Benutzer:Debenben/dezimalkomma/e
Zur Navigation springen
Zur Suche springen
a-c • d • e • f • g-i • j-p • q-s • t-z |
elwiki
[Bearbeiten | Quelltext bearbeiten]- w:el:Θεωρία πιθανοτήτων 48 P(B)=\frac{\#B}{\#\Omega}=\frac{\#\{1,2\}}{\#\{1, 2, 3, 4, 5, 6\}}=\frac26=0,333
- w:el:Πρώτος αριθμός 256 M_{50}=2^{77,232,917}-1
- w:el:Πρώτος αριθμός 259 M_{49}=2^{74,207,281}-1
- w:el:Πρώτος αριθμός 263 M_{48}=2^{57,885,161}-1
- w:el:Π (μαθηματική σταθερά) 74 11.0010,0100,0011,1111,0110,1010,1000,1000,1000,0101,1010,0011, ....
- w:el:Π (μαθηματική σταθερά) 75 3.243F,6A88,85A3,08D3,1319 ....
- w:el:Ατομικό βάρος 33 A_r=(34,968852\times75,77%)+(36,965902\times24,23%)\approx 35,45 g/mol
- w:el:Μέλαν σώμα 299 \alpha = 0,4818\times 10^{-10} s \cdot ^oC
- w:el:Μέλαν σώμα 300 b = 6,885\times 10^{-27} erg \cdot s
- w:el:Νόμος του Μπόιλ 30 R=8,314 \frac{Joule}{mole\cdot {}^o\!K}
- w:el:0,999... 16 0,\bar{9}
- w:el:0,999... 16 0,\dot{9}
- w:el:0,999... 38 \begin{align}0,\bar{9} &= 0,\bar{9}\\9 \times 0,\bar{9} &= 9 \times 0.\bar{9} \\9 \times 0,\bar{9} &= (10 - 1) \times 0,\bar{9} \\9 \times 0,\bar{9} &= 9,\bar{9} - 0,\bar{9}\\9 \times 0,\bar{9} &= 9 \\0,\bar{9} &= 1\end{align}
- w:el:0,999... 54 \begin{align}x &= 0,999\ldots \\10 x &= 9,999\ldots \\10 x - x &= 9,999\ldots - 0,999\ldots \\9 x &= 9 \\x &= 1\end{align}
- w:el:0,999... 63 b_0.b_1b_2b_3b_4b_5\dots
- w:el:0,999... 70 b_0 . b_1 b_2 b_3 b_4 \ldots = b_0 + b_1\left({\tfrac{1}{10}}\right) + b_2\left({\tfrac{1}{10}}\right)^2 + b_3\left({\tfrac{1}{10}}\right)^3 + b_4\left({\tfrac{1}{10}}\right)^4 + \cdots .
- w:el:0,999... 75 |r| < 1 \,\!
- w:el:0,999... 75 ar+ar^2+ar^3+\cdots = \frac{ar}{1-r}.
- w:el:0,999... 79 0,999\ldots = 9\left(\tfrac{1}{10}\right) + 9\left({\tfrac{1}{10}}\right)^2 + 9\left({\tfrac{1}{10}}\right)^3 + \cdots = \frac{9\left({\tfrac{1}{10}}\right)}{1-{\tfrac{1}{10}}} = 1.\,
- w:el:0,999... 86 0.999\ldots = \lim_{n\to\infty}0.\underbrace{ 99\ldots9 }_{n} = \lim_{n\to\infty}\sum_{k = 1}^n\frac{9}{10^k} = \lim_{n\to\infty}\left(1-\frac{1}{10^n}\right) = 1-\lim_{n\to\infty}\frac{1}{10^n} = 1.\,
- w:el:0,999... 103 x=b_0.b_1b_2b_3\dots
- w:el:0,999... 131 \begin{align}1-\left(\tfrac{1}{10}\right)^n\end{align}
- w:el:0,999... 133 \begin{align}\tfrac{a}{b}<1\end{align},
- w:el:0,999... 135 \begin{align}\tfrac{a}{b}<1-\left(\tfrac{1}{10}\right)^b\end{align}.
- w:el:0,999... 149 \left(1 - 0, 1 - {9 \over 10}, 1 - {99 \over 100}, \dots\right)= \left(1, {1 \over 10}, {1 \over 100}, \dots \right)
- w:el:0,999... 151 \lim_{n\rightarrow\infty}\frac{1}{10^n} = 0.
- w:el:0,999... 178 \begin{align}1-\left(\tfrac{1}{10}\right)^n\end{align}
- w:el:0,999... 180 \begin{align}\tfrac{a}{b}<1\end{align},
- w:el:0,999... 182 \begin{align}\tfrac{a}{b}<1-\left(\tfrac{1}{10}\right)^b\end{align}.
- w:el:0,999... 196 \left(1 - 0, 1 - {9 \over 10}, 1 - {99 \over 100}, \dots\right)= \left(1, {1 \over 10}, {1 \over 100}, \dots \right)
- w:el:0,999... 198 \lim_{n\rightarrow\infty}\frac{1}{10^n} = 0.
- w:el:0,999... 289 0.d_1d_2d_3 \dots;\dots d_{\infty - 1}d_\infty d_{\infty + 1}\dots,
- w:el:0,999... 295 \underset{H}{0.\underbrace{999\ldots}}\;=1\;-\;\frac{1}{10^{H}}.
- w:el:0,999... 324 \ldots999 = 9 + 9(10) + 9(10)^2 + 9(10)^3 + \cdots = \frac{9}{1-10} = -1.
- w:el:Περιοδικός αριθμός 223 \begin{align}2 x &= 0,333333\ldots\\ 10x &= 3,333333\ldots\\ 9x &= 3 \ \\ x &= 3/9 = 1/3 \end{align}
- w:el:Περιοδικός αριθμός 232 \begin{align} x &= 0,836363636\ldots\\ 10x &= 8,3636363636\ldots\\1000x &= 836,36363636\ldots\\ 990x &= 836,36363636\ldots - 8,36363636\ldots = 828 \ \\ x &= \frac{828}{990} = \frac{18 \times 46}{18 \times 55} = \frac{46}{55}.\end{align}
- w:el:Περιοδικός αριθμός 242 \begin{align} x &= 0,000000100000010000001\ldots \\ 10^7x &= 1,000000100000010000001\ldots \\ (10^7-1)x=9999999x &= 1 \\ x &= {1 \over 10^7-1} = {1 \over9999999}\end{align}
- w:el:Περιοδικός αριθμός 253 \begin{align}7,48181818\ldots & = 7.3 + 0,18181818\ldots \\[8pt]& = \frac{73}{10}+\frac{18}{99} = \frac{73}{10} + \frac{9\times2}{9\times 11}= \frac{73}{10} + \frac{2}{11} \\[12pt]& = \frac{11\times73 + 10\times2}{10\times 11} = \frac{823}{110}\end{align}
- w:el:Υγρασία ατμόσφαιρας 34 e_s(T)= 6,1094 \exp \left( \frac{17,625T}{T+243,04} \right)
- w:el:Νόμος Γκαι-Λυσάκ 22 R=8,314 \frac{Joule}{mole\cdot {}^o\!K}
- w:el:Καταστατική εξίσωση των ιδανικών αερίων 22 0,08205(atm \cdot L)/(mol \cdot K)
- w:el:Καταστατική εξίσωση των ιδανικών αερίων 22 8,314 (J)/(mol \cdot K)
- w:el:Καταστατική εξίσωση των ιδανικών αερίων 41 0,08205(atm \cdot L)/(mol \cdot K)
- w:el:Καταστατική εξίσωση των ιδανικών αερίων 41 8,314 (J)/(mol \cdot K)
- w:el:Νόμος του Σαρλ 20 R=8,314 \frac{Joule}{mole\cdot {}^o\!K}
- w:el:Συζήτηση:0,999... 18 \infty
- w:el:Συζήτηση:0,999... 18 \infty
- w:el:Δημόσιο χρέος 283 d=\dfrac{b_{0}(n-i)}{1+n}=\dfrac{1,20(0,01-0,07)}{1+0,01}=-0,071 =-7,1\%
- w:el:Δημόσιο χρέος 288 D=d*Y=-1.666*7,1\%=-118,286
- w:el:Πρώτος Μερσέν 20 M_{48}=2^{57,885,161}-1
- w:el:Γωνία πρόσπτωσης Μπρούστερ 18 n\approx1,333
- w:el:Γωνία πρόσπτωσης Μπρούστερ 49 n=1,333
- w:el:Νόμος των πραγματικά μεγάλων αριθμών 20 0,999^{1000}
- w:el:Νόμος των πραγματικά μεγάλων αριθμών 20 1 - 0,999^{10000} = 0,99995 = 99,999 %
- w:el:Χρονική αξία του χρήματος 196 FV \ = \ 45 \cdot (1+3%)^3 + 45 \cdot (1+3%)^2 + 45 \cdot (1+3%)^1 + 45 \cdot (1+3%)^0 = 45 \cdot 1,0927 + 45 \cdot 1,0609 + 45 \cdot 1,03 + 45 = 188,26
- w:el:Χρονική αξία του χρήματος 222 \frac{1 - (1+8%)^{-10}}{8%} = 6,7101
- w:el:Χρονική αξία του χρήματος 226 90 \cdot 6,7101 = 603,91
- w:el:Χρονική αξία του χρήματος 237 \frac{(1+7%)^20 - 1}{7%} = 40,9955
- w:el:Χρονική αξία του χρήματος 241 80 \cdot 40,9955 = 3.279,64
- w:el:Δειγματοληψία σήματος 25 f_s=\frac{1}{0,001}=1000 Hz
- w:el:Δειγματοληψία σήματος 33 T = \frac{1}{f_s} = \frac{1}{1000} = 0,001 sec
- w:el:Προϋπολογισμός κεφαλαίου 148 109.090,09 = {147.900 \over (1+MIRR)^4} \Rightarrow MIRR = 0,07905 \simeq 8%
- w:el:Οκτάεδρο 38 R = \frac{\sqrt{2}}{2}\alpha \approx 0,707 \alpha
- w:el:Οκτάεδρο 40 r = \frac{\sqrt{6}}{6}\alpha \approx 0,408 \alpha
- w:el:Οκτάεδρο 44 S = 2\sqrt{3}\alpha^2 \approx 3,464 \alpha^2
- w:el:Οκτάεδρο 46 V = \frac{\sqrt{2}}{3}\alpha^3 \approx 0,471 \alpha^3
- w:el:Εικοσάεδρο 40 R = \frac{a}{2} \sqrt{\phi \sqrt{5}} = \frac{1}{4}\sqrt{(10+2\sqrt{5})}\alpha \approx 0,951 \alpha
- w:el:Εικοσάεδρο 42 r = \frac{\phi^2 a}{2 \sqrt{3}} = \frac{\sqrt{3}}{12}(3+\sqrt{5})\alpha \approx 0,756 \alpha
- w:el:Εικοσάεδρο 44 \rho = \frac{a \phi}{2} = \frac{1}{4}(1+\sqrt{5})\alpha \approx 0,809 \alpha
- w:el:Εικοσάεδρο 48 V = \frac{5}{12}(3+\sqrt{5})\alpha^3 \approx 2,182 \alpha^3
- w:el:Δωδεκάεδρο 44 R = \frac{\sqrt{3}}{2} \phi\alpha = \frac{\sqrt{3}}{4}(1+\sqrt{5})\alpha \approx 1,401 \alpha
- w:el:Δωδεκάεδρο 46 r = \frac{\phi^2}{2 \sqrt{3-\phi}} \alpha = \frac{1}{20}\sqrt{(10(25+11\sqrt{5})}\alpha \approx 1,114 \alpha
- w:el:Δωδεκάεδρο 48 \rho = \frac{\phi^2}{2} \alpha = \frac{1}{4}(3+\sqrt{5})\alpha \approx 1,309 \alpha
- w:el:Δωδεκάεδρο 50 S = 3\sqrt{25+10\sqrt{5}}\alpha^2 \approx 20,646 \alpha^2
- w:el:Δωδεκάεδρο 52 V = \frac{1}{4}(15+7\sqrt{5})\alpha^3 \approx 7,663 \alpha^3
- w:el:Κόλουρο τετράεδρο 37 R = \frac{1}{4}\sqrt{22}\alpha \approx 1,173 \alpha
- w:el:Κόλουρο τετράεδρο 39 \rho = \frac{3}{4}\sqrt{2}\alpha \approx 1,061 \alpha
- w:el:Κόλουρο τετράεδρο 41 r_3 = \frac{5}{12}\sqrt{6}\alpha \approx 1,021 \alpha
- w:el:Κόλουρο τετράεδρο 43 r_6 = \frac{1}{4}\sqrt{6}\alpha \approx 0,612 \alpha
- w:el:Κόλουρο τετράεδρο 45 S = 7\sqrt{3}\alpha^2 \approx 12,124 \alpha^2
- w:el:Κόλουρο τετράεδρο 47 V = \frac{23}{12}\sqrt{2}\alpha^3 \approx 2,711 \alpha^3
- w:el:Κυβοκτάεδρο 40 \rho = \frac{1}{2}\sqrt{3}\alpha \approx 0,866 \alpha
- w:el:Κυβοκτάεδρο 42 r_3 = \frac{1}{3}\sqrt{6}\alpha \approx 0,816 \alpha
- w:el:Κυβοκτάεδρο 44 r_4 = \frac{1}{2}\sqrt{2}\alpha \approx 0,707 \alpha
- w:el:Κυβοκτάεδρο 46 S = \left(6+2\sqrt{3}\right)\alpha^2 \approx 9,464 \alpha^2
- w:el:Κυβοκτάεδρο 48 V = \frac{5}{3}\sqrt{2}\alpha^3 \approx 2,357 \alpha^3
- w:el:Κόλουρος κύβος 36 R = \frac{1}{2}\sqrt{7+4\sqrt{2}}\alpha \approx 1,779 \alpha
- w:el:Κόλουρος κύβος 38 \rho = \frac{1}{2}\left(2+\sqrt{2}\right)\alpha \approx 1,707 \alpha
- w:el:Κόλουρος κύβος 40 r_3 = \frac{1}{2}\sqrt{\frac{1}{3}\left(17+12\sqrt{2}\right)}\alpha \approx 1,683 \alpha
- w:el:Κόλουρος κύβος 42 r_8 = \frac{1}{2}\left(1+\sqrt{2}\right)\alpha \approx 1,207 \alpha
- w:el:Κόλουρος κύβος 44 S = 2\left(6+6\sqrt{2}+\sqrt{3}\right)\alpha^2 \approx 32,435 \alpha^2
- w:el:Κόλουρο οκτάεδρο 36 R = \frac{1}{2}\sqrt{10}\alpha \approx 1,581 \alpha
- w:el:Κόλουρο οκτάεδρο 40 r_4 = \sqrt{2}\alpha \approx 1,414 \alpha
- w:el:Κόλουρο οκτάεδρο 42 r_6 = \frac{1}{2}\sqrt{6}\alpha \approx 1,225 \alpha
- w:el:Κόλουρο οκτάεδρο 44 S = \left(6+12\sqrt{3}\right)\alpha^2 \approx 26,785 \alpha^2
- w:el:Κόλουρο οκτάεδρο 46 V = 8\sqrt{2}\alpha^3 \approx 11,314 \alpha^3
- w:el:Εικοσιδωδεκάεδρο 38 R = \phi\alpha \approx 1,618 \alpha
- w:el:Εικοσιδωδεκάεδρο 40 \rho = \frac{1}{2}\sqrt{5+2\sqrt{5}}\alpha \approx 1,539 \alpha
- w:el:Εικοσιδωδεκάεδρο 42 r_3 = \sqrt{\frac{1}{6}\left(7+3\sqrt{5}\right)}\alpha \approx 1,512 \alpha
- w:el:Εικοσιδωδεκάεδρο 44 r_5 = \sqrt{\frac{1}{5}\left(5+2\sqrt{5}\right)}\alpha \approx 1,376 \alpha
- w:el:Εικοσιδωδεκάεδρο 46 S = \left(5\sqrt{3}+3\sqrt{25+10\sqrt{5}}\right)\alpha^2 \approx 29,306 \alpha^2
