\oint _{\gamma }{\frac {f'(z)}{f(z)}}\mathrm {d} z=N(0)-N(\infty ).} ∫ − ∞ ∞ t 2 k 1 + t 2 n d t = π n sin ( ( 2 k + 1 ) π 2 n ) . {\displaystyle \int _{-\infty }^{\infty }{\frac {t^{2k}}{1+t^{2n}}}\mathrm {d} t={\frac {\pi }{n\sin \left({\frac {(2k+1)\pi }{2n}}\right)}}.} ∫ − ∞ ∞ e − t 2 d t = π {\displaystyle \int _{-\infty }^{\infty }e^{-t^{2}}\mathrm {d} t={\sqrt {\pi }}} D {\displaystyle D} f {\displaystyle f} g {\displaystyle g} D {\displaystyle D} f = g {\displaystyle f=g} z ∈ D {\displaystyle z\in D} M ⊂ D {\displaystyle M\subset D} z {\displaystyle z} M {\displaystyle M} f = g {\displaystyle f=g} { z ∈ D ∣ f ( z ) = g ( z ) } {\displaystyle \{z\in D\mid f(z)=g(z)\}} D {\displaystyle D} z 0 ∈ D {\displaystyle z_{0}\in D} n ≥ 0 {\displaystyle n\geq 0} f ( n ) ( z 0 ) = g ( n ) ( z 0 ) {\displaystyle f^{(n)}(z_{0})=g^{(n)}(z_{0})} D {\displaystyle D} f ( z ) = { 0 , z ∈ B 1 ( 0 ) 1 , z ∈ B 1 ( 42 ) {\displaystyle f(z)={\begin{cases}0,&\quad z\in B_{1}(0)\\1,&\quad z\in B_{1}(42)\end{cases}}} g ( z ) = { 0 , z ∈ B 1 ( 0 ) 2 , z ∈ B 1 ( 42 ) {\displaystyle g(z)={\begin{cases}0,&\quad z\in B_{1}(0)\\2,&\quad z\in B_{1}(42)\end{cases}}} B 1 ( 0 ) {\displaystyle B_{1}(0)} f ( 42 ) ≠ g ( 42 ) {\displaystyle f(42)\not =g(42)} D = B 1 ( 0 ) ∪ B 1 ( 42 ) {\displaystyle D=B_{1}(0)\cup B_{1}(42)} z ↦ sin ( π z ) {\displaystyle z\mapsto \sin \left({\tfrac {\pi }{z}}\right)} C ∖ { 0 } {\displaystyle \mathbb {C} \setminus \{0\}} z = 1 , 1 2 , 1 3 , 1 4 , … , 1 n , … {\displaystyle z=1,{\tfrac {1}{2}},{\tfrac {1}{3}},{\tfrac {1}{4}},\dots ,{\tfrac {1}{n}},\dots } n ↦ 1 n {\displaystyle n\mapsto {\tfrac {1}{n}}} C ∖ { 0 } {\displaystyle \mathbb {C} \setminus \{0\}} D ⊆ C {\displaystyle D\subseteq \mathbb {C} } f : D → C {\displaystyle f\colon D\rightarrow \mathbb {C} } f ( D ) ⊆ C {\displaystyle f(D)\subseteq \mathbb {C} } sin ( R ) = [ − 1 , 1 ] {\displaystyle \sin(\mathbb {R} )=[-1,1]} z ↦ z n {\displaystyle z\mapsto z^{n}} x 2 ≥ 0 {\displaystyle x^{2}\geq 0} f {\displaystyle f} z ↦ Re ( f ( z ) ) {\displaystyle z\mapsto \operatorname {Re} (f(z))} z ↦ Im ( f ( z ) ) {\displaystyle z\mapsto \operatorname {Im} (f(z))} z ↦ | f ( z ) | {\displaystyle z\mapsto |f(z)|} f {\displaystyle f} f {\displaystyle f} f ( 0 ) = 0 {\displaystyle f(0)=0} n {\displaystyle n} U {\displaystyle U} φ : U → V {\displaystyle \varphi \colon U\to V} φ ( 0 ) = 0 {\displaystyle \varphi (0)=0} f ( z ) = φ ( z ) n {\displaystyle f(z)=\varphi (z)^{n}} z ∈ U {\displaystyle z\in U} z = φ − 1 ( w ) {\displaystyle z=\varphi ^{-1}(w)} f ( φ − 1 ( w ) ) = w n {\displaystyle f(\varphi ^{-1}(w))=w^{n}} w ∈ V {\displaystyle w\in V} n {\displaystyle n} f {\displaystyle f} n = 1 {\displaystyle n=1} D {\displaystyle D} f {\displaystyle f} D {\displaystyle D} z {\displaystyle z} z ∈ D {\displaystyle z\in D} U {\displaystyle U} | f ( a ) | ≤ | f ( z ) | {\displaystyle |f(a)|\leq |f(z)|} a ∈ U {\displaystyle a\in U} f {\displaystyle f} D {\displaystyle D} ∂ D {\displaystyle \partial D} D {\displaystyle D} g ( z ) = e e z {\displaystyle g(z)=e^{e^{z}}} | e e z | = e Re ( e x + i y ) = e e x ⋅ cos ( y ) , {\displaystyle \left|e^{e^{z}}\right|=e^{\operatorname {Re} (e^{x+iy})}=e^{e^{x}\cdot \cos(y)},} z = x + i y {\displaystyle z=x+iy} g ( z ) {\displaystyle g(z)} Re ( z ) → ∞ {\displaystyle \operatorname {Re} (z)\to \infty } f ( z ) {\displaystyle f(z)} f ( D ) {\displaystyle f(D)} | f ( z ) | {\displaystyle |f(z)|} f {\displaystyle f} z {\displaystyle z} D {\displaystyle D} z {\displaystyle z} f {\displaystyle f} D {\displaystyle D} f : D → C {\displaystyle f\colon D\rightarrow \mathbb {C} } φ : D → C {\displaystyle \varphi \colon D\rightarrow \mathbb {C} } ∞ {\displaystyle \infty } ∂ ∞ D = A ∪ B {\displaystyle \partial _{\infty }D=A\cup B} M > 0 {\displaystyle M>0} a ∈ A {\displaystyle a\in A} lim sup z → a | f ( z ) | ≤ M {\displaystyle \limsup _{z\to a}|f(z)|\leq M} b ∈ B {\displaystyle b\in B} μ > 0 {\displaystyle \mu >0} lim sup z → b | f ( z ) | | φ ( z ) | μ ≤ M {\displaystyle \limsup _{z\to b}|f(z)||\varphi (z)|^{\mu }\leq M} | f ( z ) | ≤ M {\displaystyle |f(z)|\leq M} z ∈ D {\displaystyle z\in D} lim sup {\displaystyle \limsup } f {\displaystyle f} − π 2 ≤ Re ( z ) ≤ π 2 {\displaystyle -{\tfrac {\pi }{2}}\leq \operatorname {Re} (z)\leq {\tfrac {\pi }{2}}} | f ( z ) | ≤ 1 {\displaystyle |f(z)|\leq 1} z {\displaystyle z} Re ( z ) = π 2 {\displaystyle \operatorname {Re} (z)={\tfrac {\pi }{2}}} Re ( z ) = − π 2 {\displaystyle \operatorname {Re} (z)=-{\tfrac {\pi }{2}}} C > 0 {\displaystyle C>0} | f ( z ) | ≤ exp ( C e α | z | ) . {\displaystyle |f(z)|\leq \exp \left(Ce^{\alpha |z|}\right).} | f ( z ) | ≤ 1 {\displaystyle |f(z)|\leq 1} α = 1 {\displaystyle \alpha =1} z ↦ e e z {\displaystyle z\mapsto e^{e^{z}}} f {\displaystyle f} S ¯ {\displaystyle {\overline {S}}} | f ( z ) | ≤ 1 {\displaystyle |f(z)|\leq 1} S {\displaystyle S} c , C > 0 {\displaystyle c,C>0} | f ( z ) | ≤ C e c | z | {\displaystyle |f(z)|\leq Ce^{c|z|}} z ∈ S {\displaystyle z\in S} | f ( z ) | ≤ 1 {\displaystyle |f(z)|\leq 1} z ∈ S {\displaystyle z\in S} f {\displaystyle f} M ( r ) := sup | z | = r | f ( z ) | , {\displaystyle M(r):=\sup _{|z|=r}|f(z)|,} log ( β α ) log M ( r ) ≤ log ( β r ) log M ( α ) + log ( r α ) log M ( β ) . {\displaystyle \log \left({\frac {\beta }{\alpha }}\right)\log M(r)\leq \log \left({\frac {\beta }{r}}\right)\log M(\alpha )+\log \left({\frac {r}{\alpha }}\right)\log M(\beta ).} f {\displaystyle f} a ≤ Re ( z ) ≤ b {\displaystyle a\leq \operatorname {Re} (z)\leq b} M ( σ ) := sup t ∈ R | f ( σ + i t ) | {\displaystyle M(\sigma ):=\sup _{t\in \mathbb {R} }|f(\sigma +it)|} f {\displaystyle f} ψ ( σ ) {\displaystyle \psi (\sigma )} a ≤ σ ≤ b {\displaystyle a\leq \sigma \leq b} | f ( σ + i t ) | ≪ | t | ψ ( σ ) + ε {\displaystyle |f(\sigma +it)|\ll |t|^{\psi (\sigma )+\varepsilon }} ε > 0 {\displaystyle \varepsilon >0} ψ ( σ ) {\displaystyle \psi (\sigma )} [ a , b ] {\displaystyle [a,b]} f {\displaystyle f} | f | {\displaystyle |f|} z ↦ cos ( z ) {\displaystyle z\mapsto \cos(z)} C {\displaystyle \mathbb {C} } sup z ∈ C | f ( z ) | ≤ C {\displaystyle \textstyle \sup _{z\in \mathbb {C} }|f(z)|\leq C} z ∈ C {\displaystyle z\in \mathbb {C} } r > | z | {\displaystyle r>|z|} | f ′ ( z ) | = | 1 2 π i ∮ | w − z | = r f ( w ) ( w − z ) 2 d w | ≤ 2 π r 2 π C r 2 = C r . {\displaystyle |f'(z)|=\left|{\frac {1}{2\pi i}}\oint _{|w-z|=r}{\frac {f(w)}{(w-z)^{2}}}\mathrm {d} w\right|\leq {\frac {2\pi r}{2\pi }}{\frac {C}{r^{2}}}={\frac {C}{r}}.