- w:el:Εικοσιδωδεκάεδρο 48 V = \frac{1}{6}\left(45+17\sqrt{5}\right)\alpha^3 \approx 13,834 \alpha^3
- w:el:Κόλουρο δωδεκάεδρο 36 R = \frac{1}{4}\sqrt{74+30\sqrt{5}}\alpha \approx 2,969 \alpha
- w:el:Κόλουρο δωδεκάεδρο 38 \rho = \frac{1}{4}\left(5+3\sqrt{5}\right)\alpha \approx 2,927 \alpha
- w:el:Κόλουρο δωδεκάεδρο 40 r_3 = \frac{1}{12}\sqrt{3}\left(9+5\sqrt{5}\right)\alpha \approx 2,913 \alpha
- w:el:Κόλουρο δωδεκάεδρο 44 S = 5\left(\sqrt{3}+6\sqrt{5+2\sqrt{5}}\right)\alpha^2 \approx 100,991 \alpha^2
- w:el:Κόλουρο εικοσάεδρο 43 R = \frac{1}{2}\sqrt{9\phi+10}\alpha \approx 2,478 \alpha
- w:el:Κόλουρο εικοσάεδρο 45 \rho = \frac{3}{4}\left(1+\sqrt{5}\right)\alpha \approx 2,427 \alpha
- w:el:Κόλουρο εικοσάεδρο 47 r_5 = \frac{1}{2}\sqrt{\frac{1}{10}\left(125+41\sqrt{5}\right)}\alpha \approx 2,327 \alpha
- w:el:Κόλουρο εικοσάεδρο 49 r_6 = \frac{1}{2}\sqrt{\frac{3}{2}\left(7+3\sqrt{5}\right)}\alpha \approx 2,267 \alpha
- w:el:Κόλουρο εικοσάεδρο 51 S = 3\left(10\sqrt{3}+\sqrt{5}\sqrt{5+2\sqrt{5}}\right)\alpha^2 \approx 72,607 \alpha^2
- w:el:Κόλουρο εικοσάεδρο 53 V = \frac{1}{4}\left(125+43\sqrt{5}\right)\alpha^3 \approx 55,288 \alpha^3
- w:el:Ρομβοκυβοκτάεδρο 40 R = \frac{1}{2}\sqrt{5+2\sqrt{2}}\alpha \approx 1,399 \alpha
- w:el:Ρομβοκυβοκτάεδρο 42 \rho = \frac{1}{2}\sqrt{4+2\sqrt{2}}\alpha \approx 1,307 \alpha
- w:el:Ρομβοκυβοκτάεδρο 44 r_3 = \frac{1}{2}\sqrt{\frac{1}{3}\left(11+6\sqrt{2}\right)}\alpha \approx 1,274 \alpha
- w:el:Ρομβοκυβοκτάεδρο 46 r_4 = \frac{1}{2}\left(1+\sqrt{2}\right)\alpha \approx 1,207 \alpha
- w:el:Ρομβοκυβοκτάεδρο 48 S = \left(18+2\sqrt{3}\right)\alpha^2 \approx 21,464 \alpha^2
- w:el:Ρομβοκυβοκτάεδρο 50 V = \frac{1}{3}\left(12+10\sqrt{2}\right)\alpha^3 \approx 8,714 \alpha^3
- w:el:Ρομβοεικοσιδωδεκάεδρο 38 R = \frac{1}{2}\sqrt{11+4\sqrt{5}}\alpha \approx 2,233 \alpha
- w:el:Ρομβοεικοσιδωδεκάεδρο 40 \rho = \frac{1}{2}\sqrt{10+4\sqrt{5}}\alpha \approx 2,176 \alpha
- w:el:Ρομβοεικοσιδωδεκάεδρο 42 S = \left(30+5\sqrt{3}+ 3\sqrt{25+10\sqrt{5}}\right)\alpha^2 \approx 59,306 \alpha^2
- w:el:Ρομβοεικοσιδωδεκάεδρο 44 V = \frac{1}{3}\left(60+29\sqrt{5}\right)\alpha^3 \approx 41,615 \alpha^3
- w:el:Κόλουρο κυβοκτάεδρο 38 R = \frac{1}{2}\sqrt{13+6\sqrt{2}}\alpha \approx 2,318 \alpha
- w:el:Κόλουρο κυβοκτάεδρο 40 \rho = \frac{1}{2}\sqrt{12+6\sqrt{2}}\alpha \approx 2,263 \alpha
- w:el:Κόλουρο κυβοκτάεδρο 42 r_4 = \frac{1}{2}\left(3+\sqrt{2}\right)\alpha \approx 2,207 \alpha
- w:el:Κόλουρο κυβοκτάεδρο 44 r_6 = \frac{1}{2}\sqrt{9+6\sqrt{2}}\alpha \approx 2,091 \alpha
- w:el:Κόλουρο κυβοκτάεδρο 46 r_8 = \frac{1}{2}\left(1+2\sqrt{2}\right)\alpha \approx 1,914 \alpha
- w:el:Κόλουρο κυβοκτάεδρο 48 S = 12\left(2+\sqrt{2}+\sqrt{3}\right)\alpha^2 \approx 61,755 \alpha^2
- w:el:Κόλουρο κυβοκτάεδρο 50 V = \left(22+14\sqrt{2}\right)\alpha^3 \approx 41,799 \alpha^3
- w:el:Κόλουρο εικοσιδωδεκάεδρο 39 R = \frac{1}{2}\sqrt{31+12\sqrt{5}}\alpha \approx 3,802 \alpha
- w:el:Κόλουρο εικοσιδωδεκάεδρο 41 \rho = \sqrt{\frac{15}{2}+3\sqrt{5}}\alpha \approx 3,769 \alpha
- w:el:Κόλουρο εικοσιδωδεκάεδρο 43 S = 30\left(1+\sqrt{3}+\sqrt{5+2\sqrt{5}}\right)\alpha^2 \approx 174,292 \alpha^2
- w:el:Κόλουρο εικοσιδωδεκάεδρο 45 V = \left(95+50\sqrt{5}\right)\alpha^3 \approx 206,803 \alpha^3
- w:el:Πεπλατυσμένος κύβος 38 R = \sqrt{\frac{3-t}{4(2-t)}}\alpha \approx 1,344 \alpha
- w:el:Πεπλατυσμένος κύβος 40 \rho = \sqrt{\frac{1}{4(2-t)}}\alpha \approx 1,247 \alpha
- w:el:Πεπλατυσμένος κύβος 42 r_3 = \sqrt{\frac{t+1}{12(2-t)}}\alpha \approx 1,213 \alpha
- w:el:Πεπλατυσμένος κύβος 44 r_4 = \sqrt{\frac{1-t}{4(t-2)}}\alpha \approx 1,143 \alpha
- w:el:Πεπλατυσμένος κύβος 46 S = \left(6+8\sqrt{3}\right)\alpha^2 \approx 19,856 \alpha^2
- w:el:Πεπλατυσμένος κύβος 48 V = \sqrt{\frac{613t+203}{9(35t-62)}}\alpha^3 \approx 7,889 \alpha^3
- w:el:Πεπλατυσμένος κύβος 51 t = \frac{1}{3}\left(1+\sqrt[3]{19-3\sqrt{33}}+\sqrt[3]{19+3\sqrt{33}}\right) \approx 1,83929
- w:el:Πεπλατυσμένο δωδεκάεδρο 38 R \approx 2,15583737 \alpha
- w:el:Πεπλατυσμένο δωδεκάεδρο 40 \rho \approx 2,09705383 \alpha
- w:el:Πεπλατυσμένο δωδεκάεδρο 42 S = \left(20\sqrt{3}+3\sqrt{25+10\sqrt{5}}\right)\alpha^2 \approx 55,287 \alpha^2
- w:el:Πεπλατυσμένο δωδεκάεδρο 44 V = \frac{12\xi^2(3\phi+1)-\xi(36\phi+7)-(53\phi+6)}{6\sqrt{3-\xi^2}^3}\alpha^3 \approx 37,61665 \alpha^3
- w:el:Πεπλατυσμένο δωδεκάεδρο 49 \phi = \frac{1+\sqrt{5}}{2} \approx 1,6180339
- w:el:Πεπλατυσμένο δωδεκάεδρο 51 \xi = \sqrt[3]{\frac{\phi}{2}+\frac{1}{2}\sqrt{\phi-\frac{5}{27}}}+\sqrt[3]{\frac{\phi}{2}-\frac{1}{2}\sqrt{\phi-\frac{5}{27}}} \approx 1,7155615
- w:el:2-μεθυλεξάνιο 372 \mathrm{CH_3CH_2CH_2CH_2CH(CH_3)_2 + Cl^\bullet \xrightarrow{} 0,082(CH_3)_2CH_2CH_2CH_2CH_2CH_2^\bullet + 0,207(CH_3)_2CHCH_2CH_2CH^\bullet CH_3 + 0,207(CH_3)_2CHCH_2CH^\bullet CH_2CH_3 + 0,207(CH_3)_2CHCH^\bullet CH_2CH_2CH_3 + 0,136 CH_3CH_2CH_2CH_2C^\bullet (CH_3)_2 + 0,163 CH_3CH_2CH_2CH_2CH(CH_3)CH_2^\bullet + HCl + 14 kJ}
- w:el:3-μεθυλεξάνιο 389 \mathrm{CH_3CH_2CH_2CH(CH_3)CH_2CH_3 + Cl^\bullet \xrightarrow{} 0,082CH_3CH_2CH_2CH(CH_3)CH_2CH_2^\bullet + 0,207CH_3CH_2CH_2CH(CH_3)CH^\bullet CH_3 + 0,136CH_3CH_2CH_2C^\bullet (CH_3)CH_2CH_3 + 0,207CH_3CH_2CH^\bullet CH(CH_3)CH_2CH_3 + 0,207 CH_3CH^\bullet CH_2CH(CH_3)CH_2CH_3 + 0,082 ^\bullet CH_2CH_2CH_2CH(CH_3)CH_2CH_3 + 0,082 CH_3CH_2CH_2CH(CH_2^\bullet )CH_2CH_3 + HCl + 14 kJ}
- w:el:1-βρωμοπροπάνιο 157 \mathrm{CH_3CH_2CH_3 + Br_2 \xrightarrow[\triangle]{UV} 0,035CH_3CH_2CH_2Br + 0,965CH_3CHBrCH_3 + HBr}
- w:el:2-βρωμοπροπάνιο 156 \mathrm{CH_3CH_2CH_3 + Br_2 \xrightarrow[\triangle]{UV} 0,035CH_3CH_2CH_2Br + 0,965CH_3CHBrCH_3 + HBr}
- w:el:Αριθμητική ανάλυση 176 f(500)=500(\sqrt{501}-\sqrt{500})=500(22,3830-22,3607)=500(0,0223)=11,1500
- w:el:Αριθμητική ανάλυση 183 \begin{alignat}{3}g(500)&=\frac{500}{\sqrt{501}+\sqrt{500}}\\ &=\frac{500}{22,3830+22,3607}\\ &=\frac{500}{44,7437}=11,1748\end{alignat}
- w:el:Εξάγωνο 26 E = \frac{3 \sqrt{3}}{2}a^2 \simeq 2,59807621135 a^2.
- w:el:Εξάγωνο 30 E = \frac{ \sqrt{3}}{2} d^2 \simeq 0,8660254038 d^2.
- w:el:Επτάγωνο 17 E = \frac{7}{4}a^2 \cot \frac{\pi}{7} \simeq 3,633912444 a^2.
- w:el:Επτάγωνο 20 \scriptstyle {2\cos{\tfrac{2\pi}{7}} \approx 1,247}
- w:el:Οκτάγωνο 20 E = 2 \cot \frac{\pi}{8} a^2 = 2(1+\sqrt{2})a^2 \simeq 4,828427125 a^2.
- w:el:Οκτάγωνο 24 E = 4 \sin \frac{\pi}{4} R^2 = 2\sqrt{2}R^2 \simeq 2,828427 R^2
- w:el:Οκτάγωνο 27 E = 8 \tan \frac{\pi}{8} r^2 = 8(\sqrt{2}-1)r^2 \simeq 3,3137085 r^2.
- w:el:Οκτάγωνο 38 S \approx 2,414a
- w:el:Εννεάγωνο 19 E = \frac{9}{4}a^2\cot\frac{\pi}{9}\simeq6,18182\,a^2.
- w:el:Δεκάγωνο 21 E = \frac{5}{2}a^2 \cot \frac{\pi}{10} = \frac{5a^2}{2} \sqrt{5+2\sqrt{5}} \simeq 7,694208843 a^2.
- w:el:Ενδεκάγωνο 21 E = \frac{11}{4}a^2 \cot \frac{\pi}{11} \simeq 9,36564\,a^2.
- w:el:Δωδεκάγωνο 25 \begin{align} E & = 3 \cot\left(\frac{\pi}{12} \right) a^2 = 3 \left(2+\sqrt{3} \right) a^2 \\ & \simeq 11,19615242\,a^2. \end{align}
- w:el:Δωδεκάγωνο 36 \begin{align} E & = 12 \tan\left(\frac{\pi}{12}\right) r^2 = 12 \left(2-\sqrt{3} \right) r^2 \\ & \simeq 3,2153903\,r^2. \end{align}
- w:el:Δεκατετράγωνο 19 E = \frac{7}{2} a^2 \cot\left(\frac{\pi}{14} \right) \simeq 15,3345\,a^2.
- w:el:Δεκαπεντάγωνο 25 \begin{align} E & = \frac{15}{4}a^2 \cot \frac{\pi}{15} \\ & = \frac{15a^2}{8} \left( \sqrt{3}+\sqrt{15}+ \sqrt{2}\sqrt{5+\sqrt{5}} \right) \\ & \simeq 17,6424\,a^2. \end{align}
- w:el:24 (αριθμός) 30 \mathrm{ {}^224 = 24 \uparrow\uparrow 2 = 24^{24} \simeq 1,3337357768502841244490814728438 \cdot 10^{33}}
- w:el:25 (αριθμός) 26 \mathrm{ {}^225 = 25 \uparrow\uparrow 2 = 25^{25} \simeq 8,8817841970012523233890533447266 \cdot 10^{34}}
- w:el:26 (αριθμός) 26 \mathrm{ {}^226 = 26 \uparrow\uparrow 2 = 26^{26} \simeq 6,1561195802071573107966742884002 \cdot 10^{36}}
- w:el:44 (αριθμός) 23 \mathrm{44! = \prod_{i=1}^{44} i \simeq 2,6582715747884487680436258110146 \cdot 10^{54}}
- w:el:44 (αριθμός) 24 \mathrm{ {}^244 = 44 \uparrow\uparrow 2 = 44^{44} \simeq 2,0507738235606100536452056091724 \cdot 10^{72}}
- w:el:30 (αριθμός) 25 \mathrm{30! = \prod_{i=1}^{30} i \simeq 2,6525285981219105863630848 \cdot 10^{32}}
- w:el:30 (αριθμός) 26 \mathrm{ {}^230 = 30 \uparrow\uparrow 2 = 30^{30} \simeq 2,05891132094649 \cdot 10^{44}}
- w:el:28 (αριθμός) 25 \mathrm{ {}^228 = 28 \uparrow\uparrow 2 = 28^{28} \simeq 3,3145523113253374862572728253365 \cdot 10^{40}}
- w:el:49 (αριθμός) 25 \mathrm{49! = \prod_{i=1}^{49} i \simeq 6,082818640342675608722521633213 \cdot 10^{62}}
- w:el:49 (αριθμός) 26 \mathrm{ {}^249 = 49 \uparrow\uparrow 2 = 49^{49} \simeq 6,6009724686219550843768321818372 \cdot 10^{82}}
- w:el:63 (αριθμός) 24 \mathrm{63! = \prod_{i=1}^{63} i \simeq 1,9826083154044400641161467083619 \cdot 10^{87}}
- w:el:63 (αριθμός) 25 \mathrm{ {}^263 = 63 \uparrow\uparrow 2 = 63^{63} \simeq 2,2827303634696704497990051233717 \cdot 10^{113}}
- w:el:77 (αριθμός) 24 \mathrm{77! = \prod_{i=1}^{77} i \simeq 1,4518309202828586963407078408631 \cdot 10^{113}}
- w:el:77 (αριθμός) 25 \mathrm{ {}^277 = 77 \uparrow\uparrow 2 = 77^{77} \simeq 1,8188037387806198379277339915557 \cdot 10^{145}}
- w:el:84 (αριθμός) 26 \mathrm{84! = \prod_{i=1}^{84} i \simeq 3,3142401345653532669993875791301 \cdot 10^{126}}
- w:el:84 (αριθμός) 27 \mathrm{ {}^284 = 84 \uparrow\uparrow 2 = 84^{84} \simeq 4,3597343682732552236027988140691 \cdot 10^{161}}
- w:el:Δεκαεπτάγωνο 19 E = \frac{17}{4} a^2 \cot\left(\frac{\pi}{17} \right) \simeq 22,7355\,a^2.
- w:el:Δεκαοκτάγωνο 19 E = \frac{18}{4} a^2 \cot\left(\frac{\pi}{18} \right) \simeq 25,5208\,a^2.
- w:el:100 (αριθμός) 27 \mathrm{100! = \prod_{i=1}^{100} i \simeq 9,3326215443944152681699238856267 \cdot 10^{157}}
- w:el:Δεκαεννεάγωνο 25 \simeq 28,4652\,a^2.
- w:el:91 (αριθμός) 24 \mathrm{91! = \prod_{i=1}^{91} i \simeq 1,352001527678402962551665687595 \cdot 10^{140}}
- w:el:91 (αριθμός) 25 \mathrm{ {}^291 = 91 \uparrow\uparrow 2 = 91^{91} \simeq 1,8739875497044403588343023979942 \cdot 10^{178}}
- w:el:112 (αριθμός) 26 \mathrm{112! = \prod_{i=1}^{112} i \simeq 1,9745068572210740235368203727599 \cdot 10^{182}}
- w:el:112 (αριθμός) 27 \mathrm{ {}^2112 = 112 \uparrow\uparrow 2 = 112^{112} \simeq 3,2540074211370950656789473230002 \cdot 10^{229}}
- w:el:119 (αριθμός) 27 \mathrm{119! = \prod_{i=1}^{119} i \simeq 5,574585761207605881323431711742 \cdot 10^{196}}
- w:el:119 (αριθμός) 28 \mathrm{ {}^2119 = 119 \uparrow\uparrow 2 = 119^{119} \simeq 9,7743616924752409570659688583626 \cdot 10^{246}}
- w:el:126 (αριθμός) 26 \mathrm{126! = \prod_{i=1}^{126} i \simeq 2,3721732428800468856771473051394 \cdot 10^{211}}
- w:el:126 (αριθμός) 27 \mathrm{ {}^2126 = 126 \uparrow\uparrow 2 = 126^{126} \simeq 4,43290766022078214919725745717 \cdot 10^{264}}
- w:el:133 (αριθμός) 27 \mathrm{133! = \prod_{i=1}^{133} i \simeq 9,7743616924752409570659688583626 \cdot 10^{246}}
- w:el:133 (αριθμός) 28 \mathrm{ {}^2133 = 133 \uparrow\uparrow 2 = 133^{133} \simeq 2,9666632286057296132596562069699 \cdot 10^{282}}
- w:el:140 (αριθμός) 28 \mathrm{140! = \prod_{i=1}^{140} i \simeq 1,3462012475717524605876073858942 \cdot 10^{241}}
- w:el:140 (αριθμός) 29 \mathrm{ {}^2140 = 140 \uparrow\uparrow 2 = 140^{140} \simeq 2,870284825233255143293425779773 \cdot 10^{300}}
- w:el:147 (αριθμός) 23 \mathrm{147! = \prod_{i=1}^{147} i \simeq 1,7272458904546389112034986593086 \cdot 10^{256}}
- w:el:147 (αριθμός) 24 \mathrm{ {}^2147 = 147 \uparrow\uparrow 2 = 147^{147} \simeq 3,9413790878674429330382110219545 \cdot 10^{318}}
- w:el:161 (αριθμός) 24 \mathrm{161! = \prod_{i=1}^{161} i \simeq 7,5907050539472187290751785709367 \cdot 10^{286}}
- w:el:161 (αριθμός) 25 \mathrm{ {}^2161 = 161 \uparrow\uparrow 2 = 161^{161} \simeq 1,9905176879683043899369361033468 \cdot 10^{355}}
- w:el:168 (αριθμός) 25 \mathrm{168! = \prod_{i=1}^{168} i \simeq 2,5260757449731983875380188691713 \cdot 10^{302}}
- w:el:168 (αριθμός) 26 \mathrm{ {}^2168 = 168 \uparrow\uparrow 2 = 168^{168} \simeq 7,1114691428439854365612952493935 \cdot 10^{373}}
- w:el:175 (αριθμός) 23 \mathrm{175! = \prod_{i=1}^{175} i \simeq 1,1244494910857363283041099386422 \cdot 10^{318}}
- w:el:175 (αριθμός) 24 \mathrm{ {}^2175 = 175 \uparrow\uparrow 2 = 175^{175} \simeq 3,4014063652936543275616967171247 \cdot 10^{392}}
- w:el:182 (αριθμός) 23 \mathrm{182! = \prod_{i=1}^{182} i \simeq 6,6179180908464820992992909401093 \cdot 10^{333}}
- w:el:182 (αριθμός) 24 \mathrm{ {}^2182 = 182 \uparrow\uparrow 2 = 182^{182} \simeq 2,1527451193549710109337838547648 \cdot 10^{411}}
- w:el:196 (αριθμός) 26 \mathrm{196! = \prod_{i=1}^{196} i \simeq 5,0801221108670467625027357853474 \cdot 10^{365}}
- w:el:196 (αριθμός) 27 \mathrm{ {}^2196 = 196 \uparrow\uparrow 2 = 196^{196} \simeq 1,9150935159888973927527129247496 \cdot 10^{449}}
- w:el:203 (αριθμός) 24 \mathrm{203! = \prod_{i=1}^{203} i \simeq 6,5002806063412804771223093960511 \cdot 10^{381}}
- w:el:203 (αριθμός) 25 \mathrm{ {}^2203 = 203 \uparrow\uparrow 2 = 203^{203} \simeq 2,6405579097166994998981606040011 \cdot 10^{468}}
- w:el:210 (αριθμός) 25 \mathrm{210! = \prod_{i=1}^{210} i \simeq 1,0582362029223656378427428424335 \cdot 10^{398}}
- w:el:210 (αριθμός) 26 \mathrm{ {}^2210 = 210 \uparrow\uparrow 2 = 210^{210} \simeq 4,6350230061129974777770556306279 \cdot 10^{487}}
- w:el:217 (αριθμός) 24 \mathrm{217! = \prod_{i=1}^{217} i \simeq 2,1744341135827053912861801359536 \cdot 10^{414}}
- w:el:217 (αριθμός) 25 \mathrm{ {}^2217 = 217 \uparrow\uparrow 2 = 217^{217} \simeq 1,0274536637851637031004828138382 \cdot 10^{507}}
- w:el:Επίθεση του Wiener 68 \left \langle N,e\right \rangle = \left \langle 90581,17993\right \rangle
- w:el:Φυσικός λογάριθμος 15 2,718281828459
- w:el:Ρομβικό τριακοντάεδρο 58 S = a^2 \cdot 12\sqrt{5} \approx 26,8328 \cdot a^2
- w:el:Ρομβικό τριακοντάεδρο 60 V = a^3 \cdot 4\sqrt{5+2\sqrt{5}} \approx 12,3107 \cdot a^3
- w:el:Ρομβικό τριακοντάεδρο 62 r_i = a \cdot \frac{\varphi^2}{\sqrt{1 + \varphi^2}} = a \cdot \sqrt{1 + \frac{2}{\sqrt{5}}} \approx 1,37638 \cdot a,
- w:el:Ρομβικό τριακοντάεδρο 64 r_m = a \cdot \left(1+\frac{1}{\sqrt5{}}\right) \approx 1,44721 \cdot a
- w:el:Ηλιακή μάζα 15 M_\odot = (1,98855 \pm 0,00025)\times 10^{30}
- w:el:Εξαφθοριούχο βολφράμιο 135 \mathrm{log_{10}P = 4,55569 - \frac{1021,208}{T+208,45}}
- w:el:Τριάκις τετράεδρο 35 S = \frac{5}{3}\sqrt{11} \approx 5,528
- w:el:Τριάκις τετράεδρο 37 V = \frac{25}{36}\sqrt{2} \approx 0,982
- w:el:Τριάκις οκτάεδρο 35 S = 3\sqrt{7+4\sqrt{2}} \approx 10,673
- w:el:Τριάκις οκτάεδρο 37 V = \frac{3+2\sqrt{2}}{2} \approx 2,914
- w:el:Τετράκις εξάεδρο 35 S = \frac{16}{3}\sqrt{5} \approx 11,926
- w:el:Τετράκις εξάεδρο 37 V = \frac{32}{9} \approx 3,556
- w:el:Πεντάκις δωδεκάεδρο 36 S = \frac{5}{3}\sqrt{\frac{421 + 63\sqrt{5}}{2}} \approx 27,935
- w:el:Πεντάκις δωδεκάεδρο 38 V = \frac{5}{36}(41 + 25\sqrt{5}) \approx 13,459
- w:el:Ρομβικό δωδεκάεδρο 48 S = 8\sqrt{2} \approx 11,314
- w:el:Ρομβικό δωδεκάεδρο 50 V = \frac{16}{9}\sqrt{3} \approx 3,079
- w:el:Ρομβικό δωδεκάεδρο 52 R = \frac{2}{3}\sqrt{3} \approx 1,155
- w:el:Ρομβικό δωδεκάεδρο 54 \rho = \frac{2}{3}\sqrt{2} \approx 0,943
- w:el:Ρομβικό δωδεκάεδρο 56 r = \frac{1}{3}\sqrt{6} \approx 0,816
- w:el:Δισδυάκις δωδεκάεδρο 37 S = \frac{6}{7}\sqrt{783 + 436\sqrt{2}} \approx 32,067
- w:el:Δισδυάκις δωδεκάεδρο 39 V = \frac{1}{7}\sqrt{3(2194 + 1513\sqrt{2})} \approx 16,289
- w:el:Δισδυάκις τριακοντάεδρο 39 S = \frac{3}{5}\sqrt{10(1257+541\sqrt{5})} \approx 94,235
- w:el:Δισδυάκις τριακοντάεδρο 41 V = \frac{1}{5}\sqrt{6(14765+6602\sqrt{5})} \approx 84,182
- w:el:Δελτοειδές εικοσιτετράεδρο 37 S = 6\sqrt{29 - 2\sqrt{2}} \approx 30,695
- w:el:Δελτοειδές εικοσιτετράεδρο 39 V = \sqrt{122 + 71\sqrt{2}} \approx 14,913
- w:el:Δελτοειδές εξηκοντάεδρο 38 S = \sqrt{10(437+185\sqrt{5})} \approx 92,232
- w:el:Δελτοειδές εξηκοντάεδρο 40 V = \frac{1}{3}\sqrt{2(14765+6602\sqrt{5})} \approx 81,004
- w:el:Πενταγωνικό εικοσιτετράεδρο 35 t = \frac{1}{3}\left(1+\sqrt[3]{19-3\sqrt{33}}+\sqrt[3]{19+3\sqrt{33}}\right) \approx 1,8393
- w:el:Πενταγωνικό εικοσιτετράεδρο 38 s_1 = \frac{1}{\sqrt{t + 1}} \approx 0,5935
- w:el:Πενταγωνικό εικοσιτετράεδρο 39 s_2 = \frac{1}{2}\sqrt{t + 1} \approx 0,8425
- w:el:Πενταγωνικό εικοσιτετράεδρο 42 \frac{s_2}{s_1} = \frac{t + 1}{2} \approx 1,4196
- w:el:Πενταγωνικό εικοσιτετράεδρο 48 S = 3(t+1)\sqrt{\frac{22(5t-1)}{4t-3}} \approx 54,7965
- w:el:Πενταγωνικό εικοσιτετράεδρο 50 V = \frac{t(3t+1)}{(t-1)\sqrt{2-t}} \approx 35,6302
- w:el:Γαλβανικό στοιχείο 82 {0,05918 V}/{n}
- w:el:Δεκατριάγωνο 22 E = \frac{13}{4} a^2 \cot\left(\frac{\pi}{13} \right) \simeq 13,1858\,a^2.
- w:el:Κοπή με λέιζερ 95 Rz = 12,528\cdot(S^{0,542})/((P^{0,528})\cdot(V^{0,322}))
- w:el:Εικοσάγωνο 22 E ={5}a^2(1+\sqrt{5}+\sqrt{5+2\sqrt{5}}) \simeq 31,5687 a^2.
- w:el:Επίπεδο σακχάρου στο αίμα 20 \qquad 1\,\mathrm{mg/dl} = \frac{1}{18{,}016}\,\mathrm{mmol/l}\thickapprox0,055\;\mathrm{mmol/l}
elwikibooks
[Bearbeiten | Quelltext bearbeiten]- b:el:Μαθηματικά για όλους/Γενικό τυπολόγιο 16 \pi = \sigma \upsilon \nu^{-1} \begin{pmatrix} -1 \end{pmatrix} \simeq 3,141592653589793238462643...
- b:el:Μαθηματικά για όλους/Γενικό τυπολόγιο 18 e = \lim_{n \to \infty} \begin{pmatrix} 1 + \frac{1}{n} \end{pmatrix}^n \simeq 2,718281828459045235360287...
- b:el:Μαθηματικά για όλους/Γενικό τυπολόγιο 21 \sqrt{2} = 2^{\frac{1}{2}} \simeq 1,4142135623730950488...
- b:el:Μαθηματικά για όλους/Γενικό τυπολόγιο 23 \sqrt{3} = 3^{\frac{1}{2}} \simeq 1,7320508075688772935...
- b:el:Μαθηματικά για όλους/Γενικό τυπολόγιο 25 \sqrt{5} = 5^{\frac{1}{2}} \simeq 2,2360679774997896964...
- b:el:Μαθηματικά για όλους/Γενικό τυπολόγιο 27 \sqrt[3]{2} = 2^{\frac{1}{3}} \simeq 1,259921050...
- b:el:Μαθηματικά για όλους/Γενικό τυπολόγιο 29 \sqrt[3]{3} = 3^{\frac{1}{3}} \simeq 1,442249570...
- b:el:Μαθηματικά για όλους/Γενικό τυπολόγιο 31 \sqrt[5]{2} = 2^{\frac{1}{5}} \simeq 1,148698355...
- b:el:Μαθηματικά για όλους/Γενικό τυπολόγιο 33 \sqrt[5]{3} = 3^{\frac{1}{5}} \simeq 1,245730940...
- b:el:Μαθηματικά για όλους/Γενικό τυπολόγιο 35 e^\pi \simeq 23,140692632779269006...
- b:el:Μαθηματικά για όλους/Γενικό τυπολόγιο 37 \pi^\mbox{e} \simeq 22,45915771836104547342715...
- b:el:Μαθηματικά για όλους/Γενικό τυπολόγιο 39 e^\mbox{e} \simeq 15,154262241479264190...
- b:el:Μαθηματικά για όλους/Γενικό τυπολόγιο 41 log_{10}2 = \frac{ln2}{ln10} \simeq 0,3010299956639811952137389...