} 2 π r {\displaystyle 2\pi r} r > 0 {\displaystyle r>0} f ′ = 0 {\displaystyle f'=0} C {\displaystyle \mathbb {C} } f {\displaystyle f} x ↦ x 2 + 1 {\displaystyle x\mapsto x^{2}+1} P {\displaystyle P} z ↦ 1 P ( z ) {\displaystyle z\mapsto {\tfrac {1}{P(z)}}} f : C ¯ → C {\displaystyle f\colon {\overline {\mathbb {C} }}\rightarrow \mathbb {C} } C ¯ = C ∪ { ∞ } {\displaystyle {\overline {\mathbb {C} }}=\mathbb {C} \cup \{\infty \}} | f ( z ) | ≤ 1 + | z | 1 2 {\displaystyle |f(z)|\leq 1+|z|^{\frac {1}{2}}} f {\displaystyle f} f {\displaystyle f} f {\displaystyle f} R , B {\displaystyle R,B} K {\displaystyle K} Re ( f ( z ) ) ≤ B | z | K {\displaystyle \operatorname {Re} (f(z))\leq B|z|^{K}} | z | ≥ R > 0 {\displaystyle |z|\geq R>0} f {\displaystyle f} K {\displaystyle K} f ( C ) {\displaystyle f(\mathbb {C} )} f {\displaystyle f} C {\displaystyle \mathbb {C} } f : C → C {\displaystyle f\colon \mathbb {C} \rightarrow \mathbb {C} } f ( C ) = C {\displaystyle f(\mathbb {C} )=\mathbb {C} } f ( C ) = C ∖ { a } {\displaystyle f(\mathbb {C} )=\mathbb {C} \setminus \{a\}} a ∈ C {\displaystyle a\in \mathbb {C} } z ↦ e z {\displaystyle z\mapsto e^{z}} f : E → E {\displaystyle f\colon \mathbb {E} \rightarrow \mathbb {E} } E {\displaystyle \mathbb {E} } f ( 0 ) = 0 {\displaystyle f(0)=0} | f ( z ) | ≤ | z | {\displaystyle |f(z)|\leq |z|} z ∈ E {\displaystyle z\in \mathbb {E} } | f ′ ( 0 ) | ≤ 1 {\displaystyle |f'(0)|\leq 1} f : E → C {\displaystyle f\colon \mathbb {E} \to \mathbb {C} } f ( 0 ) = 0 {\displaystyle f(0)=0} f ′ ( 0 ) = 1 {\displaystyle f'(0)=1} E {\displaystyle \mathbb {E} } f {\displaystyle f} f : E → C {\displaystyle f\colon \mathbb {E} \to \mathbb {C} } z ↦ z f ′ ( z ) {\displaystyle z\mapsto zf'(z)} z ∈ E {\displaystyle z\in \mathbb {E} } Re ( 1 + z f ″ ( z ) f ′ ( z ) ) > 0 {\displaystyle \operatorname {Re} \left(1+{\frac {zf''(z)}{f'(z)}}\right)>0} f ( z ) = ∑ n ≥ 1 a n z n {\displaystyle \textstyle f(z)=\sum _{n\geq 1}a_{n}z^{n}} g ( z ) = ∑ n ≥ 1 b n z n {\displaystyle \textstyle g(z)=\sum _{n\geq 1}b_{n}z^{n}} ( f ∗ g ) ( z ) := ∑ n ≥ 1 a n b n z n {\displaystyle \textstyle (f*g)(z):=\sum _{n\geq 1}a_{n}b_{n}z^{n}} Li α ( z ) {\displaystyle \operatorname {Li} _{\alpha }(z)} α ≥ 0 {\displaystyle \alpha \geq 0} f {\displaystyle f} γ ⊂ E {\displaystyle \gamma \subset \mathbb {E} } f {\displaystyle f} Re ( f ( z ) − f ( ζ ) ( z − ζ ) f ′ ( z ) ) ≥ 0 {\displaystyle \operatorname {Re} \left({\frac {f(z)-f(\zeta )}{(z-\zeta )f'(z)}}\right)\geq 0} ( z , ζ ) ∈ E × E {\displaystyle (z,\zeta )\in \mathbb {E} \times \mathbb {E} } f : E → D {\displaystyle f\colon \mathbb {E} \to D} D {\displaystyle D} D r := f ( B r ( 0 ) ) {\displaystyle D_{r}:=f(B_{r}(0))} D {\displaystyle D} f ( 0 ) {\displaystyle f(0)} D r {\displaystyle D_{r}} f ( 0 ) {\displaystyle f(0)} f : E → C {\displaystyle f\colon \mathbb {E} \to \mathbb {C} } f ( 0 ) = 0 {\displaystyle f(0)=0} | f ′ ( 0 ) | ≥ 1 {\displaystyle |f'(0)|\geq 1} f ( E ) {\displaystyle f(\mathbb {E} )} B 1 2 ( 0 ) ⊂ f ( E ) {\displaystyle B_{\frac {1}{2}}(0)\subset f(\mathbb {E} )} U ⊂ C {\displaystyle U\subset \mathbb {C} } { z ∈ C ∣ | z | ≤ 1 } {\displaystyle \{z\in \mathbb {C} \mid |z|\leq 1\}} f : U → C {\displaystyle f\colon U\rightarrow \mathbb {C} } f ( 0 ) = 0 {\displaystyle f(0)=0} f ′ ( 0 ) = 1 {\displaystyle f'(0)=1} S ⊂ U {\displaystyle S\subset U} f | S : S → C {\displaystyle f|_{S}\colon S\rightarrow \mathbb {C} } f ( S ) {\displaystyle f(S)} 1 72 {\displaystyle {\tfrac {1}{72}}} β ( f ) {\displaystyle \beta (f)} r {\displaystyle r} f | S : S → C {\displaystyle f|_{S}\colon S\rightarrow \mathbb {C} } S ⊂ U {\displaystyle S\subset U} f ( S ) {\displaystyle f(S)} r {\displaystyle r} β ( f ) {\displaystyle \beta (f)} f {\displaystyle f} B := inf { β ( f ) ∣ f ∈ O ( V ) , { z ∈ C ∣ | z | ≤ 1 } ⊂ V } . {\displaystyle B:=\inf\{\beta (f)\mid f\in {\mathcal {O}}(V),\{z\in \mathbb {C} \mid |z|\leq 1\}\subset V\}.} B ≥ 1 72 {\displaystyle B\geq {\tfrac {1}{72}}} f ( z ) = z {\displaystyle f(z)=z} B ≤ 1 {\displaystyle B\leq 1} 0 , 43 ≤ B ≤ Γ ( 1 3 ) Γ ( 11 12 ) 1 + 3 Γ ( 1 4 ) = 0,471 86165 … {\displaystyle 0{,}43\leq B\leq {\frac {\Gamma \left({\frac {1}{3}}\right)\Gamma \left({\frac {11}{12}}\right)}{{\sqrt {1+{\sqrt {3}}}}\Gamma \left({\frac {1}{4}}\right)}}=0{,}47186165\ldots } Γ ( s ) {\displaystyle \Gamma (s)} B {\displaystyle B} 0 ≤ β ≤ 1 {\displaystyle 0\leq \beta \leq 1} C ( α , β ) {\displaystyle C(\alpha ,\beta )} D ⊂ C {\displaystyle D\subset \mathbb {C} } { z ∈ C ∣ | z | ≤ 1 } {\displaystyle \{z\in \mathbb {C} \mid |z|\leq 1\}} f : D → C {\displaystyle f\colon D\rightarrow \mathbb {C} } | f ( 0 ) | ≤ α {\displaystyle |f(0)|\leq \alpha } | f ( z ) | ≤ C ( α , β ) {\displaystyle |f(z)|\leq C(\alpha ,\beta )} | z | ≤ β {\displaystyle |z|\leq \beta } B R ( 0 ) ¯ = { z ∈ C ∣ | z | ≤ R } {\displaystyle {\overline {B_{R}(0)}}=\{z\in \mathbb {C} \mid |z|\leq R\}} R > 0 {\displaystyle R>0} D {\displaystyle D} B R ( 0 ) ¯ {\displaystyle {\overline {B_{R}(0)}}} f : D → C {\displaystyle f\colon D\rightarrow \mathbb {C} } | f ( 0 ) | ≤ α {\displaystyle |f(0)|\leq \alpha } C ( α , β ) {\displaystyle C(\alpha ,\beta )} | f ( z ) | ≤ C ( α , β ) {\displaystyle |f(z)|\leq C(\alpha ,\beta )} | z | ≤ β R {\displaystyle |z|\leq \beta R} f : E → C {\displaystyle f\colon \mathbb {E} \to \mathbb {C} } f ( 0 ) = 0 {\displaystyle f(0)=0} f ′ ( 0 ) = 1 {\displaystyle f'(0)=1} B 1 4 ( 0 ) ⊂ f ( E ) {\displaystyle B_{\frac {1}{4}}(0)\subset f(\mathbb {E} )} f ( z ) = ∑ n = − ∞ ∞ a n z n {\displaystyle \textstyle f(z)=\sum _{n=-\infty }^{\infty }a_{n}z^{n}} | z | = r {\displaystyle |z|=r} L {\displaystyle L} L {\displaystyle L} π ∑ n = − ∞ ∞ n | a n | 2 r 2 n . {\displaystyle \pi \sum _{n=-\infty }^{\infty }n|a_{n}|^{2}r^{2n}.} r ≤ | z | ≤ R {\displaystyle r\leq |z|\leq R} π ∑ n = − ∞ ∞ n | a n | 2 ( R 2 n − r 2 n ) . {\displaystyle \pi \sum _{n=-\infty }^{\infty }n|a_{n}|^{2}(R^{2n}-r^{2n}).} a 1 , a 2 , . . . {\displaystyle a_{1},a_{2},...} Δ 1 ( a n ) := a n − a n + 1 {\displaystyle \Delta ^{1}(a_{n}):=a_{n}-a_{n+1}} Δ 2 ( a n ) := Δ 1 ( Δ 1 ( a n ) ) {\displaystyle \Delta ^{2}(a_{n}):=\Delta ^{1}(\Delta ^{1}(a_{n}))} Δ r ( a n ) = ∑ j = 0 r ( r j ) ( − 1 ) j a n + j . {\displaystyle \Delta ^{r}(a_{n})=\sum _{j=0}^{r}{\binom {r}{j}}(-1)^{j}a_{n+j}.} b n {\displaystyle b_{n}} k {\displaystyle k} Δ r ( b n ) ≥ 0 {\displaystyle \Delta ^{r}(b_{n})\geq 0} n {\displaystyle n} 1 ≤ r ≤ k {\displaystyle 1\leq r\leq k} f ( z ) = ∑ n = 0 ∞ b n z n {\displaystyle \textstyle f(z)=\sum _{n=0}^{\infty }b_{n}z^{n}} E {\displaystyle \mathbb {E} } | z | = 1 {\displaystyle |z|=1} b n {\displaystyle b_{n}} g ( θ ) = | f ( e i θ ) | 2 {\displaystyle g(\theta )=|f(e^{i\theta })|^{2}} [ 0 , π ] {\displaystyle [0,\pi ]} f ( z ) = ∑ n = 0 ∞ a n z n {\displaystyle \textstyle f(z)=\sum _{n=0}^{\infty }a_{n}z^{n}} E {\displaystyle \mathbb {E} } E {\displaystyle \mathbb {E} } ∑ n = 0 ∞ | a n | 6 n ≤ 1 {\displaystyle \sum _{n=0}^{\infty }{\frac {|a_{n}|}{6^{n}}}\leq 1} ∑ n = 0 ∞ | a n | 3 n ≤ 1 {\displaystyle \textstyle \sum _{n=0}^{\infty }{\frac {|a_{n}|}{3^{n}}}\leq 1} r = 1 3 {\displaystyle r={\tfrac {1}{3}}} z 0 {\displaystyle z_{0}} D {\displaystyle D} z 0 {\displaystyle z_{0}} D ∖ { z 0 } {\displaystyle D\setminus \{z_{0}\}} f {\displaystyle f} D {\displaystyle D} U {\displaystyle U} z 0 {\displaystyle z_{0}} f ( U ∖ { z 0 } ) {\displaystyle f(U\setminus \{z_{0}\})} C {\displaystyle \mathbb {C} } z 0 {\displaystyle z_{0}} z 0 {\displaystyle z_{0}} f {\displaystyle f} U {\displaystyle U} c ∈ U {\displaystyle c\in U} f : U ∖ { c } → C {\displaystyle f\colon U\setminus \{c\}\rightarrow \mathbb {C} } V ˙ ⊂ U {\displaystyle {\dot {V}}\subset U} c {\displaystyle c} f ( V ˙ ) = C {\displaystyle f({\dot {V}})=\mathbb {C} } V ˙ ⊂ U {\displaystyle {\dot {V}}\subset U} c {\displaystyle c} f ( V ˙ ) = C ∖ { a } {\displaystyle f({\dot {V}})=\mathbb {C} \setminus \{a\}} a ∈ C {\displaystyle a\in \mathbb {C} } U ⊂ C {\displaystyle U\subset \mathbb {C} } ( f n ) n ∈ N {\displaystyle (f_{n})_{n\in \mathbb {N} }} U {\displaystyle U} ( f n ) n ∈ N {\displaystyle (f_{n})_{n\in \mathbb {N} }} K ⊂ U {\displaystyle K\subset U} f {\displaystyle f} f {\displaystyle f} ( f n ′ ) n ∈ N {\displaystyle (f'_{n})_{n\in \mathbb {N} }} f ′ {\displaystyle f'} ( f n ′ ) n ∈ N {\displaystyle (f'_{n})_{n\in \mathbb {N} }} D {\displaystyle D} ( f n ) n ∈ N {\displaystyle (f_{n})_{n\in \mathbb {N} }} D {\displaystyle D} ∂ D {\displaystyle \partial D} ( f n | ∂ D ) n ∈ N {\displaystyle (f_{n}|_{\partial D})_{n\in \mathbb {N} }} ∂ D {\displaystyle \partial D} ( f n ) n ∈ N {\displaystyle (f_{n})_{n\in \mathbb {N} }} D {\displaystyle D} ∂ D {\displaystyle \partial D} f : [ a , b ] → R {\displaystyle f\colon [a,b]\rightarrow \mathbb {R} } ( f n ′ ) n ∈ N {\displaystyle (f'_{n})_{n\in \mathbb {N} }} f n : U → C {\displaystyle f_{n}\colon U\to \mathbb {C} } f = ∑ n = 1 ∞ f n {\displaystyle \textstyle f=\sum _{n=1}^{\infty }f_{n}} f : U → C {\displaystyle f\colon U\to \mathbb {C} } U {\displaystyle U} z ∈ U {\displaystyle z\in U} z ∈ V ⊂ U {\displaystyle z\in V\subset U} ( z , t ) ↦ F ( z , t ) {\displaystyle (z,t)\mapsto F(z,t)} U × [ a , b ] {\displaystyle U\times [a,b]} U ⊂ C {\displaystyle U\subset \mathbb {C} } z ↦ F ( z , t ) {\displaystyle z\mapsto F(z,t)} t {\displaystyle t} f ( z ) = ∫ a b F ( z , t ) d t {\displaystyle f(z)=\int _{a}^{b}F(z,t)\mathrm {d} t} U {\displaystyle U} Γ n ( z ) := ∫ 1 n n e − t t z − 1 d t {\displaystyle \Gamma _{n}(z):=\int _{\frac {1}{n}}^{n}e^{-t}t^{z-1}\mathrm {d} t} { z ∈ C ∣ Re ( z ) > 0 } {\displaystyle \{z\in \mathbb {C} \mid \operatorname {Re} (z)>0\}} n → ∞ {\displaystyle n\to \infty } Γ ( z ) = ∫ 0 ∞ e − t t z − 1 d t {\displaystyle \Gamma (z)=\int _{0}^{\infty }e^{-t}t^{z-1}\mathrm {d} t} { z ∈ C ∣ Re ( z ) > 0 } {\displaystyle \{z\in \mathbb {C} \mid \operatorname {Re} (z)>0\}} D {\displaystyle D} ( f n ) n ∈ N {\displaystyle (f_{n})_{n\in \mathbb {N} }} f n : D → C {\displaystyle f_{n}\colon D\rightarrow \mathbb {C} } f {\displaystyle f} f ( z 0 ) = 0 {\displaystyle f(z_{0})=0} z 0 ∈ D {\displaystyle z_{0}\in D} B r ( z 0 ) ⊂ D {\displaystyle B_{r}(z_{0})\subset D} N {\displaystyle N} f n {\displaystyle f_{n}} n ≥ N {\displaystyle n\geq N} B r ( z 0 ) {\displaystyle B_{r}(z_{0})} f n : D → C {\displaystyle f_{n}\colon D\rightarrow \mathbb {C} } f n : D → C {\displaystyle f_{n}\colon D\to \mathbb {C} } f : D → C {\displaystyle f\colon D\to \mathbb {C} } K ⊂ D {\displaystyle K\subset D} N {\displaystyle N} n ≥ N {\displaystyle n\geq N} f n | K {\displaystyle f_{n}|_{K}} ( f n ) n ∈ N {\displaystyle (f_{n})_{n\in \mathbb {N} }} U {\displaystyle U} ( f n ) n ∈ N {\displaystyle (f_{n})_{n\in \mathbb {N} }} U {\displaystyle U} S ⊂ U {\displaystyle S\subset U} U {\displaystyle U} D {\displaystyle D} ( f n ) n ∈ N {\displaystyle (f_{n})_{n\in \mathbb {N} }} D {\displaystyle D} c ∈ D {\displaystyle c\in D} k ∈ N 0 {\displaystyle k\in \mathbb {N} _{0}} f 1 ( k ) ( c ) , f 2 ( k ) ( c ) , f 3 ( k ) ( c ) , … {\displaystyle f_{1}^{(k)}(c),f_{2}^{(k)}(c),f_{3}^{(k)}(c),\dots } A := { z ∈ D ∣ lim n → ∞ f n ( z ) ∈ C } {\displaystyle A:=\{z\in D\mid \lim _{n\to \infty }f_{n}(z)\in \mathbb {C} \}} D {\displaystyle D} a , b ∈ C {\displaystyle a,b\in \mathbb {C} } a ≠ b {\displaystyle a\not =b} ( f n ) n ∈ N {\displaystyle (f_{n})_{n\in \mathbb {N} }} f n : D → C ∖ { a , b } {\displaystyle f_{n}\colon D\to \mathbb {C} \setminus \{a,b\}} lim n → ∞ f n ( w ) {\displaystyle \lim _{n\to \infty }f_{n}(w)} D {\displaystyle D} D {\displaystyle D} ( f n ) n ∈ N {\displaystyle (f_{n})_{n\in \mathbb {N} }} D {\displaystyle D} ( f n ) n ∈ N {\displaystyle (f_{n})_{n\in \mathbb {N} }} D {\displaystyle D} f {\displaystyle f} ( f n ) n ∈ N {\displaystyle (f_{n})_{n\in \mathbb {N} }} D ′ ⊂ D {\displaystyle D'\subset D} f {\displaystyle f} D ′ {\displaystyle D'} f n {\displaystyle f_{n}} D {\displaystyle D} u ( x , y ) {\displaystyle u(x,y)} ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 = 0 {\displaystyle {\frac {\partial ^{2}u}{\partial x^{2}}}+{\frac {\partial ^{2}u}{\partial y^{2}}}=0} D {\displaystyle D} Δ = ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 {\displaystyle \Delta ={\tfrac {\partial ^{2}}{\partial x^{2}}}+{\tfrac {\partial ^{2}}{\partial y^{2}}}} Δ u = 0 {\displaystyle \Delta u=0} u {\displaystyle u} f {\displaystyle f} g ( z ) := ∂ u ∂ x − i ∂ u ∂ y {\displaystyle g(z):={\tfrac {\partial u}{\partial x}}-i{\tfrac {\partial u}{\partial y}}} g {\displaystyle g} u {\displaystyle u} f = u + i v {\displaystyle f=u+iv} u {\displaystyle u} v {\displaystyle v} u {\displaystyle u} z ↦ sin ( π z ) {\displaystyle z\mapsto \sin(\pi z)} Z {\displaystyle \mathbb {Z} } S ⊂ C {\displaystyle S\subset \mathbb {C} } m : S → N {\displaystyle m\colon S\to \mathbb {N} } s ↦ m s {\displaystyle s\mapsto m_{s}} f {\displaystyle f} S = N ( f ) := { z ∈ C ∣ f ( z ) = 0 } {\displaystyle S=N(f):=\{z\in \mathbb {C} \mid f(z)=0\}} m s = ord ( f ; s ) {\displaystyle m_{s}=\operatorname {ord} (f;s)} s ∈ S {\displaystyle s\in S} S {\displaystyle S} s ∈ S {\displaystyle s\in S} f {\displaystyle f} s ∈ S {\displaystyle s\in S} sin ( π z ) = π z ∏ k = 1 ∞ ( 1 − z 2 k 2 ) , {\displaystyle \sin(\pi z)=\pi z\prod _{k=1}^{\infty }\left(1-{\frac {z^{2}}{k^{2}}}\right),} C {\displaystyle \mathbb {C} } D {\displaystyle D} z 1 , z 2 , . . . {\displaystyle z_{1},z_{2},...} D {\displaystyle D} m 1 , m 2 , . . . {\displaystyle m_{1},m_{2},...} f : D → C {\displaystyle f\colon D\to \mathbb {C} } z n {\displaystyle z_{n}} z n {\displaystyle z_{n}} m n {\displaystyle m_{n}} h : D → C ¯ {\displaystyle h\colon D\to {\overline {\mathbb {C} }}} D {\displaystyle D} S ⊂ C {\displaystyle S\subset \mathbb {C} } C ∖ S {\displaystyle \mathbb {C} \setminus S} s ∈ S {\displaystyle s\in S} s ∈ S {\displaystyle s\in S} h s : C → C {\displaystyle h_{s}\colon \mathbb {C} \to \mathbb {C} } h s ( 0 ) = 0 {\displaystyle h_{s}(0)=0} f : C ∖ S → C {\displaystyle f\colon \mathbb {C} \setminus S\to \mathbb {C} } s ∈ S {\displaystyle s\in S} h s {\displaystyle h_{s}} z ↦ f ( z ) − h s ( 1 z − s ) {\displaystyle z\mapsto f(z)-h_{s}\left({\frac {1}{z-s}}\right)} z = s {\displaystyle z=s} S {\displaystyle S} f ( z ) = ∑ s ∈ S h s ( 1 z − s ) {\displaystyle f(z)=\sum _{s\in S}h_{s}\left({\frac {1}{z-s}}\right)} S {\displaystyle S} K ⊂ C {\displaystyle K\subset \mathbb {C} } f {\displaystyle f} K {\displaystyle K} f {\displaystyle f} K {\displaystyle K} ( r n ) n ∈ N {\displaystyle (r_{n})_{n\in \mathbb {N} }} r n {\displaystyle r_{n}} K {\displaystyle K} U ⊂ C {\displaystyle U\subset \mathbb {C} } C ¯ ∖ U {\displaystyle {\overline {\mathbb {C} }}\setminus U} C ¯ {\displaystyle {\overline {\mathbb {C} }}} U {\displaystyle U} f {\displaystyle f} ε > 0 {\displaystyle \varepsilon >0} K ⊂ U {\displaystyle K\subset U} p {\displaystyle p} z ∈ K {\displaystyle z\in K} f {\displaystyle f} C , ϱ > 0 {\displaystyle C,\varrho >0} d d z ( f ( z ) sin ( ϱ z ) ) = ∑ n = − ∞ ∞ ϱ ( − 1 ) n + 1 f ( π n ϱ ) ( ϱ z − n π ) 2 . {\displaystyle {\frac {\mathrm {d} }{\mathrm {d} z}}\left({\frac {f(z)}{\sin(\varrho z)}}\right)=\sum _{n=-\infty }^{\infty }{\frac {\varrho (-1)^{n+1}f\left({\frac {\pi n}{\varrho }}\right)}{(\varrho z-n\pi )^{2}}}.} f {\displaystyle f} f ( − z ) = − f ( z ) {\displaystyle f(-z)=-f(z)} f ( z ) 2 ϱ z cos ( ϱ z ) = ∑ n = 0 ∞ ( − 1 ) n f ( π ( n + 1 2 ) ϱ ) ( π ( n + 1 2 ) ) 2 − ϱ 2 z 2 . {\displaystyle {\frac {f(z)}{2\varrho z\cos(\varrho z)}}=\sum _{n=0}^{\infty }{\frac {(-1)^{n}f\left({\frac {\pi (n+{\frac {1}{2}})}{\varrho }}\right)}{(\pi (n+{\frac {1}{2}}))^{2}-\varrho ^{2}z^{2}}}.} f ( z ) = sin ( ϱ z ) {\displaystyle f(z)=\sin(\varrho z)} z 1 , z 2 , . . . , z n {\displaystyle z_{1},z_{2},...,z_{n}} L {\displaystyle L} z 1 , z 2 , . . . , z n {\displaystyle z_{1},z_{2},...,z_{n}} f {\displaystyle f} L {\displaystyle L} L {\displaystyle L} ω ( z ) = ∏ j = 1 n ( z − z j ) {\displaystyle \textstyle \omega (z)=\prod _{j=1}^{n}(z-z_{j})} P ( z ) = 1 2 π i ∮ L f ( ζ ) ω ( ζ ) ω ( ζ ) − ω ( z ) ζ − z d ζ {\displaystyle P(z)={\frac {1}{2\pi i}}\oint _{L}{\frac {f(\zeta )}{\omega (\zeta )}}{\frac {\omega (\zeta )-\omega (z)}{\zeta -z}}\mathrm {d} \zeta } n − 1 {\displaystyle n-1} z = z 1 , . . . , z n {\displaystyle z=z_{1},...,z_{n}} f ( z ) {\displaystyle f(z)} f ( z ) = ∑ n = 0 ∞ a n ( z − c ) n {\displaystyle \textstyle f(z)=\sum _{n=0}^{\infty }a_{n}(z-c)^{n}} R {\displaystyle R} r {\displaystyle r} M ( r ) := max | z − c | = r | f ( z ) | {\displaystyle \textstyle M(r):=\max _{|z-c|=r}|f(z)|} | a n | = | f ( n ) ( c ) n ! | ≤ M ( r ) r n . {\displaystyle |a_{n}|=\left|{\frac {f^{(n)}(c)}{n!