- b:el:Μαθηματικά για όλους/Γενικό τυπολόγιο 43 log_{10}3 = \frac{ln3}{ln10} \simeq 0,4771212547196624372950279...
- b:el:Μαθηματικά για όλους/Γενικό τυπολόγιο 45 log_{10}e = \frac{lne}{ln10} = \frac{1}{ln10} \simeq 0,43429448190325182765...
- b:el:Μαθηματικά για όλους/Γενικό τυπολόγιο 47 log_{10}\pi = \frac{ln \pi}{ln10} \simeq 0,4971498726941338543512683...
- b:el:Μαθηματικά για όλους/Γενικό τυπολόγιο 49 ln10 \simeq 2,302585092994045684017991...
- b:el:Μαθηματικά για όλους/Γενικό τυπολόγιο 51 ln2 \simeq 0,693147180559945309417232...
- b:el:Μαθηματικά για όλους/Γενικό τυπολόγιο 53 ln3 \simeq 1,098612288668109691395245...
- b:el:Μαθηματικά για όλους/Γενικό τυπολόγιο 55 \gamma = \lim_{n \to \infty} \begin{pmatrix} \begin{matrix} n \\ \sum \\ i=1 \end{matrix} \frac{1}{n} - lnn \end{pmatrix} \simeq 0,577215664901532860606512...
- b:el:Μαθηματικά για όλους/Γενικό τυπολόγιο 58 e^\gamma \simeq 1,7810724179901979852...
- b:el:Μαθηματικά για όλους/Γενικό τυπολόγιο 60 \sqrt{e} = e^{\frac{1}{2}} \simeq 1,6487212707001281468...
- b:el:Μαθηματικά για όλους/Γενικό τυπολόγιο 62 \sqrt{\pi} = \pi^{\frac{1}{2}} = \Gamma \begin{pmatrix} \frac{1}{2} \end{pmatrix} \simeq 1,772453850905516027298167...
- b:el:Μαθηματικά για όλους/Γενικό τυπολόγιο 65 \Gamma \begin{pmatrix} \frac{1}{3} \end{pmatrix} \simeq 2,678938534707748...
- b:el:Μαθηματικά για όλους/Γενικό τυπολόγιο 67 \Gamma \begin{pmatrix} \frac{1}{4} \end{pmatrix} \simeq 3,625609908221908...
- b:el:Μαθηματικά για όλους/Γενικό τυπολόγιο 69 1 \; rad = \frac{180^o}{\pi} \simeq 57,29577951308232...^o
- b:el:Μαθηματικά για όλους/Γενικό τυπολόγιο 72 1^o = \frac{\pi}{180} \; rad \simeq 0,0174532925199432957... \; rad
- b:el:Γενική και Ανόργανη Χημεία/Ατομική δομή 256 m_p = 1,67262158 \cdot 10^{-28} \; kg
- b:el:Γενική και Ανόργανη Χημεία/Ατομική δομή 270 q = 1,60210\cdot 10^{-19} \; Cb
- b:el:Γενική και Ανόργανη Χημεία/Ατομική δομή 271 \epsilon_0 \simeq 8,85418 \cdot 10^{-12} \; Cb^2/Ntm^2
elwikiversity
[Bearbeiten | Quelltext bearbeiten]- v:el:Γενική Χημεία 272 m_p = 1,67262158 \cdot 10^{-28} \; kg
- v:el:Γενική Χημεία 286 q = 1,60210\cdot 10^{-19} \; Cb
- v:el:Γενική Χημεία 287 \epsilon_0 \simeq 8,85418 \cdot 10^{-12} \; Cb^2/Ntm^2
- v:el:Παραδείγματα εφαρμογής του νόμου του Raoult 63 R \simeq 0,082 \; \frac{litatm}{moleK}
- v:el:Παραδείγματα εφαρμογής του νόμου του Raoult 63 P = 26,7 \; mmHg = \frac{26,7}{760} \; atm \simeq 0,035 \; atm
- v:el:Παραδείγματα εφαρμογής του νόμου του Raoult 71 d = \frac{m_{\upsilon 0}}{V_{\upsilon 0}} \Leftrightarrow m_{\upsilon 0} = d V_{\upsilon 0} = 0,9965 \cdot 0,050 \simeq 0,0498 \;g
- v:el:Παραδείγματα εφαρμογής του νόμου του Raoult 75 n_{\upsilon 0} = \frac{m_{\upsilon 0}}{M} \simeq \frac{0,049825}{18} \simeq 2,768 \cdot 10^{-3} \; mole
- v:el:Παραδείγματα εφαρμογής του νόμου του Raoult 81 PV = nRT \Leftrightarrow n = \frac{PV}{RT} \simeq \frac{0,035 \cdot 1}{0,082 \cdot 300} \simeq 1,423 \cdot 10^{-3} \; mole
- v:el:Παραδείγματα εφαρμογής του νόμου του Raoult 85 n_\upsilon = n_{\upsilon 0} - n \simeq 2,768 \cdot 10^{-3} - 1,423 \cdot 10^{-3} = 1,345 \cdot 10^{-3} \; mole
- v:el:Παραδείγματα εφαρμογής του νόμου του Raoult 89 n_\upsilon = \frac{m_\upsilon}{M} \Leftrightarrow m = n_\upsilon M \simeq 1,345 \cdot 10^{-3} \cdot 18 \simeq 0,0242 \; g
- v:el:Παραδείγματα εφαρμογής του νόμου του Raoult 93 d = \frac{m_\upsilon}{V_\upsilon} \Leftrightarrow V_\upsilon = \frac{m_\upsilon}{d} \simeq \frac{0,0242}{0,9965} \simeq 0,0243 \; ml
- v:el:Παραδείγματα εφαρμογής του νόμου του Raoult 105 d_0 = \frac {m_0}{V_0} \Leftrightarrow m_0 = d_0 V_) = 0,9971 \cdot 245 \simeq 244,29 \; g.
- v:el:Παραδείγματα εφαρμογής του νόμου του Raoult 115 P = \begin{pmatrix} 1 - \frac{n}{N} \end{pmatrix}P_0 \simeq \begin{pmatrix} 1 - \frac{0,13}{13,57} \end{pmatrix} \cdot 23,756 \simeq \begin{pmatrix} 1 - 9,58 \cdot 10^{-3} \end{pmatrix} \cdot 23,756 \simeq 0,99 \cdot 23,756 \simeq 23,518 \; mmHg.
- v:el:Παραδείγματα εφαρμογής του νόμου του Raoult 152 \begin{pmatrix} 1 - \frac{P_0 - P}{P_0} \end{pmatrix} n = \frac{P_0 - P}{P_0} N \Leftrightarrow n = \frac{\frac{P_0 - P}{P_0} N}{1 - \frac{P_0 - P}{P_0}} = \frac{\frac{P_0 - P}{P_0} \frac{m_0}{M_0}}{1 - \frac{P_0 - P}{P_0}} \simeq \frac{\frac{85,513-83,932}{85,513} \frac{100}{154}}{1 - \frac{85,513-83,932}{85,513}} = \frac{\frac{1,581}{85,513} \frac{100}{154}}{1 - \frac{1,581}{85,513}} \simeq \frac{0,0185 \cdot 0,65}{1 - 0,0185} = \frac{0,012025}{0,9815} \simeq 0,01225 \; mole.
- v:el:Παραδείγματα εφαρμογής του νόμου του Raoult 158 n = \frac{m}{M} \Leftrightarrow M = \frac{m}{n} \simeq \frac{2,182}{0,01225} \simeq 178 \; g/mole.
- v:el:Παραδείγματα εφαρμογής ζεσεοσκοπίας και κρυοσκοπίας 108 \Delta \theta {}_b = K_b \frac{1000m}{Mm_0} = K_bn \frac{1000}{m_0} \Leftrightarrow m = \frac{\Delta \theta {}_b M m_0}{K_b 1000} = \frac{3,41 \cdot 136 \cdot 50}{2,53 \cdot 1000} \simeq 9,165 \; g.
- v:el:Παραδείγματα εφαρμογής ζεσεοσκοπίας και κρυοσκοπίας 149 M_C \simeq 12,011 \; g/mole. M_O \simeq 15,999 \; g/mole. M_H \simeq 1,008 g/mole.
- v:el:Παραδείγματα εφαρμογής ζεσεοσκοπίας και κρυοσκοπίας 166 M = M_C x + M_H y + M_O z = 12,011x+1,008y+15,999z \Leftrightarrow 46,5 \simeq 12,011x+1,008y+15,999z.
- v:el:Παραδείγματα εφαρμογής ζεσεοσκοπίας και κρυοσκοπίας 170 n_C = \frac{m_C}{M_C} = \frac{m c_C%}{M_C} \simeq \frac{13 \cdot 52,17%}{12,011} \simeq 0,565 \; mole.
- v:el:Παραδείγματα εφαρμογής ζεσεοσκοπίας και κρυοσκοπίας 172 n_H = \frac{m_H}{M_H} = \frac{m c_H%}{M_H} \simeq \frac{13 \cdot 13,05%}{1,008} \simeq 1,683 \; mole.
- v:el:Παραδείγματα εφαρμογής ζεσεοσκοπίας και κρυοσκοπίας 174 n_O = \frac{m_O}{M_O} = \frac{m c_O%}{M_O} \simeq \frac{13 \cdot 34,78%}{15,999} \simeq 0,283 \; mole.
- v:el:Παραδείγματα εφαρμογής ζεσεοσκοπίας και κρυοσκοπίας 176 \frac{y}{x} = \frac{n_H}{n_C} \simeq \frac{1,683}{0,565} \simeq 3 \Leftrightarrow y \simeq 3x.
- v:el:Παραδείγματα εφαρμογής ζεσεοσκοπίας και κρυοσκοπίας 178 \frac{y}{z} = \frac{n_H}{n_O} \simeq \frac{1,683}{0,283} \simeq 6 \Leftrightarrow z \simeq \frac{y}{6} \simeq \frac{3x}{6} = \frac{x}{2}.
- v:el:Παραδείγματα εφαρμογής ζεσεοσκοπίας και κρυοσκοπίας 183 46,5 \simeq 12,011x+1,008y+15,999z \Leftrightarrow 46,5 \simeq 12,011x+1,008 \cdot 3x + 15,999 \cdot \frac{x}{2} \Leftrightarrow x = \frac{46,5}{23,0345} \simeq 2.
- v:el:Παραδείγματα εφαρμογής ωσμωτικής πίεσης 17 c_V% = 2% \Leftrightarrow \frac{m}{V} = 2\; \frac{g}{100 ml} = 20 \; \frac{g}{lit}. \; T \simeq 15 + 273 = 288 \;K. \; R \simeq 0,082 \; \frac{litatm}{moleK}.
- v:el:Παραδείγματα εφαρμογής ωσμωτικής πίεσης 27 \Pi = CRT = \frac{n}{V}RT = \frac{\frac{m}{M}}{V}RT = \frac{m}{V} \frac{RT}{M} \simeq 20 \frac{0,082 \cdot 288}{180} \simeq 2,624 \; atm.
- v:el:Παραδείγματα εφαρμογής ωσμωτικής πίεσης 33 \Pi = 7,98 \cdot 10^{-3} \; atm. \; T \simeq 25 + 273 = 298 \; K. \; R \simeq 0,082 \; \frac{litatm}{moleK}.
- v:el:Παραδείγματα εφαρμογής ωσμωτικής πίεσης 41 \Pi = CRT = \frac{n}{V}RT = \frac{mRT}{MV} \Leftrightarrow M = \frac{mRT}{\Pi V} \simeq \frac{0,5 \cdot 0,082 \cdot 298}{7,98 \cdot 10^{-3} \cdot 0,85} \simeq 180 \; g/mole.
- v:el:Παραδείγματα εφαρμογής ωσμωτικής πίεσης 47 T \simeq 0 + 273 = 273 \; K. \; R \simeq 0,082 \; \frac{litatm}{moleK}.
- v:el:Παραδείγματα εφαρμογής ωσμωτικής πίεσης 55 \Pi = CRT \simeq 1 \cdot 0,082 \cdot 273 \simeq 22,4 \; atm.
- v:el:Παραδείγματα εφαρμογής ωσμωτικής πίεσης 61 T \simeq 0 + 273 = 273 \; K. \; R \simeq 0,082 \; \frac{litatm}{moleK}.
- v:el:Παραδείγματα εφαρμογής ωσμωτικής πίεσης 69 \Pi = CRT \Leftrightarrow C = \frac{\Pi}{RT} \simeq \frac{1}{0,082 \cdot 273} \simeq 0,045 \; mole/lit.
- v:el:Παραδείγματα εφαρμογής ωσμωτικής πίεσης 75 c_V% = 1% \Leftrightarrow \frac{m}{V} = 1 \; \frac{g}{100 \; ml} = 10 \frac{g}{lit}. \Pi = 1 \; mmHg = \frac{1}{760} \; atm. \; T \simeq 25 + 273 = 298 \; K. \; R \simeq 0,082 \; \frac{litatm}{moleK}.
- v:el:Παραδείγματα εφαρμογής ωσμωτικής πίεσης 83 \Pi = CRT = \frac{n}{V}RT = \frac{m}{V} \frac{RT}{M} \Leftrightarrow M = \frac{m}{V} \frac{RT}{\Pi} \simeq 10 \cdot \frac{0,082 \cdot 298}{\frac{1}{760}} = 10 \cdot 0,082 \cdot 298 \cdot 760 \simeq 185.714 \; g/mole.
- v:el:Παραδείγματα εφαρμογής ωσμωτικής πίεσης 89 \frac{m}{V} = 5 \; \frac{mg}{ml} = 5 \frac{g}{lit}. \; \Pi = 0,40 \; mmHg = \frac{0,40}{760} \; atm \simeq 5,26 \cdot 10^{-4} \; atm. \; T \simeq 25 + 273 = 298 \; K. \; R \simeq 0,082 \; \frac{litatm}{moleK}.
- v:el:Παραδείγματα εφαρμογής ωσμωτικής πίεσης 97 \Pi = CRT = \frac{n}{V}RT = \frac{m}{V} \frac{RT}{M} \Leftrightarrow M = \frac{m}{V} \frac{RT}{\Pi} \simeq 5 \cdot \frac{0,082 \cdot 298}{5,26 \cdot 10^{-4}} \simeq 232.281 \; g/mole.
- v:el:Μαθηματικές σταθερές 13 \pi = \sigma \upsilon \nu^{-1} \begin{pmatrix} -1 \end{pmatrix} \simeq 3,141592653589793238462643...
- v:el:Μαθηματικές σταθερές 15 e = \lim_{n \to \infty} \begin{pmatrix} 1 + \frac{1}{n} \end{pmatrix}^n \simeq 2,718281828459045235360287...
- v:el:Μαθηματικές σταθερές 18 \sqrt{2} = 2^{\frac{1}{2}} \simeq 1,4142135623730950488...
- v:el:Μαθηματικές σταθερές 20 \sqrt{3} = 3^{\frac{1}{2}} \simeq 1,7320508075688772935...
- v:el:Μαθηματικές σταθερές 22 \sqrt{5} = 5^{\frac{1}{2}} \simeq 2,2360679774997896964...
- v:el:Μαθηματικές σταθερές 24 \sqrt[3]{2} = 2^{\frac{1}{3}} \simeq 1,259921050...
- v:el:Μαθηματικές σταθερές 26 \sqrt[3]{3} = 3^{\frac{1}{3}} \simeq 1,442249570...
- v:el:Μαθηματικές σταθερές 28 \sqrt[5]{2} = 2^{\frac{1}{5}} \simeq 1,148698355...
- v:el:Μαθηματικές σταθερές 30 \sqrt[5]{3} = 3^{\frac{1}{5}} \simeq 1,245730940...
- v:el:Μαθηματικές σταθερές 32 e^\pi \simeq 23,140692632779269006...
- v:el:Μαθηματικές σταθερές 34 \pi^\mbox{e} \simeq 22,45915771836104547342715...
- v:el:Μαθηματικές σταθερές 36 e^\mbox{e} \simeq 15,154262241479264190...
- v:el:Μαθηματικές σταθερές 38 log_{10}2 = \frac{ln2}{ln10} \simeq 0,3010299956639811952137389...
- v:el:Μαθηματικές σταθερές 40 log_{10}3 = \frac{ln3}{ln10} \simeq 0,4771212547196624372950279...
- v:el:Μαθηματικές σταθερές 42 log_{10}e = \frac{lne}{ln10} = \frac{1}{ln10} \simeq 0,43429448190325182765...
- v:el:Μαθηματικές σταθερές 44 log_{10}\pi = \frac{ln \pi}{ln10} \simeq 0,4971498726941338543512683...
- v:el:Μαθηματικές σταθερές 46 ln10 \simeq 2,302585092994045684017991...
- v:el:Μαθηματικές σταθερές 48 ln2 \simeq 0,693147180559945309417232...
- v:el:Μαθηματικές σταθερές 50 ln3 \simeq 1,098612288668109691395245...
- v:el:Μαθηματικές σταθερές 52 \gamma = \lim_{n \to \infty} \begin{pmatrix} \begin{matrix} n \\ \sum \\ i=1 \end{matrix} \frac{1}{n} - lnn \end{pmatrix} \simeq 0,577215664901532860606512...
- v:el:Μαθηματικές σταθερές 55 e^\gamma \simeq 1,7810724179901979852...
- v:el:Μαθηματικές σταθερές 57 \sqrt{e} = e^{\frac{1}{2}} \simeq 1,6487212707001281468...
- v:el:Μαθηματικές σταθερές 59 \sqrt{\pi} = \pi^{\frac{1}{2}} = \Gamma \begin{pmatrix} \frac{1}{2} \end{pmatrix} \simeq 1,772453850905516027298167...
- v:el:Μαθηματικές σταθερές 62 \Gamma \begin{pmatrix} \frac{1}{3} \end{pmatrix} \simeq 2,678938534707748...
- v:el:Μαθηματικές σταθερές 64 \Gamma \begin{pmatrix} \frac{1}{4} \end{pmatrix} \simeq 3,625609908221908...
- v:el:Μαθηματικές σταθερές 66 1 \; rad = \frac{180^o}{\pi} \simeq 57,29577951308232...^o
- v:el:Μαθηματικές σταθερές 69 1^o = \frac{\pi}{180} \; rad \simeq 0,0174532925199432957... \; rad
- v:el:Μαθηματικές σταθερές 71 \lim_{n \to \infty}(\prod_{i=0}^n {\alpha}_i)^{1 \over n}=K_0=\prod_{r=1}^{\infty} (1+{1 \over r(r+2)})^log_{2}r \simeq 2,6854520010...
- v:el:Παραδείγματα σύστασης οργανικών ενώσεων 29 m_C = \frac{AB_C}{MB_{CO_2}}m_{CO_2} \simeq \frac{12}{44}0,8480 \simeq 0,2313 \;g
- v:el:Παραδείγματα σύστασης οργανικών ενώσεων 33 m_H = \frac{2AB_H}{MB_{H_2O}}m_{H_2O} \simeq \frac{2 \cdot 1}{18}0,1754 \simeq 0,01949 \;g
- v:el:Παραδείγματα σύστασης οργανικών ενώσεων 35 c_C = \frac{m_C}{m} \simeq \frac{0,2313}{0,4082} \simeq 56,7%.
- v:el:Παραδείγματα σύστασης οργανικών ενώσεων 37 c_H = \frac{m_H}{m} \simeq \frac{0,01949}{0,4082} \simeq 4,72%.
- v:el:Ηλεκτρισμός-Μαγνητισμός 49 \epsilon_0 \simeq 8,85418 \cdot 10^{-12} \; Cb^2/Ntm^2
- v:el:Ηλεκτρισμός-Μαγνητισμός 74 q_e = -1,60210\cdot 10^{-19} \; Cb
- v:el:Προβλήματα ηλεκτρομαγνητισμού 23 \frac{q}{St} = \frac{\nu \begin{vmatrix} q_e \end{vmatrix}}{St} = \begin{vmatrix} q_e \end{vmatrix} \frac{\nu}{St} = 1,60210 \cdot 10^{-19} \cdot 1500 \; Cb/m^2s \simeq 2,240315 \cdot 10^{-16} \; Cb/m^2s
- v:el:Προβλήματα ηλεκτρομαγνητισμού 27 S = 4 \pi r^2 \simeq 4 \cdot 3,14159 \cdot \begin{pmatrix} 6,4 \cdot 10^6 \end{pmatrix}^2 \simeq 5,14719 \cdot 10^{14} \; m^2.
- v:el:Προβλήματα ηλεκτρομαγνητισμού 33 I = \frac{q}{t} = S \frac{q}{St} \simeq 5,14719 \cdot 10^{14} \cdot 2,240315 \cdot 10^{-16} \simeq 0,123695 \; A.
- v:el:Προβλήματα ηλεκτρομαγνητισμού 43 F = \frac{1}{4 \pi \epsilon_0} \frac {q_1q_2}{r^2} \simeq 9 \cdot 10^9 \frac {3 \cdot 10^{-6} \cdot \begin{pmatrix} -1,5 \cdot 10^{-6} \end{pmatrix}}{0,12^2}\;N = -2,8125 \;N
- v:el:Προβλήματα ηλεκτρομαγνητισμού 46 F_1 = -F = 2,8125 \;N
- v:el:Προβλήματα ηλεκτρομαγνητισμού 47 F_2 = F = -2,8125 \;N
- v:el:Φυσικές σταθερές 22 2,9979 \times 10^8 \tfrac{m}{sec}
- v:el:Φυσικές σταθερές 28 6,626 \times 10^{-34} J \cdot s
- v:el:Φυσικές σταθερές 30 1,055 \times 10^{-34} J \cdot s
- v:el:Φυσικές σταθερές 34 6,022 \times 10^{23} \tfrac{\mu o \rho \iota \alpha}{mol}
- v:el:Φυσικές σταθερές 36 8,314 \tfrac{J}{mol \times K} = 0.082 \frac{lt Atm}{mol ^o\Kappa}
- v:el:Φυσικές σταθερές 40 1,675 \times 10^{-27} kg
- v:el:Φυσικές σταθερές 42 1,673 \times 10^{-27} kg
- v:el:Φυσικές σταθερές 46 8,991804 \times 10^{9} \tfrac{N \times m^2}{C^2}
- v:el:Ηλεκτρικό φορτίο και ηλεκτρικό πεδίο 22 \epsilon_0 = 8,854*10^{-12} \frac{A^2 s}{N m^2}
emlwiki
[Bearbeiten | Quelltext bearbeiten]- w:eml:5 (nùmer) 43 1,1,2,3,5,8,13,21,34,55,89,144,233, 377, 610, 987, 1597, 2584, \dots
- w:eml:3 (nùmer) 42 1,1,2,3,5,8,13,21,34,55,89,144,233, 377, 610, 987, 1597, 2584, \dots
- w:eml:2 (nùmer) 36 1,1,2,3,5,8,13,21,34,55,89,144,233, 377, 610, 987, 1597, \dots
- w:eml:1 (nùmer) 36 1,1,2,3,5,8,13,21,34,55,89,144,233, 377, 610, 987, \dots
en_labswikimedia
[Bearbeiten | Quelltext bearbeiten]- w:en_labsmedia:GCSE Short Course ICT/ICT and Banks 33 Workers \ Needed = \frac {5,000,000} {500} = \frac {50,000} {5} = 10,000
- w:en_labsmedia:Introduction to Theoretical Physics/Mathematical Foundations/Arithmetic, Physics, and Mathematics 84 1,000,000 = 10^6 = 1 \times 10^6
- w:en_labsmedia:Introduction to Theoretical Physics/Mathematical Foundations/Arithmetic, Physics, and Mathematics 85 2,500,000 = 2.5 \times 10^6
- w:en_labsmedia:Introduction to Theoretical Physics/Mathematical Foundations/Arithmetic, Physics, and Mathematics 91 4,430 \mbox{ meters} = 4.43 \times 10^3 \mbox{ meters} = 4.43 \mbox{ kilometers}
- w:en_labsmedia:Introduction to Theoretical Physics/Mathematical Foundations/Arithmetic, Physics, and Mathematics 92 4,430 \mbox{ m} = 4.43 \times 10^3 \mbox{ m} = 4.43 \mbox{ km}
- w:en_labsmedia:Jet Propulsion/Mechanics 100 R = (600m/s) (3000s) (10) \ln(2) = 12,477km
- w:en_labsmedia:Jet Propulsion/Performance 39 R = (600m/s) (3000s) (10) \ln(2) = 12,477km
- w:en_labsmedia:Cellular Automata/Examples of Plankton and Fish Dynamics 131 t=\{0,100,150,200,300,400,1000\}
- w:en_labsmedia:Statistics/Numerical Methods/Quantile Regression 242 \hat{\beta}=0,021
- w:en_labsmedia:Statistics/Numerical Methods/Quantile Regression 244 \hat{\beta}_{0,7}= -0,021
- w:en_labsmedia:Statistics/Numerical Methods/Quantile Regression 244 \hat{\beta}_{0,9}= -0,062
- w:en_labsmedia:Statistics/Numerical Methods/Quantile Regression 244 \hat{\beta}_{0,1}= 0,087
- w:en_labsmedia:Statistics/Numerical Methods/Quantile Regression 246 \hat{\delta}_{0,1}= 29,606
- w:en_labsmedia:Statistics/Numerical Methods/Quantile Regression 246 \hat{\delta}_{0,9}=51,353
- w:en_labsmedia:Statistics/Numerical Methods/Quantile Regression 246 \hat{\delta}_{0,3}=45,281
- w:en_labsmedia:Statistics/Numerical Methods/Quantile Regression 246 \hat{\delta}_{0,5}=53,252
- w:en_labsmedia:Statistics/Numerical Methods/Quantile Regression 246 \hat{\delta}_{0,7}=50,999
- w:en_labsmedia:Statistics/Numerical Methods/Quantile Regression 246 \hat{\delta}=38,099
- w:en_labsmedia:Statistics/Numerical Methods/Quantile Regression 248 \hat{\gamma}_{0,1}=-0,022
- w:en_labsmedia:Statistics/Numerical Methods/Quantile Regression 248 \hat{\gamma}_{0,9}=0,004
- w:en_labsmedia:Statistics/Numerical Methods/Quantile Regression 248 \hat{\gamma}=0,001
- w:en_labsmedia:Statistics/Numerical Methods/Quantile Regression 250 \hat{\lambda}_{0,1}=-0,443
- w:en_labsmedia:Statistics/Numerical Methods/Quantile Regression 250 \hat{\lambda}_{0,9}=-1,257
- w:en_labsmedia:Statistics/Numerical Methods/Quantile Regression 250 \hat{\lambda}=-0,953
- w:en_labsmedia:Half-Life Computation 154 p = \frac{1}{2^{\left({\frac{11,460}{5,730}}\right)}}
- w:en_labsmedia:Half-Life Computation 161 11,460 =5730 * 2\
- w:en_labsmedia:Arithmetic/Addition and Subtraction 61 7,576 + 5,345
- w:en_labsmedia:Arithmetic/Addition and Subtraction 62 2,345 + 3,245
- w:en_labsmedia:Arithmetic/Addition and Subtraction 63 8,952 + 9,423
- w:en_labsmedia:Arithmetic/Addition and Subtraction 64 2,783 + 2,389
- w:en_labsmedia:Arithmetic/Addition and Subtraction 65 189,583 + 1,574,822
- w:en_labsmedia:Arithmetic/Addition and Subtraction 71 348.904 + 23,498.2
- w:en_labsmedia:Arithmetic/Addition and Subtraction 72 1.673 + 48,210.38
- w:en_labsmedia:Arithmetic/Addition and Subtraction 74 128.52 + 2,070.24
- w:en_labsmedia:Arithmetic/Addition and Subtraction 89 12,921
- w:en_labsmedia:Arithmetic/Addition and Subtraction 90 5,590
- w:en_labsmedia:Arithmetic/Addition and Subtraction 91 18,375
- w:en_labsmedia:Arithmetic/Addition and Subtraction 92 5,172
- w:en_labsmedia:Arithmetic/Addition and Subtraction 93 1,764,405
- w:en_labsmedia:Arithmetic/Addition and Subtraction 99 23,847.104
- w:en_labsmedia:Arithmetic/Addition and Subtraction 100 48,212.053
- w:en_labsmedia:Arithmetic/Addition and Subtraction 102 2,198.76
- w:en_labsmedia:Arithmetic/Addition and Subtraction 127 7,576 - 5,345
- w:en_labsmedia:Arithmetic/Addition and Subtraction 128 2,345 - 3,245
- w:en_labsmedia:Arithmetic/Addition and Subtraction 129 8,952 - 9,423
- w:en_labsmedia:Arithmetic/Addition and Subtraction 130 2,783 - 2,389
- w:en_labsmedia:Arithmetic/Addition and Subtraction 131 1,574,822 - 189,583
- w:en_labsmedia:Arithmetic/Addition and Subtraction 138 348.904 - 23,498.2
- w:en_labsmedia:Arithmetic/Addition and Subtraction 140 2,070.24 - 128.52
- w:en_labsmedia:Arithmetic/Addition and Subtraction 155 2,231
- w:en_labsmedia:Arithmetic/Addition and Subtraction 159 1,385,239
- w:en_labsmedia:Arithmetic/Addition and Subtraction 166 -23,149.296
- w:en_labsmedia:Arithmetic/Addition and Subtraction 168 1,941.72
- w:en_labsmedia:Haskell/YAHT/Language basics 1395 (1,100)
- w:en_labsmedia:Adventist Youth Honors Answer Book/Health and Science/Physics 122 2.9979\times10^8=299,790,000
- w:en_labsmedia:Entropy for beginners 69 g=10^{4,870000,000000,000000,000000}
- w:en_labsmedia:Entropy for beginners 86 10^{-134600,000000,000000}
- w:en_labsmedia:Astrodynamics/N-Body Problem 67 \mu= 398,601 km^3/s^2
- w:en_labsmedia:Transwiki:Probability derivations for making low hands in Omaha hold 'em 56 \begin{matrix} {48 \choose 5} = 1,712,304 \end{matrix}
- w:en_labsmedia:Transwiki:Probability derivations for making low hands in Omaha hold 'em 56 \begin{matrix} {48 \choose 3} = 17,296 \end{matrix}
- w:en_labsmedia:Transwiki:Probability derivations for making low hands in Omaha hold 'em 56 \begin{matrix} {48 \choose 4} = 194,580 \end{matrix}
- w:en_labsmedia:Financial Derivatives/Basic Derivatives Contracts 89 MtM = 5,000 * (418 3/4 - 418) = $37.50
- w:en_labsmedia:Applicable Mathematics/Matrices 509 = ({\color{red}51} + {\color{red}420} + {\color{red}1,368}) - ({\color{blue}4,522} + {\color{blue}45} + {\color{blue}144}) = -2872
enwiki
[Bearbeiten | Quelltext bearbeiten]- w:en:Talk:Binomial distribution 110 = 1 - I_{0.95}(471,30) = I_{0.05}(30,471) \approx 17.647\%.