}}\right|\leq {\frac {M(r)}{r^{n}}}.} U {\displaystyle U} K ⊂ D {\displaystyle K\subset D} K ⊊ L ⊂ U {\displaystyle K\subsetneq L\subset U} z ∈ ∂ K {\displaystyle z\in \partial K} L {\displaystyle L} k ∈ N {\displaystyle k\in \mathbb {N} } M k , L > 0 {\displaystyle M_{k,L}>0} | | f ( k ) | | K ≤ M k , L | | f | | L , {\displaystyle ||f^{(k)}||_{K}\leq M_{k,L}||f||_{L},} f ∈ O ( U ) {\displaystyle f\in {\mathcal {O}}(U)} | | . | | {\displaystyle ||.||} K = L {\displaystyle K=L} K = L = E ¯ {\displaystyle K=L={\overline {\mathbb {E} }}} f n ( z ) := z n {\displaystyle f_{n}(z):=z^{n}} f : B R ( c ) → C {\displaystyle f\colon B_{R}(c)\rightarrow \mathbb {C} } M := sup z ∈ B R ( c ) | f ( z ) | {\displaystyle M:=\sup _{z\in B_{R}(c)}|f(z)|} z ∈ B R ( c ) {\displaystyle z\in B_{R}(c)} k ∈ N {\displaystyle k\in \mathbb {N} } | f ( k ) ( z ) | ≤ k ! M R ( R − | z − c | ) k + 1 . {\displaystyle |f^{(k)}(z)|\leq {\frac {k!MR}{(R-|z-c|)^{k+1}}}.} f ( n ) ( 0 ) = n ! 2 {\displaystyle f^{(n)}(0)=n!^{2}} r 0 , r 1 , r 2 , … {\displaystyle r_{0},r_{1},r_{2},\dots } f : R → R {\displaystyle f\colon \mathbb {R} \to \mathbb {R} } f ( n ) ( 0 ) = r n {\displaystyle f^{(n)}(0)=r_{n}} n ∈ N 0 {\displaystyle n\in \mathbb {N} _{0}} f {\displaystyle f} D {\displaystyle D} B R ( a ) ¯ ⊂ C {\displaystyle {\overline {B_{R}(a)}}\subset \mathbb {C} } A ( r ) := max | z − a | = r Re ( f ( z ) ) . {\displaystyle A(r):=\max _{|z-a|=r}\operatorname {Re} (f(z)).} | f ( z ) | ≤ 2 | z − a | R − | z − a | A ( R ) + R + | z − a | R − | z − a | | f ( a ) | {\displaystyle |f(z)|\leq {\frac {2|z-a|}{R-|z-a|}}A(R)+{\frac {R+|z-a|}{R-|z-a|}}|f(a)|} | f ( n ) ( z ) | ≤ 2 n + 2 n ! R ( R − | z − a | ) n + 1 ( A ( R ) + | f ( a ) | ) {\displaystyle |f^{(n)}(z)|\leq {\frac {2^{n+2}n!R}{(R-|z-a|)^{n+1}}}(A(R)+|f(a)|)} n ∈ N {\displaystyle n\in \mathbb {N} } f {\displaystyle f} U {\displaystyle U} 0 {\displaystyle 0} f ( z ) = ∑ n = 0 ∞ a n z n {\displaystyle \textstyle f(z)=\sum _{n=0}^{\infty }a_{n}z^{n}} r > 0 {\displaystyle r>0} B ϱ ( 0 ) ⊂ U {\displaystyle B_{\varrho }(0)\subset U} ∑ n = 0 ∞ | a n | 2 ϱ 2 n ≤ ( max | z | = ϱ | f ( z ) | ) 2 . {\displaystyle \sum _{n=0}^{\infty }|a_{n}|^{2}\varrho ^{2n}\leq \left(\max _{|z|=\varrho }|f(z)|\right)^{2}.} f {\displaystyle f} U {\displaystyle U} B r ( c ) ¯ ⊂ U {\displaystyle {\overline {B_{r}(c)}}\subset U} r > 0 {\displaystyle r>0} z 1 ≠ z 2 {\displaystyle z_{1}\not =z_{2}} B r ( c ) {\displaystyle B_{r}(c)} | f ( z 1 ) − f ( z 2 ) z 1 − z 2 | ≤ max | z − c | = r | f ′ ( z ) | . {\displaystyle \left|{\frac {f(z_{1})-f(z_{2})}{z_{1}-z_{2}}}\right|\leq \max _{|z-c|=r}|f'(z)|.} | f ( z 1 ) − f ( z 2 ) | = | ∫ z 2 z 1 f ′ ( z ) d z | ≤ | z 1 − z 2 | max z ∈ [ z 1 , z 2 ] | f ′ ( z ) | ≤ | z 1 − z 2 | max | z − c | = r | f ′ ( z ) | . {\displaystyle |f(z_{1})-f(z_{2})|=\left|\int _{z_{2}}^{z_{1}}f'(z)\mathrm {d} z\right|\leq |z_{1}-z_{2}|\max _{z\in [z_{1},z_{2}]}|f'(z)|\leq |z_{1}-z_{2}|\max _{|z-c|=r}|f'(z)|.} max | z − c | = r | f ′ ( z ) | {\displaystyle \max _{|z-c|=r}|f'(z)|} f ( z ) = a z + b {\displaystyle f(z)=az+b} [ z 1 , z 2 ] {\displaystyle [z_{1},z_{2}]} | f ( z 1 ) − f ( z 2 ) z 1 − z 2 | ≤ max z ∈ [ z 1 , z 2 ] | f ′ ( z ) | . {\displaystyle \left|{\frac {f(z_{1})-f(z_{2})}{z_{1}-z_{2}}}\right|\leq \max _{z\in [z_{1},z_{2}]}|f'(z)|.} f ( z ) = ∑ n = 0 ∞ a n z n {\displaystyle \textstyle f(z)=\sum _{n=0}^{\infty }a_{n}z^{n}} E ¯ {\displaystyle {\overline {\mathbb {E} }}} ∫ − 1 1 | f ( x ) | d x ≤ 1 2 ∫ 0 2 π | f ( e i t ) | d t . {\displaystyle \int _{-1}^{1}|f(x)|\mathrm {d} x\leq {\frac {1}{2}}\int _{0}^{2\pi }|f(e^{it})|\mathrm {d} t.} f {\displaystyle f} H 1 ( E ) {\displaystyle H^{1}(\mathbb {E} )} ∑ m = 0 ∞ ∑ n = 0 ∞ | a m | | a n | m + n + 1 ≤ π ∑ n = 0 ∞ | a n | 2 . {\displaystyle \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {|a_{m}||a_{n}|}{m+n+1}}\leq \pi \sum _{n=0}^{\infty }|a_{n}|^{2}.} f {\displaystyle f} f ( 0 ) = 0 {\displaystyle f(0)=0} f ′ ( 0 ) = 1 {\displaystyle f'(0)=1} g ( z ) = 1 f ( 1 z ) . {\displaystyle g(z)={\frac {1}{f\left({\frac {1}{z}}\right)}}.} z = ∞ {\displaystyle z=\infty } g ( z ) = z + ∑ n = 0 ∞ b n z − n , {\displaystyle g(z)=z+\sum _{n=0}^{\infty }b_{n}z^{-n},} | z | > 1 {\displaystyle |z|>1} c m , n {\displaystyle c_{m,n}} L o g ( g ( ζ ) − g ( z ) ζ − z ) = − ∑ m , n > 0 c n , m n z − m ζ − n , | z | , | ζ | ≫ 1. {\displaystyle \mathrm {Log} \left({\frac {g(\zeta )-g(z)}{\zeta -z}}\right)=-\sum _{m,n>0}{\frac {c_{n,m}}{n}}z^{-m}\zeta ^{-n},\qquad |z|,|\zeta |\gg 1.} λ 1 , . . . , λ N {\displaystyle \lambda _{1},...,\lambda _{N}} ∑ n = 1 ∞ n | ∑ m = 1 N c m , n λ m | 2 ≤ ∑ n = 1 N n | λ n | 2 . {\displaystyle \sum _{n=1}^{\infty }n\left|\sum _{m=1}^{N}c_{m,n}\lambda _{m}\right|^{2}\leq \sum _{n=1}^{N}n|\lambda _{n}|^{2}.} | ∑ 1 ≤ m , n ≤ N n c m , n λ m λ n | ≤ ∑ n = 1 N n | λ n | 2 {\displaystyle \left|\sum _{1\leq m,n\leq N}nc_{m,n}\lambda _{m}\lambda _{n}\right|\leq \sum _{n=1}^{N}n|\lambda _{n}|^{2}} φ ( z ) = ∑ n = 1 ∞ α n z n {\displaystyle \textstyle \varphi (z)=\sum _{n=1}^{\infty }\alpha _{n}z^{n}} B r ( 0 ) {\displaystyle B_{r}(0)} φ ( 0 ) = 0 {\displaystyle \varphi (0)=0} ψ ( z ) = exp ( φ ( z ) ) {\displaystyle \psi (z)=\exp(\varphi (z))} B r ( 0 ) {\displaystyle B_{r}(0)} ψ ( z ) = ∑ k = 0 ∞ β k z k . {\displaystyle \psi (z)=\sum _{k=0}^{\infty }\beta _{k}z^{k}.} ∑ k = 0 ∞ | β k | 2 ≤ exp ( ∑ k = 1 ∞ k | α k | 2 ) , {\displaystyle \sum _{k=0}^{\infty }|\beta _{k}|^{2}\leq \exp \left(\sum _{k=1}^{\infty }k|\alpha _{k}|^{2}\right),} α k = ω k k {\displaystyle \alpha _{k}={\tfrac {\omega ^{k}}{k}}} k ∈ N {\displaystyle k\in \mathbb {N} } n = 1 , 2 , . . . {\displaystyle n=1,2,...} ∑ k = 0 n | β k | 2 ≤ ( n + 1 ) exp ( 1 n + 1 ∑ m = 1 n ∑ k = 1 m ( k | α k | 2 − 1 k ) ) , {\displaystyle \sum _{k=0}^{n}|\beta _{k}|^{2}\leq (n+1)\exp \left({\frac {1}{n+1}}\sum _{m=1}^{n}\sum _{k=1}^{m}\left(k|\alpha _{k}|^{2}-{\frac {1}{k}}\right)\right),} α k = ω k k {\displaystyle \alpha _{k}={\tfrac {\omega ^{k}}{k}}} 1 ≤ k ≤ n {\displaystyle 1\leq k\leq n} | ω | = 1 {\displaystyle |\omega |=1} n = 1 , 2 , . . . {\displaystyle n=1,2,...} | β n | 2 ≤ exp ( ∑ k = 1 n ( k | α k | 2 − 1 k ) ) , {\displaystyle |\beta _{n}|^{2}\leq \exp \left(\sum _{k=1}^{n}\left(k|\alpha _{k}|^{2}-{\frac {1}{k}}\right)\right),} α k = ω k k {\displaystyle \alpha _{k}={\tfrac {\omega ^{k}}{k}}} 1 ≤ k ≤ n {\displaystyle 1\leq k\leq n} | ω | = 1 {\displaystyle |\omega |=1} Re ( f ) {\displaystyle \operatorname {Re} (f)} Im ( f ) {\displaystyle \operatorname {Im} (f)} | f | {\displaystyle |f|} f {\displaystyle f} f {\displaystyle f} { z ∈ C : Re ( z ) ≥ 0 } {\displaystyle \{z\in \mathbb {C} \colon \operatorname {Re} (z)\geq 0\}} A , B > 0 {\displaystyle A,B>0} z {\displaystyle z} Re ( z ) ≥ 0 {\displaystyle \operatorname {Re} (z)\geq 0} C , γ > 0 {\displaystyle C,\gamma >0} | f ( ± i r ) | ≤ C e ( π − γ ) r {\displaystyle |f(\pm ir)|\leq Ce^{(\pi -\gamma )r}} r ≥ 0 {\displaystyle r\geq 0} f ( n ) = 0 {\displaystyle f(n)=0} n ∈ N 0 {\displaystyle n\in \mathbb {N} _{0}} f ≡ 0 {\displaystyle f\equiv 0} f ( z ) = sin ( π z ) {\displaystyle f(z)=\sin(\pi z)} | f ( ± i r ) | ≤ C e − γ r {\displaystyle |f(\pm ir)|\leq Ce^{-\gamma r}} r ≥ 0 {\displaystyle r\geq 0} f ≡ 0 {\displaystyle f\equiv 0} f {\displaystyle f} E {\displaystyle \mathbb {E} } k ∈ N 0 {\displaystyle k\in \mathbb {N} _{0}} lim t → 1 − t ∈ R f ( k ) ( t ) = 0. {\displaystyle \lim _{t\to 1^{-} \atop t\in \mathbb {R} }f^{(k)}(t)=0.