- w:en:Combination 122 \begin{align} {52 \choose 5} &= \frac{n!}{k!(n-k)!} = \frac{52!}{5!(52-5)!} = \frac{52!}{5!47!} \\[6pt]&= \tfrac{80,658,175,170,943,878,571,660,636,856,403,766,975,289,505,440,883,277,824,000,000,000,000}{120\times258,623,241,511,168,180,642,964,355,153,611,979,969,197,632,389,120,000,000,000} \\[6pt]&= 2{,}598{,}960.\end{align}
- w:en:Earth 613 \left ( \frac{1}{3 \cdot 332,946} \right )^{\frac{1}{3}} = 0.01
- w:en:Einsteinium 104 \ce{^{249}_{97}Bk ->[+\alpha] ^{249,250,251,252}_{99}Es}
- w:en:Fundamental interaction 206 4000 \ \mbox{g}\,H_2 O \cdot \frac{1 \ \mbox{mol}\,H_2 O}{18 \ \mbox{g}\,H_2 O} \cdot \frac{10 \ \mbox{mol}\,e^{-}}{1 \ \mbox{mol}\,H_2 O} \cdot \frac{96,000 \ \mbox{C}\,}{1 \ \mbox{mol}\,e^{-}} = 2.1 \times 10^{8} C \ \, \
- w:en:Hearts 77 \frac{_{14} C _{13}}{_{52} C _{13}} = \frac{14}{635,013,559,600} = \frac{1}{45,358,111,400}
- w:en:Huffman coding 280 \{000,001,01,10,11\}
- w:en:Huffman coding 280 \{110,111,00,01,10\}
- w:en:Horsepower 40 P = \frac{W}{t} = \frac{Fd}{t} = \frac{180\,\mathrm{lbf}\times 2.4 \times 2\, \pi \times 12\, \mathrm{ft}}{1\,\mathrm{min}} = 32,572 \frac{\mathrm{ft} {\cdot} \mathrm{lbf}}{\mathrm{min}}.
- w:en:Kinetic energy 75 E_\text{k} = \frac{1}{2} \cdot 80 \,\text{kg} \cdot \left(18 \,\text{m/s}\right)^2 = 12,960 \,\text{J} = 12.96 \,\text{kJ}
- w:en:Orthogonal frequency-division multiplexing 116 \scriptstyle N \log_2 N \,=\, 10,000
- w:en:Parallax 143 d = 1 \text{ AU} \cdot 180 \cdot \frac {3600} {\pi} \approx 206,265 \text{ AU} \approx 3.2616 \text{ ly} \equiv 1 \text{ parsec} .
- w:en:Talk:Perfect number 918 2^{p-1}\left(2^p-1\right) \equiv 128,3328,6528 \pmod{8000} \equiv 128, 1328, 528 \pmod{2000}
- w:en:Talk:Perfect number 923 2^{p-1}\left(2^p-1\right) \equiv 53,103 \pmod{125} \equiv 1728,4928 \pmod{8000} \equiv 1728,928 \pmod{2000}
- w:en:Pythagorean triple 433 a, b, c, d = 133,59,158,134
- w:en:Pentium FDIV bug 92 \textstyle \frac{4,195,835}{3,145,727} = 1.333820449136241002
- w:en:Pentium FDIV bug 96 \textstyle \frac{4,195,835}{3,145,727} = 1.333{\color{Red}{739068902037589}}
- w:en:Rubik's Cube 103 {8! \times 3^7 \times (12!/2) \times 2^{11}} = 43,252,003,274,489,856,000
- w:en:Rubik's Cube 110 {8! \times 3^8 \times 12! \times 2^{12}} = 519,024,039,293,878,272,000.
- w:en:Scrabble 344 48,036,156.\overline{7}
- w:en:Technetium 183 \ce{ ^{99}_{39}Y ->[\beta^-][1.47\,\ce{s}] ^{99}_{40}Zr ->[\beta^-][2.1\,\ce{s}] ^{99}_{41}Nb ->[\beta^-][15.0\,\ce{s}] ^{99}_{42}Mo ->[\beta^-][65.94\,\ce{h}] ^{99}_{43}Tc ->[\beta^-][211,100\,\ce{y}] ^{99}_{44}Ru}
- w:en:Torque 216 P ({\rm hp}) = \frac{ \tau {\rm (lbf \cdot ft)} \cdot 2 \pi {\rm (rad/rev)} \cdot \nu ({\rm rpm})} {33,000}.
- w:en:Torque 247 \begin{align}\text{power} & = \text{torque} \cdot 2 \pi \cdot \text{rotational speed} \cdot \frac{\text{ft}\cdot\text{lbf}}{\text{min}} \cdot \frac{\text{horsepower}}{33,000 \cdot \frac{\text{ft}\cdot\text{lbf}}{\text{min}}} \\[6pt]& \approx \frac {\text{torque} \cdot \text{RPM}}{5,252}\end{align}
- w:en:Torque 249 5252.113122 \approx \frac {33,000} {2 \pi}. \,
- w:en:Vega 200 \left( \frac{T_\text{eq}}{T_\text{pole}} \right)^4 = \left( \frac{7,600}{10,000} \right)^4 = 0.33,
- w:en:Wave impedance 42 c_0 = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = 299,792,458\text{ m/s}
- w:en:Wave impedance 46 Z_0 = \mu_0 c_0 = 4 \pi \times 10^{-7}\text{ H/m} \times 299,792,458\text{ m/s} = 376.730313\ldots~\Omega \approx 120 \pi~\Omega
- w:en:Christiaan Huygens 221 1/27,664
- w:en:Shor's algorithm 20 56,153
- w:en:Reed–Solomon error correction 208 (n, k) = (255,223)
- w:en:Reed–Solomon error correction 226 (255,249)
- w:en:Continued fraction 436 \pi=[3;7,15,1,292,1,1,1,2,1,3,1,\ldots]
- w:en:Net present value 104 \frac{-100,000}{(1+0.10)^0}
- w:en:Net present value 106 \frac{10,000}{(1+0.10)^1}
- w:en:Net present value 108 \frac{10,000}{(1+0.10)^2}
- w:en:Net present value 110 \frac{10,000}{(1+0.10)^3}
- w:en:Net present value 112 \frac{10,000}{(1+0.10)^4}
- w:en:Net present value 114 \frac{10,000}{(1+0.10)^5}
- w:en:Net present value 116 \frac{10,000}{(1+0.10)^6}
- w:en:Net present value 118 \frac{10,000}{(1+0.10)^7}
- w:en:Net present value 120 \frac{10,000}{(1+0.10)^8}
- w:en:Net present value 122 \frac{10,000}{(1+0.10)^9}
- w:en:Net present value 124 \frac{10,000}{(1+0.10)^{10}}
- w:en:Net present value 126 \frac{10,000}{(1+0.10)^{11}}
- w:en:Net present value 128 \frac{10,000}{(1+0.10)^{12}}
- w:en:Net present value 138 \mathrm {NPV} = 68,136.91 - 100,000
- w:en:Net present value 140 \mathrm {NPV} = -31,863.09
- w:en:Internal rate of return 170 NPV(\text{Big-Is-Best}) = \frac{132,000}{1.1} - 100,000 = 20,000
- w:en:Internal rate of return 171 NPV(\text{Small-Is-Beautiful}) = \frac{13,750}{1.1} - 10,000 = 2,500
- w:en:Internal rate of return 173 NPV(\text{Big-Is-Best}) = \frac{132,000}{1.32} - 100,000 = 0
- w:en:Internal rate of return 175 NPV(\text{Small-Is-Beautiful}) = \frac{13,750}{1.375} - 10,000 = 0
- w:en:Poker probability 30 \, \begin{matrix} {52 \choose 5} = 2,598,960 \end{matrix}
- w:en:Poker probability 35 \begin{matrix} {52 \choose 5} = 2,598,960 \end{matrix}
- w:en:Poker probability 149 \begin{matrix} {52 \choose 7} = 133,784,560 \end{matrix}
- w:en:Poker probability 200 \begin{matrix} {52 \choose 5} = 2,598,960 \end{matrix}
- w:en:Poker probability 234 \begin{matrix} {52 \choose 7} = 133,784,560 \end{matrix}
- w:en:Factorization 44 1+2^{2^5}=1+2^{32}=4,294,967,297
- w:en:Alpha Herculis 156 \begin{smallmatrix}d_B = {\left ( 1.87 AU \right )} {\left ( {\frac {149,597,871 km}{696,000 km}} \right )} = 280,000,000 km = 402 R_{\odot} \end{smallmatrix}
- w:en:Jacobi symbol 1222 \begin{align}2^{77,232,917} - 1\end{align}
- w:en:Palindromic number 415 (1001)^6 = 1,006,015,020,015,006,001
- w:en:Talk:Pythagorean tuning 180 2^{19} = 524,288
- w:en:Interest 114 \begin{align}\$10,000 + \$300 + \$309 &= \$10\,000 + \frac {6\% \times \$10,000}{2} + \frac {6\% \times \left( 1 + \frac {6\%}{2}\right) \times \$10\,000}{2}\\&= \$10\,000 \times \left(1 + \frac{6\%}{2}\right)^2\end{align}
- w:en:Speed of sound 472 \begin{align}a_1 &= 1,448.96, &a_2 &= 4.591, &a_3 &= -5.304 \times 10^{-2},\\a_4 &= 2.374 \times 10^{-4}, &a_5 &= 1.340, &a_6 &= 1.630 \times 10^{-2},\\a_7 &= 1.675 \times 10^{-7}, &a_8 &= -1.025 \times 10^{-2}, &a_9 &= -7.139 \times 10^{-13},\end{align}
- w:en:Talk:Tidal force 52 d_1 < R_e ; 19:18, 27. Dez. 2018 (CET)~~ R_e -d_1 \approx 1,700km
- w:en:Large numbers 80 2^{77,232,917}-1
- w:en:Large numbers 134 10\uparrow\uparrow 65,533
- w:en:Large numbers 134 10\uparrow\uparrow 65,534
- w:en:Large numbers 209 2^{2^{2^{2^2}}} = 2 \uparrow \uparrow 5 = 2^{65,536} \approx 2.0 \times 10^{19,728} \approx (10 \uparrow)^2 4.3
- w:en:Large numbers 213 M_{77,232,917} \approx 4.67 \times 10^{23,249,424} \approx 10^{10^{7.37}} = (10 \uparrow)^2 \ 7.37
- w:en:Large numbers 216 3^{3^{3^{3}}} = 3 \uparrow \uparrow 4 \approx 1.26 \times 10^{3,638,334,640,024} \approx (10 \uparrow)^3 1.10
- w:en:Large numbers 220 2^{2^{2^{2^{2^2}}}} = 2 \uparrow \uparrow 6 = 2^{2^{65,536}} \approx 2^{(10 \uparrow)^2 4.3} \approx 10^{(10 \uparrow)^2 4.3} = (10 \uparrow)^3 4.3
- w:en:Talk:Mercury (planet)/Archive 1 1284 \tfrac {60,827,200,000}{1,083,200,000,000}
- w:en:Oil well 98 {EL}_{oil}=\frac{{WI}\times{LOE}}{{NRI}[{P_o}+({P_g}\times{GOR})/1,000]\times(1-{T})}
- w:en:User:Whkoh/Sandbox 54 \begin{matrix}20 \times 10^9 & = & 20,000,000,000 \\ \ & = & 18.626 \times 2^{30} \end{matrix}
- w:en:Orbital speed 86 v = \sqrt {1.327 \times 10^{20} ~\text{m}^3 \text{s}^{2} \cdot \left({2 \over 1.471 \times 10^{11} ~\text{m}} - {1 \over 1.496 \times 10^{11} ~\text{m}}\right)} \approx 30,300 ~\text{m}/\text{s}
- w:en:Six Sigma 145 DPMO = 1,000,000 \centerdot (1 - \phi(level - 1.5))
- w:en:Knuth's up-arrow notation 121 3\uparrow\uparrow 3=3^{3^3}=3^{27}=7,625,597,484,987
- w:en:Knuth's up-arrow notation 162 3\uparrow\uparrow\uparrow2 = 3\uparrow\uparrow3 = 3^{3^3} = 3^{27}=7,625,597,484,987
- w:en:Knuth's up-arrow notation 178 \begin{matrix} 3\uparrow\uparrow\uparrow3 = 3\uparrow\uparrow(3\uparrow\uparrow3) = 3\uparrow\uparrow(3\uparrow3\uparrow3) = & \underbrace{3_{}\uparrow 3\uparrow\dots\uparrow 3} \\ & 3\uparrow3\uparrow3\mbox{ copies of }3 \end{matrix} \begin{matrix} = & \underbrace{3_{}\uparrow 3\uparrow\dots\uparrow 3} \\ & \mbox{7,625,597,484,987 copies of 3} \end{matrix} \begin{matrix} = & \underbrace{3^{3^{3^{3^{\cdot^{\cdot^{\cdot^{\cdot^{3}}}}}}}}} \\ & \mbox{7,625,597,484,987 copies of 3} \end{matrix}
- w:en:Knuth's up-arrow notation 449 10^{10^{10^{10,000,000,000}}}
- w:en:Knuth's up-arrow notation 449 10^{10,000,000,000}
- w:en:Knuth's up-arrow notation 449 10^{10^{10,000,000,000}}
- w:en:Orders of magnitude (numbers) 451 10^{10^{1,834,102}}
- w:en:Orders of magnitude (numbers) 452 10^{10^{10,000,000}}
- w:en:Human Development Index 80 = \frac{\ln(\textrm{GNIpc}) - \ln(100)}{\ln(75,000) - \ln(100)}
- w:en:Talk:Knuth's up-arrow notation 116 2\uparrow\uparrow 6 = 2^{2^{65536}}\approx 10^{6.0 \times 10^{19,728}}
- w:en:Talk:Knuth's up-arrow notation 118 2\uparrow\uparrow 7 = 2^{2^{2^{65536}}}\approx 10^{10^{6.0 \times 10^{19,728}}}
- w:en:Talk:Knuth's up-arrow notation 120 2\uparrow\uparrow 7 = 2^{2^{2^{65536}}}\approx 2^{10^{6.0 \times 10^{19,728}}}
- w:en:Bit rate 222 44,100 \times 16 \times 2 = 1,411,200\ \text{bit/s} = 1,411.2\ \text{kbit/s}
- w:en:Bit rate 234 \frac{44,100 \times 16 \times 2 \times 4,800}{8} = 846,720,000\ \text{bytes} \approx 847\ \text{MB}
- w:en:Steinhaus–Moser notation 72 M(256,256,3)\approx(256\uparrow)^{256}257
- w:en:Steinhaus–Moser notation 82 M(256,256,3)\approx(10\uparrow)^{255}1.99\times 10^{619}
- w:en:Propellant mass fraction 46 \displaystyle 1-(342,100/1,708,500) = 0.7998
- w:en:Partition function (number theory) 35 \begin{align}p(100) &= 190,569,292\\p(1000) &= 24,061,467,864,032,622,473,692,149,727,991 \approx 2.40615\times 10^{31}\\p(10000) &= 36,167,251,325,\dots,906,916,435,144 \approx 3.61673\times 10^{106}\\\end{align}
- w:en:Partition function (number theory) 37 16,569
- w:en:Almost surely 44 p^{1,000,000}\neq 0
- w:en:Almost surely 44 1 - p^{1,000,000}
- w:en:Lowest common denominator 39 \frac{2}{3}=\frac{6}{9}=\frac{12}{18}=\frac{144}{216}=\frac{200,000}{300,000}
- w:en:Lowest common denominator 41 \frac{2}{3}=\frac{2}{3}\times\frac{3}{3}=\frac{2}{3}\times\frac{6}{6}=\frac{2}{3}\times\frac{72}{72}=\frac{2}{3}\times\frac{100,000}{100,000}.
- w:en:Self-balancing binary search tree 37 \lfloor \log_2(1,000,000) \rfloor = 19
- w:en:Mertens conjecture 14 n \le 10,000
- w:en:Prime95 228 2^{2,147,483,647}-1
- w:en:Prime95 228 2^{79,300,000} -1
- w:en:Prime95 228 2^{596,000,000} -1
- w:en:Isobaric process 101 Q = {\Delta\Eta} = nC_p\Delta\Tau = 81.2438\times 29.1006\times 300 = 709,274\text{ J}
- w:en:Isobaric process 105 \Delta\ U = nC_v\Delta\Tau = 81.2438\times 20.7862\times 300 = 506,625\text{ J}
- w:en:Isobaric process 107 W = Q - \Delta U = 202,649\text{ J} = nR\Delta\Tau
- w:en:Isobaric process 111 W = {p\Delta\nu} = 2~\text{atm} \times 101325\text{Pa} = 202,650\text{ J}
- w:en:Isobaric process 120 Q = {\Delta\Eta} = 709,274\text{ J}
- w:en:Isobaric process 120 \Delta U = 506,625\text{ J}
- w:en:Isobaric process 121 W = {p\Delta V} = 2~\text{atm} \times 1~\text{m}\times 101325\text{Pa} = 202,650\text{ J}
- w:en:Isobaric process 125 W_{\rm lift} = 10\,332.2~\text{kg} \times 9.80665~\text{m/s²}\times1\text{m} = 101,324\text{ J}
- w:en:Talk:Leap second 117 \frac{9,192,631,875}{9,192,631,770}
- w:en:Round-off error 252 1,676
- w:en:Determination of the day of the week 323 R(1 + 5R(A-1,4) + 4R(A-1,100) + 6R(A-1,400),7)
- w:en:Uranium-238 115 \begin{array}{l}{}\\\ce{^{238}_{92}U->[\alpha][4.468 \times 10^9 \ \ce y] {^{234}_{90}Th} ->[\beta^-][24.1 \ \ce d] {^{234\!m}_{91}Pa}}\begin{Bmatrix} \ce{->[0.16\%][1.17 \ \ce{min}] {^{234}_{91}Pa} ->[\beta^-][6.7 \ \ce h]} \\ \ce{->[99.84\%\ \beta^-][1.17 \ \ce{min}]}\end{Bmatrix}\ce{^{234}_{92}U ->[\alpha][2.445 \times 10^5 \ \ce y] {^{230}_{90}Th} ->[\alpha][7.7 \times 10^4 \ \ce y] {^{226}_{88}Ra} ->[\alpha][1600 \ \ce y] {^{222}_{86}Rn}}\\\ce{^{222}_{86}Rn ->[\alpha][3.8235 \ \ce d] {^{218}_{84}Po} ->[\alpha][3.05 \ \ce{min}] {^{214}_{82}Pb} ->[\beta^-][26.8 \ \ce{min}] {^{214}_{83}Bi} ->[\beta^-][19.9 \ \ce{min}] {^{214}_{84}Po} ->[\alpha][164.3 \ \mu\ce{s}] {^{210}_{82}Pb} ->[\beta^-][22.26 \ \ce y] {^{210}_{83}Bi} ->[\beta^-][5,013 \ \ce d] {^{210}_{84}Po} ->[\alpha][138.38 \ \ce d] {^{206}_{82}Pb}}\end{array}
- w:en:Tetration 498 ^4 2 = 2^{2^{2^{2}}} = 65,536
- w:en:Tetration 501 ^3 3 = 3^{3^{3}} = 19,683
- w:en:Basel problem 327 \widetilde{v}_n = 11n^2-11n+3 \mapsto \{3,25,69,135,\ldots\}
- w:en:Proper time 192 r = 6,356,752
- w:en:MD5CRK 26 {2.17 \times 10^{19} / 12.25 \times 10^{12} \approx 1,770,000}
- w:en:User:Valoem/Poker probability (Texas hold 'em) 44 {52 \choose 2} = 1,326
- w:en:User:Valoem/Poker probability (Texas hold 'em) 140 {52 \choose 2}{50 \choose 2} \div 2 = 812,175
- w:en:User:Valoem/Poker probability (Texas hold 'em) 148 {48 \choose 5} = 1,712,304
- w:en:User:Valoem/Poker probability (Texas hold 'em) 192 {50 \choose 2}{48 \choose 2} = 1,381,800
- w:en:User:Valoem/Poker probability (Texas hold 'em) 196 H = {50 \choose 2}{48 \choose 2} \div 2! = 690,900
- w:en:User:Valoem/Poker probability (Texas hold 'em) 200 H = {50 \choose 2}{48 \choose 2}{46 \choose 2} \div 3! = 238,360,500
- w:en:User:Valoem/Poker probability (Texas hold 'em) 258 P = \left(\frac{84 - 6r}{1225}\right) \times n - P_{ma}= \frac{n(84-6r)-1,225P_{ma}}{1,225}.
- w:en:User:Valoem/Poker probability (Texas hold 'em) 384 {50 \choose 3} = 19,600
- w:en:User:Valoem/Poker probability (Texas hold 'em) 388 {50 \choose 4} = 230,300
- w:en:User:Valoem/Poker probability (Texas hold 'em) 392 {50 \choose 5} = 2,118,760
- w:en:User:Valoem/Poker probability (Texas hold 'em) 508 P = 1 - \left(\frac{47 - outs}{47} \times \frac{46 - outs}{46}\right) = \frac{93outs-outs^2}{2,162}.
- w:en:User:Valoem/Poker probability (Texas hold 'em) 679 P = \frac{x}{47} \times \frac{x-1}{46}= \frac{x^2-x}{2,162}.
- w:en:Heegner number 30 1,2,3,7,11,19,43,67,163
- w:en:User:JohnOwens/Sedna orbit 19 590,000 \mbox{m} \le r_{Sedna} \le 1,180,000 \mbox{m}
- w:en:User:JohnOwens/Sedna orbit 20 1,180,000 \mbox{m} \le d_{Sedna} \le 2,360,000 \mbox{m}
- w:en:User:JohnOwens/Sedna orbit 24 T = 10,500 \mbox{yr} = 3.31\times10^{11} \mbox{s}
- w:en:User:JohnOwens/Sedna orbit 26 \mathcal{E}_{orbital} = -958,000 {\mbox{m}^2 \over \mbox{s}^2}
- w:en:User:JohnOwens/Sedna orbit 30 \mathcal{E}_{grav,peri} = 11,700,000 {\mbox{m}^2 \over \mbox{s}^2}
- w:en:User:JohnOwens/Sedna orbit 31 \mathcal{E}_{kinetic,peri} = 10,700,000 {\mbox{m}^2 \over \mbox{s}^2}
- w:en:User:JohnOwens/Sedna orbit 35 \mathcal{E}_{grav,ap} = 1,040,000 {\mbox{m}^2 \over \mbox{s}^2}
- w:en:User:JohnOwens/Sedna orbit 36 \mathcal{E}_{kinetic,ap} = 85,700 {\mbox{m}^2 \over \mbox{s}^2}
- w:en:User:JohnOwens/Sedna orbit 39 v_{now} = 4,219 {\mbox{m} \over \mbox{s}}
- w:en:User:JohnOwens/Sedna orbit 40 \mathcal{E}_{grav,now} = 9,857,000 {\mbox{m}^2 \over \mbox{s}^2}
- w:en:User:JohnOwens/Sedna orbit 41 \mathcal{E}_{kinetic,now} = 8,899,000 {\mbox{m}^2 \over \mbox{s}^2}
- w:en:Trachtenberg system 259 3,425 \times 11 = 37,675
- w:en:Trachtenberg system 295 \begin{align}6 \times 2 & = 12 \text{ (2 carry 1) } \\1 \times 2 + 6 + 1 & = 9 \\3 \times 2 + 1 & = 7 \\0 \times 2 + 3 & = 3 \\0 \times 2 + 0 & = 0 \\[10pt]316 \times 12 & = 3,792\end{align}
- w:en:Talk:CMYK color model 116 C,M,Y,K \in ( \mathbb{Z}, [0,255] )
- w:en:Talk:CMYK color model 175 \begin{matrix}(128, 128, 128)_{RGB} = (0, 0, 0, 0.5)_{CMYK} = (0,0,0,128)_{CMYK, scaled to bytes}\\ (255, 0, 0)_{RGB} = (0, 1, 1, 0)_{CMYK} = (0,255,255,0)_{CMYK, scaled to bytes}\\(255, 255, 0)_{RGB} = (0, 0, 1, 0)_{CMYK} = (0,0,255,0)_{CMYK, scaled to bytes}\end{matrix}
- w:en:Talk:CMYK color model 228 t_{CMYK, scaled}=(255,255,0,0)
- w:en:142,857 79 \begin{align}\frac{1}{7} & = 0.142857142857142857\ldots \\[6pt] & = 0.14 + 0.0028 + 0.000056 + 0.00000112 + 0.0000000224 + 0.000000000448 + 0.00000000000896 + \cdots \\[6pt] & = \frac{14}{100} + \frac{28}{100^2} + \frac{56}{100^3} + \frac{112}{100^4} + \frac{224}{100^5} + \cdots + \frac{7\times2^N}{100^N} + \cdots \\[6pt] & = \left( \frac{7}{50} + \frac{7}{50^2} + \frac{7}{50^3} + \frac{7}{50^4} + \frac{7}{50^5} + \cdots + \frac{7}{50^N} + \cdots \right) \\[6pt] & = \sum_{k=1}^\infty \frac{7}{50^k} \end{align}
- w:en:142,857 82 \sum_{k=1}^\infty \frac{7}{50^k} = 7 \cdot \sum_{k=1}^\infty \left(\frac{1}{50}\right)^k = 7 \cdot \frac{1}{50-1} = \frac{7}{49} = \frac{1}{7}
- w:en:142,857 90 \begin{align}\frac{1}{7} & = 0.1 + 0.03 + 0.009 + 0.0027 + 0.00081 + 0.000243 + 0.0000729 + \cdots \\[6pt] & = \frac{3^0}{10^1} + \frac{3^1}{10^2} + \frac{3^2}{10^3} + \frac{3^3}{10^4} + \frac{3^4}{10^5} + \cdots + \frac{3^{N-1}}{10^N} + \cdots \\[6pt] & = \sum_{k=1}^\infty \frac{3^{k-1}}{10^k} = 3^{-1} \cdot \sum_{k=1}^\infty \left(\frac{3}{10}\right)^k = \frac{1}{3} \cdot \frac{3}{10-3} = \frac{1}{7} \end{align}
- w:en:Pocket Cube 28 \frac{8! \times 3^7}{24}=7! \times 3^6=3,674,160.
- w:en:Bombe 60 \frac{{26 \choose 2} \cdot {24 \choose 2} \cdot {22 \choose 2} \cdot ... \cdot {8 \choose 2}}{10!} = 150,738,274,937,250
- w:en:Thrust-to-weight ratio 64 \frac{T}{W}=\frac{3,820\ \mathrm{kN}}{(5,307\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=0.07340\ \frac{\mathrm{kN}}{\mathrm{N}}=73.40\ \frac{\mathrm{N}}{\mathrm{N}}=73.40
- w:en:Ham sandwich theorem 34 \alpha\in[0,180^\circ]
- w:en:Ham sandwich theorem 36 \alpha\in[0,180^\circ]
- w:en:Talk:Base rate fallacy 127 \begin{align}& {}\quad P(\mathrm{terrorist}\mid\mathrm{bell}) \\[10pt]&= \frac{P(\mathrm{bell} \mid \mathrm{terrorist}) P(\mathrm{terrorist})}{P(\mathrm{bell})} \\[10pt]&= \frac{P(\mathrm{bell} \mid \mathrm{terrorist}) \times P(\mathrm{terrorist})}{ P(\mathrm{bell} \mid \mathrm{terrorist}) \times P(\mathrm{terrorist}) + P(\mathrm{bell} \mid \mathrm{nonterrorist}) \times P(\mathrm{nonterrorist})} \\[10pt]&= \frac{ 0.99 \cdot (100/1,000,000)}{\frac{0.99 \cdot 100}{1,000,000} + \frac{0.01 \cdot 999,900}{1,000,000}} \\[10pt]&= 1/102 \approx 1\%\end{align}
- w:en:Talk:Mathematical coincidence 99 [97; 2,2,3,1,16539,1,1,\ldots]
- w:en:Talk:Mathematical coincidence 223 [97; 2,2,3,1,16539,1,1,\ldots]
- w:en:User talk:Valoem/Poker probability (Texas hold 'em) 54 {52 \choose 2} = 1,326
- w:en:Phot 36 1\ \mathrm{phot} = 1\ \frac{\mathrm{lumen}}{\mathrm{centimeter}^2} = 10,000\ \frac{\mathrm{lumens}}{\mathrm{meter}^2} = 10,000\ \mathrm{lux} = 10\ \mathrm{kilolux}
- w:en:Jefferson disk 120 10! = 3,628,800
- w:en:Digital Signal 1 83 \begin{align} & \left( 24\,\frac{\mathrm{channels}}{\mathrm{frame}} \times 8\,\frac{\mathrm{bits}}{\mathrm{channel}} \times 8,000\,\frac{\mathrm{frames}}{\mathrm{second}} \right) + \left( 1\,\frac{\mathrm{framing\ bit}}{\mathrm{frame}}\times 8,000\,\frac{\mathrm{frames}}{\mathrm{second}} \right) \\ = {} & 1,536,000\,\frac{\mathrm{bits}}{\mathrm{second}} + 8,000 \frac{\mathrm{bits}}{\mathrm{second}} \\ = {} & 1,544,000\,\frac{\mathrm{bits}}{\mathrm{second}} \\ = {} & 1.544\,\frac{\mathrm{Mbit}}{\mathrm{second}}\end{align}
- w:en:Pulse repetition frequency 104 \text{450 km} = \frac{C}{0.033 \times 2 \times 10,000}
- w:en:Pulse repetition frequency 105 \text{1,500 m/s} = \frac{10,000 \times C}{2 \times 10^9}
- w:en:Pulse repetition frequency 117 \text{150 km} = \frac{30 \times C}{2 \times 30,000}
- w:en:Pulse repetition frequency 118 \text{4,500 m/s} = \frac{30,000 \times C}{2 \times 10^9}
- w:en:User talk:Pheel 17 \ Q=\ 50 \cdot 0,00418 \cdot (22-1) = 4,389
- w:en:User talk:Pheel 18 \ Q=\ 50 \cdot 0,00418 \cdot (22+1) = 4,807
- w:en:User talk:Pheel 20 \ Q/mol=\ {4,389 \over 0,05+0,000125} \approx87,56
- w:en:User talk:Pheel 21 \ Q/mol=\ {4,807 \over 0,05-0,000125} \approx96,38
- w:en:Talk:LM hash 87 26^{11 - 7} + 26^{11 - 7} + 10^{11 - 7} = 923,952
- w:en:Talk:LM hash 87 96^{10 - 7} = 884,736
- w:en:Density altitude 82 1,000 ~ \mathrm{ft}
- w:en:Density altitude 82 36,000 ~ \mathrm{ft}
- w:en:1,000,000,000 133 F_0
- w:en:1,000,000,000 133 F_4
- w:en:1,000,000,000 135 F_5
- w:en:Reidemeister move 53 10^{1,000,000n}
- w:en:Charles Anderson-Pelham, 2nd Earl of Yarborough 19 \frac{347,373,600}{635,013,559,600}
- w:en:Dynamometer car 47 P =50,000 ~ \text{lbf} \cdot \frac{30 ~ \text{mi}} {\text{h}} \cdot \frac{5280 ~ \text{ft}}{\text{mi}} \cdot \frac{\text{h}}{3600 ~ \text{s}} = 2,200,000 ~ \frac{\text{ft} \cdot \text{lbf}}{\text{s}}
- w:en:Dynamometer car 51 P = 2,200,000 ~ \frac{\text{ft} \cdot \text{lbf}} {\text{s}} \cdot \frac{1 ~ \text{hp}}{550 ~ \text{ft} \cdot \text{lbf} / \text{s}} = 4,000 ~ \text{hp}
- w:en:User:Patrick/wt 602 9^{\,\!9^9} \approx 10^{369,693,100}
- w:en:User:Patrick/wt 632 10\uparrow\uparrow 65,533
- w:en:User:Patrick/wt 632 10\uparrow\uparrow 65,534
- w:en:Operating margin 60 \mathrm{Operating\ margin} = \left ( \frac {6,318}{20,088} \right ) = \underline{\underline{31.45 \%}}