} z = 1 {\displaystyle z=1} f {\displaystyle f} f ≡ 0 {\displaystyle f\equiv 0} z = 1 {\displaystyle z=1} f {\displaystyle f} H := { z ∈ C : Im ( z ) > 0 } {\displaystyle \mathbb {H} :=\{z\in \mathbb {C} \colon \operatorname {Im} (z)>0\}} f ( z + 2 ) = f ( z ) {\displaystyle f(z+2)=f(z)} z ∈ H {\displaystyle z\in \mathbb {H} } f ( − 1 z ) = f ( z ) {\displaystyle f(-{\tfrac {1}{z}})=f(z)} z ∈ H {\displaystyle z\in \mathbb {H} } f {\displaystyle f} H {\displaystyle \mathbb {H} } f {\displaystyle f} SL 2 ( Z ) {\displaystyle \operatorname {SL} _{2}(\mathbb {Z} )} f {\displaystyle f} H := { z ∈ C : Im ( z ) > 0 } {\displaystyle \mathbb {H} :=\{z\in \mathbb {C} \colon \operatorname {Im} (z)>0\}} f ( z k ) = 0 {\displaystyle f(z_{k})=0} z k = x k + i y k {\displaystyle z_{k}=x_{k}+iy_{k}} | x k | ≤ 1 {\displaystyle |x_{k}|\leq 1} ∑ k = 1 ∞ y k = ∞ {\displaystyle \textstyle \sum _{k=1}^{\infty }y_{k}=\infty } f {\displaystyle f} f ≡ 0 {\displaystyle f\equiv 0} α {\displaystyle \alpha } α = inf { c ∈ R ∣ | f ( z ) | ≪ c exp ( | z | c ) } . {\displaystyle \alpha =\operatorname {inf} \{c\in \mathbb {R} \mid |f(z)|\ll _{c}\exp(|z|^{c})\}.} e z , e − 3 z 2 , … {\displaystyle e^{z},e^{-3z^{2}},\dots } f {\displaystyle f} log ( f ) {\displaystyle \log(f)} Re ( log ( f ( z ) ) ) ≪ C | z | α + ε {\displaystyle \operatorname {Re} (\log(f(z)))\ll C|z|^{\alpha +\varepsilon }} ε > 0 {\displaystyle \varepsilon >0} e g {\displaystyle e^{g}} g {\displaystyle g} f ( z ) = ∑ k = 0 ∞ c k z k {\displaystyle \textstyle f(z)=\sum _{k=0}^{\infty }c_{k}z^{k}} lim sup n → ∞ n | c n | 1 n ≤ c e {\displaystyle \limsup _{n\to \infty }n|c_{n}|^{\frac {1}{n}}\leq ce} f ( z ) − ( c + ε ) | z | {\displaystyle f(z)^{-(c+\varepsilon )|z|}} f {\displaystyle f} ε > 0 {\displaystyle \varepsilon >0} f ≠ 0 {\displaystyle f\not =0} M ( r ) := sup { | f ( z ) | : | z | = r } {\displaystyle M(r):=\sup\{|f(z)|\colon |z|=r\}} r ≥ 0 {\displaystyle r\geq 0} lim sup r → ∞ log ( M ( r ) ) r = lim sup n → ∞ ( n e ) | c n | 1 n = lim sup n → ∞ | f ( n ) ( 0 ) | 1 n {\displaystyle \limsup _{r\to \infty }{\frac {\log(M(r))}{r}}=\limsup _{n\to \infty }\left({\frac {n}{e}}\right)|c_{n}|^{\frac {1}{n}}=\limsup _{n\to \infty }\left|f^{(n)}(0)\right|^{\frac {1}{n}}} α {\displaystyle \alpha } ( z n ) n ∈ N {\displaystyle (z_{n})_{n\in \mathbb {N} }} f {\displaystyle f} z n ≠ 0 {\displaystyle z_{n}\not =0} P 1 ≡ 0 {\displaystyle P_{1}\equiv 0} k > 1 {\displaystyle k>1} P k ( z ) = z + z 2 2 + ⋯ + z k − 1 k − 1 . {\displaystyle P_{k}(z)=z+{\frac {z^{2}}{2}}+\cdots +{\frac {z^{k-1}}{k-1}}.} k {\displaystyle k} k > α {\displaystyle k>\alpha } h {\displaystyle h} α {\displaystyle \alpha } f ( z ) = z m e h ( z ) ∏ ( 1 − z z n ) e P k ( z z n ) . {\displaystyle f(z)=z^{m}e^{h(z)}\prod \left(1-{\frac {z}{z_{n}}}\right)e^{P_{k}({\tfrac {z}{z_{n}}})}.} m {\displaystyle m} f {\displaystyle f} O ( C ) {\displaystyle {\mathcal {O}}({\mathcal {\mathbb {C} }})} C [ z ] ⊂ O ( C ) {\displaystyle \mathbb {C} [z]\subset {\mathcal {O}}({\mathcal {\mathbb {C} }})} ε : R → ( 0 , ∞ ) {\displaystyle \varepsilon \colon \mathbb {R} \to (0,\infty )} f : R → C {\displaystyle f\colon \mathbb {R} \to \mathbb {C} } g {\displaystyle g} x ∈ R {\displaystyle x\in \mathbb {R} } x → sin ( x ) {\displaystyle x\to \sin(x)} R {\displaystyle \mathbb {R} } f 1 , … , f n {\displaystyle f_{1},\dots ,f_{n}} | f ( z ) | ≤ C | z | α {\displaystyle |f(z)|\leq C^{|z|^{\alpha }}} C > 1 {\displaystyle C>1} α {\displaystyle \alpha } Q [ f 1 , … , f n ] {\displaystyle \mathbb {Q} [f_{1},\dots ,f_{n}]} ∂ := d d z {\displaystyle \partial :={\tfrac {\mathrm {d} }{\mathrm {d} z}}} P j {\displaystyle P_{j}} ∂ f j = P j ( f 1 , … , f n ) . {\displaystyle \partial f_{j}=P_{j}(f_{1},\dots ,f_{n}).} w 1 , … , w N {\displaystyle w_{1},\dots ,w_{N}} f j ( w ℓ ) ∈ Q {\displaystyle f_{j}(w_{\ell })\in \mathbb {Q} } j = 1 , … , n {\displaystyle j=1,\dots ,n} ℓ = 1 , … , N {\displaystyle \ell =1,\dots ,N} N ≤ 4 α {\displaystyle N\leq 4\alpha } Q [ z , e z ] {\displaystyle \mathbb {Q} [z,e^{z}]} ∂ {\displaystyle \partial } e w {\displaystyle e^{w}} w ≠ 0 {\displaystyle w\not =0} e w , e 2 w , e 3 w , … {\displaystyle e^{w},e^{2w},e^{3w},\dots } f {\displaystyle f} D {\displaystyle D} f {\displaystyle f} c ∈ D {\displaystyle c\in D} R > 0 {\displaystyle R>0} c {\displaystyle c} D {\displaystyle D} f {\displaystyle f} D {\displaystyle D} f : I → R {\displaystyle f\colon I\to \mathbb {R} } I = ( a , b ) {\displaystyle I=(a,b)} f {\displaystyle f} D ⊃ I {\displaystyle D\supset I} f {\displaystyle f} D ⊂ C {\displaystyle D\subset \mathbb {C} } M ⊂ D {\displaystyle M\subset D} D {\displaystyle D} f : M → C {\displaystyle f\colon M\to \mathbb {C} } f ~ : D → C {\displaystyle {\widetilde {f}}\colon D\to \mathbb {C} } f {\displaystyle f} f ~ | M = f {\displaystyle {\widetilde {f}}|_{M}=f} M = R {\displaystyle M=\mathbb {R} } D = C {\displaystyle D=\mathbb {C} } f ( x ) = e x {\displaystyle f(x)=e^{x}} C {\displaystyle \mathbb {C} } ( e z ) ~ = ∑ n = 0 ∞ z n n ! . {\displaystyle {\widetilde {(e^{z})}}=\sum _{n=0}^{\infty }{\frac {z^{n}}{n!}}.} f {\displaystyle f} z 0 {\displaystyle z_{0}} f {\displaystyle f} f {\displaystyle f} z 1 {\displaystyle z_{1}} z 0 {\displaystyle z_{0}} z 0 {\displaystyle z_{0}} z 1 {\displaystyle z_{1}} γ 0 {\displaystyle \gamma _{0}} γ 1 {\displaystyle \gamma _{1}} t ↦ γ t {\displaystyle t\mapsto \gamma _{t}} 0 ≤ t ≤ 1 {\displaystyle 0\leq t\leq 1} f {\displaystyle f} γ t {\displaystyle \gamma _{t}} f 0 {\displaystyle f_{0}} f 1 {\displaystyle f_{1}} f {\displaystyle f} γ 0 {\displaystyle \gamma _{0}} z 1 {\displaystyle z_{1}} D ≠ ∅ {\displaystyle D\not =\emptyset } R {\displaystyle \mathbb {R} } z ∈ D ⟹ z ¯ ∈ D {\displaystyle z\in D\implies {\overline {z}}\in D} D ± := { z ∈ D ∣ ± Im ( z ) > 0 } {\displaystyle D_{\pm }:=\{z\in D\mid \pm \operatorname {Im} (z)>0\}} D 0 := D ∩ R {\displaystyle D_{0}:=D\cap \mathbb {R} } f : D + ∪ D 0 → C {\displaystyle f\colon D_{+}\cup D_{0}\to \mathbb {C} } f | D + : D + → C {\displaystyle f|_{D_{+}}\colon D_{+}\to \mathbb {C} } f ( D 0 ) ⊂ R {\displaystyle f(D_{0})\subset \mathbb {R} } f ~ ( z ) := { f ( z ) , z ∈ D + ∪ D 0 , f ( z ¯ ) ¯ , z ∈ D − {\displaystyle {\widetilde {f}}(z):={\begin{cases}f(z),&\qquad z\in D_{+}\cup D_{0},\\{\overline {f({\overline {z}})}},&\qquad z\in D_{-}\end{cases}}} f ~ : D → C {\displaystyle {\widetilde {f}}\colon D\to \mathbb {C} } z ↦ z ¯ {\displaystyle z\mapsto {\overline {z}}} D {\displaystyle D} D {\displaystyle D} f {\displaystyle f} c ∈ D {\displaystyle c\in D} f {\displaystyle f} c {\displaystyle c} D {\displaystyle D} D {\displaystyle D} f {\displaystyle f} D {\displaystyle D} f {\displaystyle f} D ′ ⊇ D {\displaystyle D'\supseteq D} f ^ ∈ O ( D ′ ) {\displaystyle {\widehat {f}}\in {\mathcal {O}}(D')} f ^ | D = f {\displaystyle {\widehat {f}}|_{D}=f} D {\displaystyle D} C − {\displaystyle \mathbb {C} _{-}} z ↦ z {\displaystyle z\mapsto {\sqrt {z}}} z ↦ log ( z ) {\displaystyle z\mapsto \log(z)} z ↦ z {\displaystyle z\mapsto {\sqrt {z}}} z ↦ log ( z ) {\displaystyle z\mapsto \log(z)} c ∈ C − {\displaystyle c\in \mathbb {C} _{-}} B | c | ( c ) {\displaystyle B_{|c|}(c)} B | c | ( c ) ⊄ C − {\displaystyle B_{|c|}(c)\not \subset \mathbb {C} _{-}} z ↦ z {\displaystyle z\mapsto {\sqrt {z}}} z ↦ log ( z ) {\displaystyle z\mapsto \log(z)} C − {\displaystyle \mathbb {C} _{-}} z ↦ z {\displaystyle z\mapsto {\sqrt {z}}} z → log ( z ) {\displaystyle z\to \log(z)} U {\displaystyle U} f ∈ O ( U ) {\displaystyle f\in {\mathcal {O}}(U)} U ∩ C − {\displaystyle U\cap \mathbb {C} _{-}} z ↦ z {\displaystyle z\mapsto {\sqrt {z}}} z → log ( z ) {\displaystyle z\to \log(z)} C {\displaystyle \mathbb {C} } C × {\displaystyle \mathbb {C} ^{\times }} E {\displaystyle \mathbb {E} } z ↦ z {\displaystyle z\mapsto z} z ↦ 1 z {\displaystyle z\mapsto {\tfrac {1}{z}}} z ↦ ∑ n = 0 ∞ z 2 n {\displaystyle z\mapsto \sum _{n=0}^{\infty }z^{2^{n}}} D {\displaystyle D} f : U → C {\displaystyle f\colon U\rightarrow \mathbb {C} } f ′ ( a ) ≠ 0 {\displaystyle f'(a)\not =0} a ∈ U {\displaystyle a\in U} f {\displaystyle f} a ∈ V ⊂ U {\displaystyle a\in V\subset U} f | V : V → f ( V ) {\displaystyle f|_{V}\colon V\rightarrow f(V)} e 0 = e 2 π i = 1 {\displaystyle e^{0}=e^{2\pi i}=1} f {\displaystyle f} E {\displaystyle \mathbb {E} } f ( 0 ) = 0 {\displaystyle f(0)=0} f ′ ( 0 ) = 1 {\displaystyle f'(0)=1} f {\displaystyle f} B 1 M ( 0 ) {\displaystyle B_{\frac {1}{M}}(0)} B 1 2 M ( 0 ) {\displaystyle B_{\frac {1}{2M}}(0)} D {\displaystyle D} f : D → f ( D ) {\displaystyle f\colon D\rightarrow f(D)} B r ( a ) ¯ ⊂ D {\displaystyle {\overline {B_{r}(a)}}\subset D} w ∈ f ( B r ( a ) ) {\displaystyle w\in f(B_{r}(a))} f − 1 ( w ) = 1 2 π i ∮ ∂ B r ( a ) ζ f ′ ( ζ ) f ( ζ ) − w d ζ . {\displaystyle f^{-1}(w)={\frac {1}{2\pi i}}\oint _{\partial B_{r}(a)}{\frac {\zeta f'(\zeta )}{f(\zeta )-w}}\mathrm {d} \zeta .} f {\displaystyle f} f ( 0 ) = 0 {\displaystyle f(0)=0} 0 {\displaystyle 0} f ( z ) = ∑ n = 1 ∞ a n z n , {\displaystyle f(z)=\sum _{n=1}^{\infty }a_{n}z^{n},} a 1 = f ′ ( 0 ) ≠ 0 {\displaystyle a_{1}=f'(0)\not =0} f − 1 ( w ) = ∑ k = 1 ∞ b k w k {\displaystyle f^{-1}(w)=\sum _{k=1}^{\infty }b_{k}w^{k}} b k = 1 k a 1 k ∑ ℓ 1 , ℓ 2 , ℓ 3 , ⋯ ≥ 0 ℓ 1 + 2 ℓ 2 + 3 ℓ 3 + ⋯ = k − 1 ( − 1 ) ℓ 1 + ℓ 2 + ℓ 3 + ⋯ k ( k + 1 ) ⋯ ( k − 1 + ℓ 1 + ℓ 2 + ⋯ ) ℓ 1 ! ℓ 2 ! ℓ 3 ! ⋯ ( a 2 a 1 ) ℓ 1 ( a 3 a 1 ) ℓ 2 ⋯ . {\displaystyle b_{k}={\frac {1}{ka_{1}^{k}}}\sum _{\ell _{1},\ell _{2},\ell _{3},\dots \geq 0 \atop \ell _{1}+2\ell _{2}+3\ell _{3}+\cdots =k-1}(-1)^{\ell _{1}+\ell _{2}+\ell _{3}+\cdots }{\frac {k(k+1)\cdots (k-1+\ell _{1}+\ell _{2}+\cdots )}{\ell _{1}!\ell _{2}!\ell _{3}!\cdots }}\left({\frac {a_{2}}{a_{1}}}\right)^{\ell _{1}}\left({\frac {a_{3}}{a_{1}}}\right)^{\ell _{2}}\cdots .} ! {\displaystyle !} b 1 = 1 a 1 {\displaystyle b_{1}={\frac {1}{a_{1}}}} b 2 = − a 2 a 1 3 {\displaystyle b_{2}=-{\frac {a_{2}}{a_{1}^{3}}}} b 3 = 2 a 2 2 − a 1 a 3 a 1 5 {\displaystyle b_{3}={\frac {2a_{2}^{2}-a_{1}a_{3}}{a_{1}^{5}}}} b 4 = 5 a 1 a 2 a 3 − a 1 2 a 4 − 5 a 2 3 a 1 7 {\displaystyle b_{4}={\frac {5a_{1}a_{2}a_{3}-a_{1}^{2}a_{4}-5a_{2}^{3}}{a_{1}^{7}}}} C {\displaystyle \mathbb {C} } C {\displaystyle \mathbb {C} } C {\displaystyle \mathbb {C} } E {\displaystyle \mathbb {E} } C {\displaystyle \mathbb {C} } E {\displaystyle \mathbb {E} } h : C → E {\displaystyle h\colon \mathbb {C} \rightarrow \mathbb {E} } h ( z ) = z 1 + | z | . {\displaystyle h(z)={\frac {z}{1+|z|}}.} C ¯ {\displaystyle {\overline {\mathbb {C} }}} E {\displaystyle \mathbb {E} } C {\displaystyle \mathbb {C} } C ¯ {\displaystyle {\overline {\mathbb {C} }}} f : E → D {\displaystyle f\colon \mathbb {E} \to D} D {\displaystyle D} f {\displaystyle f} E ¯ {\displaystyle {\overline {\mathbb {E} }}} D ¯ {\displaystyle {\overline {D}}} D {\displaystyle D} φ : ∂ E → C {\displaystyle \varphi \colon \partial \mathbb {E} \to \mathbb {C} } φ ( ∂ E ) = ∂ D {\displaystyle \varphi (\partial E)=\partial D} f {\displaystyle f} E ¯ {\displaystyle {\overline {\mathbb {E} }}} D ¯ {\displaystyle {\overline {D}}} ∂ D {\displaystyle \partial D} φ {\displaystyle \varphi } E {\displaystyle \mathbb {E} } D {\displaystyle D} U ⊂ C {\displaystyle U\subset \mathbb {C} } Aut ( U ) {\displaystyle \operatorname {Aut} (U)} f : U → U {\displaystyle f\colon U\rightarrow U} Aut ( C ) {\displaystyle \operatorname {Aut} (\mathbb {C} )} D {\displaystyle D} C {\displaystyle \mathbb {C} } f ( z ) = a z + b {\displaystyle f(z)=az+b} a ≠ 0 {\displaystyle a\not =0} Aut ( C ) = { f ( z ) = a z + b ∣ a , b ∈ C , a ≠ 0 } . {\displaystyle \operatorname {Aut} (\mathbb {C} )=\{f(z)=az+b\mid a,b\in \mathbb {C} ,a\not =0\}.} f {\displaystyle f} ∞ {\displaystyle \infty } f − 1 {\displaystyle f^{-1}} 0 {\displaystyle 0} f {\displaystyle f} f {\displaystyle f} ∞ {\displaystyle \infty } C × := C ∖ { 0 } {\displaystyle \mathbb {C} ^{\times }:=\mathbb {C} \setminus \{0\}} Aut ( C × ) = { f ( z ) = a z ∣ a ∈ C × } ∪ { f ( z ) = a z − 1 ∣ a ∈ C × } . {\displaystyle \operatorname {Aut} (\mathbb {C} ^{\times })=\{f(z)=az\mid a\in \mathbb {C} ^{\times }\}\cup \{f(z)=az^{-1}\mid a\in \mathbb {C} ^{\times }\}.} Aut ( C × ) {\displaystyle \operatorname {Aut} (\mathbb {C} ^{\times })} C × {\displaystyle \mathbb {C} ^{\times }} f ∈ Aut ( E ) {\displaystyle f\in \operatorname {Aut} (\mathbb {E} )} f ( 0 ) = 0 {\displaystyle f(0)=0} f ( z ) = ζ z {\displaystyle f(z)=\zeta z} | ζ | = 1 {\displaystyle |\zeta |=1} Aut ( E ) {\displaystyle \operatorname {Aut} (\mathbb {E} )} E × := E ∖ { 0 } {\displaystyle \mathbb {E} ^{\times }:=\mathbb {E} \setminus \{0\}} Aut ( E × ) = { f ( z ) = a z : | a | = 1 } {\displaystyle \operatorname {Aut} (\mathbb {E} ^{\times })=\{f(z)=az\ \colon |a|=1\}} Aut ( E × ) {\displaystyle \operatorname {Aut} (\mathbb {E} ^{\times })} H → E , z ↦ z − i z + i {\displaystyle \mathbb {H} \rightarrow \mathbb {E} ,z\mapsto {\tfrac {z-i}{z+i}}} Aut ( H ) = { f ( z ) = a z + b c z + d : a , b , c , d ∈ R , a d − b c = 1 } . {\displaystyle \operatorname {Aut} (\mathbb {H} )=\left\{f(z)={\frac {az+b}{cz+d}}\ \colon a,b,c,d\in \mathbb {R} ,ad-bc=1\right\}.} f ∈ Aut ( H ) {\displaystyle f\in \operatorname {Aut} (\mathbb {H} )} M = ( a b c d ) ∈ SL 2 ( R ) {\displaystyle M={\begin{pmatrix}a&b\\c&d\end{pmatrix}}\in \operatorname {SL} _{2}(\mathbb {R} )} f , g ∈ Aut ( H ) {\displaystyle f,g\in \operatorname {Aut} (\mathbb {H} )} f = g {\displaystyle f=g} M f {\displaystyle M_{f}} M g {\displaystyle M_{g}} M f = ± M g {\displaystyle M_{f}=\pm M_{g}} SL 2 ( R ) {\displaystyle \operatorname {SL} _{2}(\mathbb {R} )} 2 × 2 {\displaystyle 2\times 2} Aut ( H ) {\displaystyle \operatorname {Aut} (\mathbb {H} )} SL 2 ( R ) / { ± E 2 } {\displaystyle \operatorname {SL} _{2}(\mathbb {R} )/\{\pm E_{2}\}} f ↦ [ M f ] {\displaystyle f\mapsto [M_{f}]} E 2 {\displaystyle E_{2}} 2 × 2 {\displaystyle 2\times 2} D {\displaystyle D} Aut ( D ) = { i d : D → D } {\displaystyle \operatorname {Aut} (D)=\{\mathrm {id} \colon D\to D\}} D {\displaystyle D} E ∖ { 0 , 1 2 , 3 4 } {\displaystyle \mathbb {E} \setminus \{0,{\tfrac {1}{2}},{\tfrac {3}{4}}\}} Σ a n z n {\displaystyle \Sigma \ a_{n}z^{n}} f : D → C {\displaystyle f\colon D\to \mathbb {C} } 0 ∈ ∂ D {\displaystyle 0\in \partial D} k ∈ N 0 {\displaystyle k\in \mathbb {N} _{0}} lim z → 0 z ∈ D z − k ( f ( z ) − ∑ n = 0 k a n z n ) = 0. {\displaystyle \lim _{z\to 0 \atop z\in D}z^{-k}\left(f(z)-\sum _{n=0}^{k}a_{n}z^{n}\right)=0.} f {\displaystyle f} f ( z ) = exp ( 1 z ) {\displaystyle f(z)=\exp({\tfrac {1}{z}})} D = C × {\displaystyle D=\mathbb {C} ^{\times }} f ∈ O ( D ) {\displaystyle f\in {\mathcal {O}}(D)} f ^ ∈ O ( D ^ ) {\displaystyle {\widehat {f}}\in {\mathcal {O}}({\widehat {D}})} D ^ {\displaystyle {\widehat {D}}} 0 ∈ D ^ ⊃ D {\displaystyle 0\in {\widehat {D}}\supset D} f {\displaystyle f} f ^ {\displaystyle {\widehat {f}}} f {\displaystyle f} f ( z ) ∼ ∑ n = 0 ∞ a n z n {\displaystyle \textstyle f(z)\sim \sum _{n=0}^{\infty }a_{n}z^{n}} z → 0 {\displaystyle z\to 0} f ′ ( z ) ∼ ∑ n = 1 ∞ n a n z n − 1 {\displaystyle f'(z)\sim \sum _{n=1}^{\infty }na_{n}z^{n-1}} S {\displaystyle S} f ( z ) − ∑ n = 0 N a n z n = O N ( z N + 1 ) {\displaystyle f(z)-\sum _{n=0}^{N}a_{n}z^{n}=O_{N}(z^{N+1})} z → 0 {\displaystyle z\to 0} S {\displaystyle S} N ∈ N {\displaystyle N\in \mathbb {N} } O {\displaystyle O} z {\displaystyle z} D {\displaystyle D} 0 ∈ ∂ D {\displaystyle 0\in \partial D} z ∈ D {\displaystyle z\in D} c ν {\displaystyle c_{\nu }} [ c ν , z ] {\displaystyle [c_{\nu },z]} D {\displaystyle D} f {\displaystyle f} D {\displaystyle D} f ( n ) ( 0 ) := lim z → 0 f ( n ) ( z ) {\displaystyle f^{(n)}(0):=\lim _{z\to 0}f^{(n)}(z)} f {\displaystyle f} ∑ n = 0 ∞ f ( n ) ( 0 ) n ! z n . {\displaystyle \sum _{n=0}^{\infty }{\frac {f^{(n)}(0)}{n!}}z^{n}.} D {\displaystyle D} S {\displaystyle S} Σ a n z n {\displaystyle \Sigma \ a_{n}z^{n}} S {\displaystyle S} f {\displaystyle f} f ∼ S ∑ a ν z ν . {\displaystyle f\sim _{S}\sum a_{\nu }z^{\nu }.} g ( z ) = ∑ n = 1 ∞ f ( n z ) {\displaystyle \textstyle g(z)=\sum _{n=1}^{\infty }f(nz)} z → 0 + {\displaystyle z\to 0^{+}} f {\displaystyle f} D θ := { r e i α : r ≥ 0 , | α | ≤ θ } {\displaystyle D_{\theta }:=\{re^{i\alpha }\colon r\geq 0,|\alpha |\leq \theta \}} f : C → C {\displaystyle f\colon \mathbb {C} \to \mathbb {C} } D θ {\displaystyle D_{\theta }} k ∈ N 0 {\displaystyle k\in \mathbb {N} _{0}} ε > 0 {\displaystyle \varepsilon >0} f ( w ) = O ( w − 1 − ε ) {\displaystyle f(w)=O(w^{-1-\varepsilon })} | w | → ∞ {\displaystyle |w|\to \infty } D θ {\displaystyle D_{\theta }} a ∈ R {\displaystyle a\in \mathbb {R} } N ∈ N 0 {\displaystyle N\in \mathbb {N} _{0}} ∑ m = 0 ∞ f ( w ( m + a ) ) = 1 w ∫ 0 ∞ f ( x ) d x − ∑ n = 0 N − 1 B n + 1 ( a ) f ( n ) ( 0 ) ( n + 1 ) ! w n + O N ( w N ) {\displaystyle \sum _{m=0}^{\infty }f(w(m+a))={\frac {1}{w}}\int _{0}^{\infty }f(x)\mathrm {d} x-\sum _{n=0}^{N-1}{\frac {B_{n+1}(a)f^{(n)}(0)}{(n+1)!}}w^{n}+O_{N}(w^{N})} w → 0 {\displaystyle w\to 0} D θ {\displaystyle D_{\theta }} B n ( x ) {\displaystyle B_{n}(x)} f {\displaystyle f} b − 1 {\displaystyle b_{-1}} a ∈ R ∖ ( − N 0 ) {\displaystyle a\in \mathbb {R} \setminus (-\mathbb {N} _{0})} ∑ m = 0 ∞ f ( w ( m + a ) ) = b − 1 Log ( 1 w ) w + b − 1 ( 1 − a ) w ∑ m = 0 ∞ 1 ( m + a ) ( m + 1 ) + 1 w ∫ 0 ∞ ( f ( x ) − b − 1 e − x x ) d x − ∑ n = 0 N − 1 B n + 1 ( a ) f ( n ) ( 0 ) ( n + 1 ) ! w n + O N ( w N ) {\displaystyle \sum _{m=0}^{\infty }f(w(m+a))={\frac {b_{-1}\operatorname {Log} ({\frac {1}{w}})}{w}}+{\frac {b_{-1}(1-a)}{w}}\sum _{m=0}^{\infty }{\frac {1}{(m+a)(m+1)}}+{\frac {1}{w}}\int _{0}^{\infty }\left(f(x)-{\frac {b_{-1}e^{-x}}{x}}\right)\mathrm {d} x-\sum _{n=0}^{N-1}{\frac {B_{n+1}(a)f^{(n)}(0)}{(n+1)!}}w^{n}+O_{N}(w^{N})} w → 0 {\displaystyle w\to 0} D θ {\displaystyle D_{\theta }} F ( s ) = ∑ n = 1 ∞ a n n s , {\displaystyle F(s)=\sum _{n=1}^{\infty }{\frac {a_{n}}{n^{s}}},} Re ( s ) > 1 {\displaystyle \operatorname {Re} (s)>1} | a n | ≤ C {\displaystyle |a_{n}|\leq C} n ∈ N {\displaystyle n\in \mathbb {N} } F ( s ) {\displaystyle F(s)} Re ( s ) = 1 {\displaystyle \operatorname {Re} (s)=1} ∑ n = 1 ∞ a n n = F ( 1 ) . {\displaystyle \sum _{n=1}^{\infty }{\frac {a_{n}}{n}}=F(1).} z ↦ ∑ a n z n {\displaystyle \textstyle z\mapsto \sum \ a_{n}z^{n}} ∂ E {\displaystyle \partial \mathbb {E} } ∑ a n {\displaystyle \textstyle \sum \ a_{n}} f ( z ) = ∫ C k ( w , z ) g ( w ) d w , {\displaystyle f(z)=\int _{C}k(w,z)g(w)\mathrm {d} w,} C {\displaystyle C} g {\displaystyle g} k {\displaystyle k} a ∈ C {\displaystyle a\in \mathbb {C} } U {\displaystyle U} f : [ a , ∞ ) × U → C {\displaystyle f\colon [a,\infty )\times U\to \mathbb {C} } F ( z ) := ∫ a ∞ f ( t , z ) d t {\displaystyle F(z):=\int _{a}^{\infty }f(t,z)\mathrm {d} t} U {\displaystyle U} lim b → ∞ ∫ a b f ( t , z ) d t {\displaystyle \textstyle \lim _{b\to \infty }\int _{a}^{b}f(t,z)\mathrm {d} t} U {\displaystyle U} z ↦ f ( t , z ) {\displaystyle z\mapsto f(t,z)} t ∈ ( a , ∞ ) {\displaystyle t\in (a,\infty )} F {\displaystyle F} U {\displaystyle U} F ( k ) ( z ) = ∫ a ∞ ∂ k ∂ z k f ( t , z ) d t {\displaystyle F^{(k)}(z)=\int _{a}^{\infty }{\frac {\partial ^{k}}{\partial z^{k}}}f(t,z)\mathrm {d} t} k ∈ N {\displaystyle k\in \mathbb {N} } f : R → C {\displaystyle f\colon \mathbb {R} \to \mathbb {C} } | x | → ∞ {\displaystyle |x|\to \infty } f ^ : R → C {\displaystyle {\hat {f}}\colon \mathbb {R} \to \mathbb {C} } f ^ ( ξ ) = ∫ − ∞ ∞ f ( x ) e − 2 π i x ξ d x {\displaystyle {\hat {f}}(\xi )=\int _{-\infty }^{\infty }f(x)e^{-2\pi ix\xi }\mathrm {d} x} f ( x ) = ∫ − ∞ ∞ f ^ ( ξ ) e 2 π i ξ x d ξ . {\displaystyle f(x)=\int _{-\infty }^{\infty }{\hat {f}}(\xi )e^{2\pi i\xi x}\mathrm {d} \xi .} f ^ {\displaystyle {\hat {f}}} | f ^ ( ξ ) | ≤ A e − 2 π a | ξ | {\displaystyle |{\hat {f}}(\xi )|\leq Ae^{-2\pi a|\xi |}} a , A > 0 {\displaystyle a,A>0} f {\displaystyle f} R {\displaystyle \mathbb {R} } f {\displaystyle f} | f ( x ) | ≤ B 1 + x 1 + ε {\displaystyle |f(x)|\leq {\tfrac {B}{1+x^{1+\varepsilon }}}} B , ε > 0 {\displaystyle B,\varepsilon >0} x ∈ R {\displaystyle x\in \mathbb {R} } f {\displaystyle f} | f ( z ) | ≤ A e 2 π M | z | {\displaystyle |f(z)|\leq Ae^{2\pi M|z|}} A , M > 0 {\displaystyle A,M>0} z ∈ C {\displaystyle z\in \mathbb {C} } f ^ {\displaystyle {\hat {f}}} [ − M , M ] {\displaystyle [-M,M]} f {\displaystyle f} f ^ {\displaystyle {\hat {f}}} f ^ ( ξ ) = 0 {\displaystyle {\hat {f}}(\xi )=0} f {\displaystyle f} { z ∈ C : Im ( z ) ≥ 0 } {\displaystyle \{z\in \mathbb {C} \colon \operatorname {Im} (z)\geq 0\}} x ↦ e − π x 2 {\displaystyle x\mapsto e^{-\pi x^{2}}} f {\displaystyle f} a , b > 0 {\displaystyle a,b>0} f ^ {\displaystyle {\hat {f}}} | f ^ ( ξ + i η ) | ≤ c ′ e − a ′ ξ 2 + b ′ η 2 {\displaystyle |{\hat {f}}(\xi +i\eta )|\leq c'e^{-a'\xi ^{2}+b'\eta ^{2}}} a ′ , b ′ , c ′ > 0 {\displaystyle a',b',c'>0} M ( f ) ( s ) := ∫ 0 ∞ f ( t ) t s − 1 d t . {\displaystyle {\mathcal {M}}(f)(s):=\int _{0}^{\infty }f(t)t^{s-1}\mathrm {d} t.} f {\displaystyle f} ( 0 , ∞ ) {\displaystyle (0,\infty )} f ( t ) = O ( t − α ) {\displaystyle f(t)=O(t^{-\alpha })} t → 0 + {\displaystyle t\to 0^{+}} f ( t ) = O ( t − β ) {\displaystyle f(t)=O(t^{-\beta })} t → ∞ {\displaystyle t\to \infty } s ↦ M ( f ) ( s ) {\displaystyle s\mapsto {\mathcal {M}}(f)(s)} f {\displaystyle f} t → ∞ {\displaystyle t\to \infty } t → 0 + {\displaystyle t\to 0^{+}} M ( f ) {\displaystyle {\mathcal {M}}(f)} C ∖ { − α 1 , − α 2 , − α 3 , . . . } {\displaystyle \mathbb {C} \setminus \{-\alpha _{1},-\alpha _{2},-\alpha _{3},...\}} m n + 1 {\displaystyle m_{n}+1} s = − α n {\displaystyle s=-\alpha _{n}} ( − 1 ) m n m n ! ( s + α n ) m n . {\displaystyle {\frac {(-1)^{m_{n}}m_{n}!}{(s+\alpha _{n})^{m_{n}}}}.} M ( f ) {\displaystyle {\mathcal {M}}(f)} f ( t ) = 1 2 π i ∫ c − i ∞ c + i ∞ M ( f ) ( s ) t − s d s , {\displaystyle f(t)={\frac {1}{2\pi i}}\int _{c-i\infty }^{c+i\infty }{\mathcal {M}}(f)(s)t^{-s}\mathrm {d} s,} f : [ 0 , ∞ ) → C {\displaystyle f\colon [0,\infty )\to \mathbb {C} } L ( f ) ( z ) := ∫ 0 ∞ f ( t ) e − z t d t . {\displaystyle {\mathcal {L}}(f)(z):=\int _{0}^{\infty }f(t)e^{-zt}\mathrm {d} t.} t ≥ 0 {\displaystyle t\geq 0} | f ( t ) | ≤ A e B t {\displaystyle |f(t)|\leq Ae^{Bt}} A > 0 {\displaystyle A>0} B ∈ R {\displaystyle B\in \mathbb {R} } z ↦ L ( f ) ( z ) {\displaystyle z\mapsto {\mathcal {L}}(f)(z)} { z ∈ C : Re ( z ) > B } {\displaystyle \{z\in \mathbb {C} \colon \operatorname {Re} (z)>B\}} f ( t ) = b 0 + b 1 t + b 2 2 ! t 2 + ⋯ + b N − 1 ( N − 1 ) ! t N − 1 + O ( t N ) {\displaystyle f(t)=b_{0}+b_{1}t+{\frac {b_{2}}{2!}}t^{2}+\cdots +{\frac {b_{N-1}}{(N-1)!}}t^{N-1}+O(t^{N})} t → 0 + {\displaystyle t\to 0^{+}} L ( f ) ( z ) = b 0 z + b 1 z 2 + b 2 z 3 + ⋯ + b N − 1 z N + O ( 1 Re ( z ) N + 1 ) {\displaystyle {\mathcal {L}}(f)(z)={\frac {b_{0}}{z}}+{\frac {b_{1}}{z^{2}}}+{\frac {b_{2}}{z^{3}}}+\cdots +{\frac {b_{N-1}}{z^{N}}}+O\left({\frac {1}{\operatorname {Re} (z)^{N+1}}}\right)} Re ( z ) → ∞ {\displaystyle \operatorname {Re} (z)\to \infty } f : [ 0 , ∞ ) → C {\displaystyle f\colon [0,\infty )\to \mathbb {C} } L ( f ) {\displaystyle {\mathcal {L}}(f)} { z ∈ C : Re ( z ) ≥ 0 } {\displaystyle \{z\in \mathbb {C} \colon \operatorname {Re} (z)\geq 0\}} ∫ 0 ∞ f ( t ) d t = L ( f ) ( 0 ) . {\displaystyle \int _{0}^{\infty }f(t)\mathrm {d} t={\mathcal {L}}(f)(0).} f : [ 0 , ∞ ) → R {\displaystyle f\colon [0,\infty )\to \mathbb {R} } L ( f ) {\displaystyle {\mathcal {L}}(f)} { z ∈ C : Re ( z ) > 1 } {\displaystyle \{z\in \mathbb {C} \colon \operatorname {Re} (z)>1\}} C {\displaystyle C} z ↦ L ( f ) ( z ) − C z − 1 {\displaystyle z\mapsto {\mathcal {L}}(f)(z)-{\frac {C}{z-1}}} { z ∈ C : Re ( z ) ≥ 1 } {\displaystyle \{z\in \mathbb {C} \colon \operatorname {Re} (z)\geq 1\}} f ( t ) e − t ⟶ t → ∞ C . {\displaystyle f(t)e^{-t}\,\,\,{\overset {t\to \infty }{\longrightarrow }}\,\,\,C.} O ( D ) {\displaystyle {\mathcal {O}}(D)} C {\displaystyle \mathbb {C} } O ( D ) {\displaystyle {\mathcal {O}}(D)} M ( D ) {\displaystyle {\mathcal {M}}(D)} O ( D ) {\displaystyle {\mathcal {O}}(D)} O ( D ) {\displaystyle {\mathcal {O}}(D)} Z {\displaystyle \mathbb {Z} } Z [ i ] {\displaystyle \mathbb {Z} [i]} A ⊂ D {\displaystyle A\subset D} a := { f ∈ O ( D ) ∣ f verschwindet fast überall auf A } , {\displaystyle {\mathfrak {a}}:=\{f\in {\mathcal {O}}(D)\mid f\ {\text{verschwindet fast überall auf}}\ A\},} O ( D ) {\displaystyle {\mathcal {O}}(D)} O ( D ) {\displaystyle {\mathcal {O}}(D)} u , v {\displaystyle u,v} ω ∈ O ( D ) {\displaystyle \omega \in {\mathcal {O}}(D)} u ω − 1 , v ω − 1 ∈ O ( D ) {\displaystyle u\omega ^{-1},v\omega ^{-1}\in {\mathcal {O}}(D)} a , b ∈ O ( D ) {\displaystyle a,b\in {\mathcal {O}}(D)} a u + b v = 1. {\displaystyle au+bv=1.} b ⊂ O ( D ) {\displaystyle {\mathfrak {b}}\subset {\mathcal {O}}(D)} O ( D ) {\displaystyle {\mathcal {O}}(D)} b ⊂ O ( D ) {\displaystyle {\mathfrak {b}}\subset {\mathcal {O}}(D)} b {\displaystyle {\mathfrak {b}}} b {\displaystyle {\mathfrak {b}}} b {\displaystyle {\mathfrak {b}}} f n ∈ b {\displaystyle f_{n}\in {\mathfrak {b}}} b {\displaystyle {\mathfrak {b}}} C {\displaystyle \mathbb {C} } C {\displaystyle \mathbb {C} } D , D ^ {\displaystyle D,{\widehat {D}}} C {\displaystyle \mathbb {C} } φ : O ( D ) → O ( D ^ ) {\displaystyle \varphi \colon {\mathcal {O}}(D)\to {\mathcal {O}}({\widehat {D}})} h : D ^ → D {\displaystyle h\colon {\widehat {D}}\to D} φ ( f ) = f ∘ h {\displaystyle \varphi (f)=f\circ h} f ∈ O ( D ) {\displaystyle f\in {\mathcal {O}}(D)} h = φ ( i d D ) ∈ O ( D ^ ) {\displaystyle h=\varphi (\mathrm {id} _{D})\in {\mathcal {O}}({\widehat {D}})} φ {\displaystyle \varphi } h {\displaystyle h} D {\displaystyle D} D ^ {\displaystyle {\widehat {D}}} O ( D ) ≅ O ( D ^ ) {\displaystyle {\mathcal {O}}(D)\cong {\mathcal {O}}({\widehat {D}})} C {\displaystyle \mathbb {C} } C {\displaystyle \mathbb {C} } φ : O ( D ) → O ( D ^ ) {\displaystyle \varphi \colon {\mathcal {O}}(D)\to {\mathcal {O}}({\widehat {D}})} ( f n ) n ∈ N ∈ O ( D ) {\displaystyle (f_{n})_{n\in \mathbb {N} }\in {\mathcal {O}}(D)} φ ( f n ) n ∈ N ∈ O ( D ^ ) {\displaystyle \varphi (f_{n})_{n\in \mathbb {N} }\in {\mathcal {O}}({\widehat {D}})} D {\displaystyle D} D ^ {\displaystyle {\widehat {D}}} φ : M ( D ) → M ( D ^ ) {\displaystyle \varphi \colon {\mathcal {M}}(D)\to {\mathcal {M}}({\widehat {D}})} C {\displaystyle \mathbb {C} } h ∈ O ( D ^ ) {\displaystyle h\in {\mathcal {O}}({\widehat {D}})} φ ( f ) = f ∘ h {\displaystyle \varphi (f)=f\circ h} n {\displaystyle n} a n {\displaystyle a_{n}} a n = O ( n A ) {\displaystyle a_{n}=O(n^{A})} A {\displaystyle A} s {\displaystyle s} Re ( s ) > A + 1 {\displaystyle \operatorname {Re} (s)>A+1} F ( s ) := ∑ n = 1 ∞ a n n s {\displaystyle F(s):=\sum _{n=1}^{\infty }{\frac {a_{n}}{n^{s}}}} σ 0 {\displaystyle \sigma _{0}} Re ( s ) > σ 0 {\displaystyle \operatorname {Re} (s)>\sigma _{0}} Re ( s ) > σ 0 {\displaystyle \operatorname {Re} (s)>\sigma _{0}} ζ ( s ) = ∑ n = 1 ∞ 1 n s , Re ( s ) > 1 , {\displaystyle \zeta (s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}},\qquad \operatorname {Re} (s)>1,} C ∖ { 1 } {\displaystyle \mathbb {C} \setminus \{1\}} { z ∈ C ∣ Im ( z ) > 0 } {\displaystyle \{z\in \mathbb {C} \mid \operatorname {Im} (z)>0\}} f {\displaystyle f} Γ ⊂ SL 2 ( Z ) {\displaystyle \Gamma \subset \operatorname {SL} _{2}(\mathbb {Z} )} Q ∪ { i ∞ } {\displaystyle \mathbb {Q} \cup \{i\infty \}} f ( z ) = ∑ n = 0 ∞ a n q n N , q := e 2 π i z {\displaystyle f(z)=\sum _{n=0}^{\infty }a_{n}q^{\frac {n}{N}},\qquad q:=e^{2\pi iz}} N {\displaystyle N} k ∈ Z {\displaystyle k\in \mathbb {Z} } a n {\displaystyle a_{n}} F ( q ) = ∑ n = 0 ∞ a n q n , {\displaystyle F(q)=\sum _{n=0}^{\infty }a_{n}q^{n},} | q | > 1 {\displaystyle |q|>1} a ( n ) {\displaystyle a(n)} e n δ {\displaystyle e^{n^{\delta }}} a n = 1 2 π i ∮ γ F ( q ) q n + 1 d q , {\displaystyle a_{n}={\frac {1}{2\pi i}}\oint _{\gamma }{\frac {F(q)}{q^{n+1}}}\mathrm {d} q,} n {\displaystyle n} r = r n {\displaystyle r=r_{n}} r n → 1 {\displaystyle r_{n}\to 1} n → ∞ {\displaystyle n\to \infty } a n {\displaystyle a_{n}} F ( q ) {\displaystyle F(q)} q = 1 {\displaystyle q=1} q = 1 {\displaystyle q=1} a n {\displaystyle a_{n}} F ( q ) {\displaystyle F(q)} q = 1 {\displaystyle q=1} a n {\displaystyle a_{n}} p {\displaystyle p} p ( n ) ∼ 1 4 3 n exp ( π 2 n 3 ) , n → ∞ . {\displaystyle p(n)\sim {\frac {1}{4{\sqrt {3}}n}}\exp \left(\pi {\sqrt {\frac {2n}{3}}}\right),\qquad n\to \infty .} ∑ n = 0 ∞ p ( n ) q n = ∏ n = 1 ∞ 1 1 − q n . {\displaystyle \sum _{n=0}^{\infty }p(n)q^{n}=\prod _{n=1}^{\infty }{\frac {1}{1-q^{n}}}.} p ( n ) {\displaystyle p(n)} D ⊆ C n {\displaystyle D\subseteq \mathbb {C} ^{n}} f : D → C {\displaystyle f\colon D\to \mathbb {C} } w = ( w 1 , … , w n ) ∈ D {\displaystyle w=(w_{1},\dotsc ,w_{n})\in D} Δ ( w ; r 1 , … , r n ) ⊂ D {\displaystyle \Delta (w;r_{1},\dotsc ,r_{n})\subset D} f ( z ) = ∑ k 1 , … , k n = 0 ∞ a k 1 , … , k n ( z 1 − w 1 ) k 1 ⋯ ( z n − w n ) k n {\displaystyle f(z)=\sum _{k_{1},\dotsc ,k_{n}=0}^{\infty }a_{k_{1},\dotsc ,k_{n}}(z_{1}-w_{1})^{k_{1}}\cdots (z_{n}-w_{n})^{k_{n}}} z ∈ Δ ( w ; r 1 , … , r n ) {\displaystyle z\in \Delta (w;r_{1},\dotsc ,r_{n})} z {\displaystyle z} a k 1 , … , k n ∈ C {\displaystyle a_{k_{1},\dotsc ,k_{n}}\in \mathbb {C} } f : D → C {\displaystyle f\colon D\to \mathbb {C} } j {\displaystyle j} z j {\displaystyle z_{j}} ∂ ∂ z j {\displaystyle \textstyle {\frac {\partial }{\partial z^{j}}}} ∂ ∂ z ¯ j {\displaystyle \textstyle {\frac {\partial }{\partial {\overline {z}}^{j}}}} f : D → C {\displaystyle f\colon D\to \mathbb {C} } D ⊆ C n {\displaystyle D\subseteq \mathbb {C} ^{n}} f {\displaystyle f} f {\displaystyle f} f {\displaystyle f} f {\displaystyle f} ∂ ∂ z ¯ j f = 0 {\displaystyle \textstyle {\frac {\partial }{\partial {\overline {z}}^{j}}}f=0} j = 1 , … , n {\displaystyle j=1,\dotsc ,n} f = ( f 1 , … , f m ) : D → C m {\displaystyle f=(f_{1},\dotsc ,f_{m})\colon D\to \mathbb {C} ^{m}} D ⊆ C n {\displaystyle D\subseteq \mathbb {C} ^{n}} f j : D → C {\displaystyle f_{j}\colon D\to \mathbb {C} } f : D → C m {\displaystyle f\colon D\to \mathbb {C} ^{m}} f : U → C {\displaystyle f\colon U\to \mathbb {C} } n {\displaystyle n} n {\displaystyle n}