- w:en:Talk:Bond duration 69 c_i = \frac{10,000}{i}
- w:en:Duration gap 44 0 = 1 - 2 \times \frac{1,000,000}{2,000,000}
- w:en:Honey flow 41 7000 \text{ forager bees} \times \frac{10 \text{ trips in good flying weather}}{\text{ per day}} \times \frac{70 \text{ mg of nectar during honey flow}}{\text{per trip and bee}} \times \frac{1\text{ kg}}{1,000,000\text{ mg}} \approx 5 \text{ kg/day}
- w:en:Riesz function 87 \phi=-0.54916...= (-31,46447^{\circ})
- w:en:Alpha Cassiopeiae 169 \begin{smallmatrix}d_S = {\left ( 0.197 AU \right )} {\left ( {\frac {149,597,871 km}{696,000 km}} \right )} = 42.31 R_{\odot} (rounded)\end{smallmatrix}
- w:en:Alpha Cassiopeiae 179 \begin{smallmatrix}\frac{L_{\rm S}}{L_{\odot}} = {\left ( {\frac{42.3}{1}} \right )}^2 {\left ( {\frac{4,530}{5,778}} \right )}^4 = 676 L_{\odot}\end{smallmatrix}
- w:en:Talk:Weak interaction 423 v = c/\sqrt{2} = 0,7071 \, c
- w:en:Planckian locus 86 1000K<T<15,000K
- w:en:Milliradian 291 \text{distance in meters} = \frac{\text{target in meters}}{\text{angle in mils}} \times 1,000
- w:en:Lenstra–Lenstra–Lovász lattice basis reduction algorithm 199 [0,0,1,10000]
- w:en:Lenstra–Lenstra–Lovász lattice basis reduction algorithm 199 [1,0,0,10000r^2], [0,1,0,10000r],
- w:en:Gear inches 39 \text{speed in mph} = (\text{gear inches}\times\text{π})\frac{\text{inches}}{\text{revolution}}\times\text{cadence}\frac{\text{revolutions}}{\text{minute}}\times\frac{\text{1 mile}}{\text{63,360 inches}}\times\frac{\text{60 minutes}}{\text{1 hour}}
- w:en:Prosthaphaeresis 61 75,000
- w:en:Prosthaphaeresis 61 75,600
- w:en:Binary quadratic form 101 \begin{align} (3 \cdot 17 + 4 \cdot 12, 2 \cdot 17 + 3 \cdot 12) &= (99,70),\\ (3 \cdot 99 + 4 \cdot 70, 2 \cdot 99 + 3 \cdot 70) &= (477,408),\\ &\vdots \end{align}
- w:en:Talk:Poker probability 201 {4 \choose 1} {13 \choose 5} {47 \choose 2} = 5,564,988
- w:en:Talk:Poker probability 215 13{4 \choose 3}x12{4 \choose 2}x 11{4 \choose 2} = 247,104
- w:en:User:Egil530/matematikk 98 =6,98 \times 6,43 \; kr /28,349 \; g \,
- w:en:User:Egil530/matematikk 100 \frac{44,8814 \; kr}{28,35}/\frac{28,35 \; g}{28,35}\,
- w:en:User:Egil530/matematikk 101 =1,583 \; kr / g \,
- w:en:User:Egil530/matematikk 105 107 \times 0,830= 88,81 \; g \,
- w:en:User:Egil530/matematikk 107 1154,53 \times 1,583= 1827,62 \; kr \approx 1827,50 \; kr \,
- w:en:User:Egil530/matematikk 112 35 \; g \ times 1,583 \; kr/g\,
- w:en:User:Egil530/matematikk 115 \frac{44,8814 \; kr}{28,35}/\frac{28,35 \; g}{28,35}\,
- w:en:User:Egil530/matematikk 116 =1,583 \; kr / g \,
- w:en:User:Egil530/matematikk 160 =314,159 \; cm^2\,
- w:en:User:Egil530/matematikk 163 = \sqrt{5^2+5^2} = 7,071 \,
- w:en:User:Egil530/matematikk 165 \pi (5 \times 5 + 5 \times 7,071) \,
- w:en:User:Egil530/matematikk 166 = \pi (25+35,355) = 189,61 \; cm^2\,
- w:en:User:Egil530/matematikk 171 314,159 \; cm^2 + 189,61 \; cm^2 \,
- w:en:User:Egil530/matematikk 172 =503,769 \; cm^2\,
- w:en:User:Egil530/matematikk 174 503,769 \; cm^2 \times 20 \,
- w:en:User:Egil530/matematikk 195 =654,5 \; cm^3 = 0,6545 \; dm^3\,
- w:en:User:Egil530/matematikk 197 0,6545 \; dm^3 \times 3,1 \; kg/dm^3\,
- w:en:User:Egil530/matematikk 198 =2,02895 \; kg\,
- w:en:User:Egil530/matematikk 200 2,02895 \; kg \times 20 \,
- w:en:Talk:Quasi-steady state cosmology 222 \omega>40,000
- w:en:Hardware acceleration 50 2^{20} = 1,048,576
- w:en:User:Plutor/Math sandbox 75 \ \begin{matrix}v_{ticket} & > & \$1.00 \\\\v_{ticket} & = & \frac{v_{jackpot}}{p_{jackpot}} + \frac{v_2}{p_2}+ \frac{v_3}{p_3} + \cdots + \frac{v_n}{p_n} \\\\\$1.00 & < & \frac{v_{jackpot}}{146,107,962.00} + \frac{\$200,000}{3,563,608.83} + \frac{\$10,000}{584,431.85} + \frac{\$100}{14,254.44} + \\ & & \frac{\$100}{11,927.18} + \frac{\$7}{290.91} + \frac{\$7}{745.45} + \frac{\$4}{126.88} + \frac{\$3}{68.96} \\\$1.00 & < & \frac{v_{jackpot}}{146,107,962.00} + \sim 0.19711512 \\\\\$117,307,873 & < & v_{jackpot}\end{matrix}\
- w:en:Euler–Bernoulli beam theory 522 w_{\mathrm{max}} = \tfrac{(39 - 55\sqrt{33})}{65,536} \tfrac{qL^4}{EI} \mbox{ at } x=\tfrac{15-\sqrt{33}}{16}L
- w:en:Pentation 89 2[5]3 = 2[4](2[4]2) = 2[4]4 = 2^{2^{2^2}} = 2^{2^4} = 2^{16} = 65,536
- w:en:Pentation 90 2[5]4 = 2[4](2[4](2[4]2)) = 2[4](2[4]4) = 2[4]65536 = 2^{2^{2^{\cdot^{\cdot^{\cdot^{2}}}}}} \mbox{ (a power tower of height 65,536) } \approx \exp_{10}^{65,533}(4.29508)
- w:en:Pentation 91 3[5]2 = 3[4]3 = 3^{3^3} = 3^{27} = 7,625,597,484,987
- w:en:Pentation 92 3[5]3 = 3[4](3[4]3) = 3[4]7,625,597,484,987 = 3^{3^{3^{\cdot^{\cdot^{\cdot^{3}}}}}} \mbox{ (a power tower of height 7,625,597,484,987) } \approx \exp_{10}^{7,625,597,484,986}(1.09902)
- w:en:Cash on cash return 21 \frac{\$\ \mbox{60,000}}{\$\ \mbox{300,000}}=0.20=20\%
- w:en:Cash on cash return 28 \frac{\$\ \mbox{36,000}}{\$\ \mbox{300,000}}=0.12=12\%
- w:en:Talk:CIE 1931 color space 43 \mathbf{M}=\begin{pmatrix}0,4124564& 0,2126729& 0,0193339\\ 0,3575761& 0,715522& 0,11992 \\0,1804375& 0,072175& 0,9503041\end{pmatrix}
- w:en:Talk:CIE 1931 color space 70 \mathbf{(M)n1}=\begin{pmatrix}0,412& 0,212& 0,020\\ 0,358& 0,715& 0,120\\0,180& 0,072& 0,950\end{pmatrix}/\begin{pmatrix} 0.64 \\ 1.19 \\ 1.20\\\end{pmatrix}=\begin{pmatrix}0.64 & 0.33 & 0.03 \\0.30 & 0.60 & 0.10 \\0.15 & 0.06 & 0.79\\\end{pmatrix}
- w:en:Talk:CIE 1931 color space 241 \mathbf{M}=\begin{pmatrix} 0.49 & 0,31& 0,20\\ 0.17697 &0.81240& 0,01063\\ 0&0.01& 0.99\end{pmatrix}
- w:en:Talk:Axial precession 117 \tfrac{3,600}{50.28796195} = 71.58770927
- w:en:Talk:Axial precession 118 360\times 71.58770927=25,771.57534
- w:en:Talk:Axial precession 119 \tfrac{50.28796195}{1,296,000} \times 365.25 \times 24 \times 60 = 20.40853122
- w:en:Talk:Axial precession 147 50.29\text{/yr}\tfrac{86,164\ \text{s/d}}{(365.25\ \text{D/yr})(1,296,000\text{/D})}=9.154\ \text{ms/d}
- w:en:Talk:Axial precession 149 50.29\text{/yr}\tfrac{(365.25\ \text{D/yr})(86,400\ \text{s/D})}{1,296,000\text{/yr}}=1225\ \text{s/yr}=20.42\ \text{minutes/Julian year}
- w:en:Talk:Axial precession 151 9.154\ \text{ms/d}\tfrac{(365.25\ \text{D/yr})(1,296,000\text{/D})}{86,164\ \text{s/d}}\tfrac{(365.25\ \text{D/yr})(86,400\ \text{s/D})}{1,296,000\text{/yr}}
- w:en:Talk:Axial precession 152 =9.154\ \text{ms/d}\tfrac{(365.25\ \text{D/yr})^2}{\ }\tfrac{(1,296,000\text{/D})(86,400\ \text{s/D})}{(1,296,000\text{/yr})(86,164\ \text{s/d})}=1225\ \text{s/yr}=20.42\ \text{minutes/Julian year}
- w:en:Talk:Axial precession 164 50.29\text{/yr}\tfrac{86,400\ \text{s/D}}{1,296,000\text{/yr}}=3.35\ \text{s/D}
- w:en:Skewb Diamond 33 \frac{4!\times 6!\times 2^5}{4} = 138,240.
- w:en:Talk:Yogic flying 94 \sqrt{1\% of 1 million}=\sqrt{10,000}=100
- w:en:Mark Six 126 \frac{1}Vorlage:49 \choose 6 = \frac{1}{13,983,816}
- w:en:Mark Six 128 \fracVorlage:6 \choose 5Vorlage:49 \choose 6 = \frac{1}{2,330,636}
- w:en:Mark Six 130 \frac{{6 \choose 5}{42 \choose 1}}Vorlage:49 \choose 6\approx\frac{1}{55,491.33}
- w:en:Mark Six 132 \frac{{6 \choose 4}{42 \choose 1}}Vorlage:49 \choose 6\approx\frac{1}{22,196.53}
- w:en:Mark Six 134 \frac{{6 \choose 4}{42 \choose 2}}Vorlage:49 \choose 6\approx\frac{1}{1,082.76}
- w:en:Wikipedia:Reference desk archive/August 2005 III 1569 A_p=\$100,000
- w:en:Wikipedia:Reference desk archive/August 2005 III 1572 R=\frac{(0.0075)(100,000)}{1-(1+0.0075)^{-360}}
- w:en:Wikipedia:Reference desk archive/August 2005 III 1592 R=\frac{(.01/12)(524,000)}{1-(1+.01/12)^{-360}}
- w:en:Wikipedia:Reference desk archive/August 2005 III 1594 \mathit{R=\$1,685.39}
- w:en:Talk:Combination 166 {52 \choose 5} = \frac{52^{\underline{5}}}{5!} = \frac{52\times51\times50\times49\times48}{5\times4\times3\times2\times1} = \frac{311,875,200}{120} = 2,598,960.
- w:en:Cycles per instruction 103 \text{Effective processor performance} = \text{MIPS} = \frac{\text{clock frequency}}{\text{CPI}} \times {\frac{1}{\text{1 Million}}} = \frac{400,000,000 }{1.55 \times 1000000}= \frac{400}{1.55} = 258 \, \text{MIPS}
- w:en:Visual angle 52 383,000 \text{ kilometers}
- w:en:Visual angle 52 238,000 \text{ miles}
- w:en:User:MathsIsFun 126 \begin{align}\text{Variance: } \sigma^2 & = \frac{206^2 + 76^2 + (-224)^2 + 36^2 + (-94)^2}{5} \\ & = \frac{42,436 + 5,776+ 50,176+ 1,296 + 8,836}{5} \\ & = \frac{108,520}{5} = 21,704\\\end{align}
- w:en:Wikipedia:Reference desk archive/Science/September 2005 506 E =\frac{10^6}{720}-\frac{719}{720}\approx$1,387.89
- w:en:Semicubical parabola 52 9,073 \; .
- w:en:Talk:Messier 13 31 \begin{smallmatrix} \frac{27\ \text{pc} \times (3.1 \times 10^{13}\ \text{km/pc})}{(2.5 \times 10^4\ \text{years}) \times (3.2 \times 10^7\ \text{seconds/year})}\ \approx\ 1,000\ \text{km/s} \end{smallmatrix}
- w:en:Talk:Sudoku/Archive 1 88 9! \cdot 6^{6} = 16,930,529,280
- w:en:Talk:Earth/Archive 2 162 S = 510,067,420.24374628km^2\;
- w:en:Lottery mathematics 36 {49\choose 6} = 13,983,816
- w:en:Lottery mathematics 135 {6 \over {49\choose 6}} = {1 \over 2,330,636}
- w:en:Lottery mathematics 137 {{258 \cdot {\frac{42}{43}}}\over {49\choose 6} } = \frac{3}{166,474} \approx 1.802 \times 10^{-5}
- w:en:Lottery mathematics 139 \frac{172,200}{49 \choose 6} = \frac{1025}{83237} = 1.231\%
- w:en:Lottery mathematics 139 1,851,150 \cdot \frac{4}{43} = 172,\!200
- w:en:Lottery mathematics 177 p = \tfrac{1}{13,983,816}
- w:en:Lottery mathematics 177 q = \tfrac{13,983,815}{13,983,816}
- w:en:Lottery mathematics 181 \operatorname{I}_X(\text{win})= -\log_2 {p_X{(\text{win})}}= -\log_2\!{\tfrac{1}{13,983,816}} \approx 23.73725
- w:en:Lottery mathematics 188 \begin{align} \operatorname{I}_X(\text{lose}) &= -\log_2 {p_X{(\text{lose})}} = -\log_2\!{\tfrac{13,983,815}{13,983,816}} \\ &\approx 1.0317 \times 10^{-7} \text{ shannons}.\end{align}
- w:en:Lottery mathematics 206 \begin{align} \Eta(X) &= -p\log(p) - q\log(q) = -\tfrac{1}{13,983,816}\log\!{\tfrac{1}{13,983,816}} - \tfrac{13,983,815}{13,983,816}\log\!{\tfrac{13,983,815}{13,983,816}} \\ & \approx 1.80065 \times 10^{-6} \text{ shannons.} \end{align}
- w:en:Talk:Indefinite and fictitious large numbers 18 {10}^{{3 * 10^{3,000,000,000}}} + 3}
- w:en:Talk:Massachusetts Institute of Technology/Archive 1 51 \approx100,000\frac{11 \pm 2\sqrt{11}}{48000}
- w:en:User talk:Kaimbridge 502 \begin{align}V&=\frac{4}{3}\pi a^2 b=\frac{4}{3}\pi\times6378.137^2\times6356.7523,\\&=1,083,207,317,374\,km^3\approx 1.08321\times10^{12}\,km^3;{}_{\color{white}.}\end{align}\,\!
- w:en:Talk:Powerball 41 {55 \choose 5}*42 = \frac{55!}{5!(55-5)!}*42 = \frac{55*54*53*52*51}{120}*42 = 146,107,962
- w:en:Talk:Powerball 184 {69 \choose 5}\cdot 26=\frac{69\cdot 68\cdot 67\cdot 66\cdot 65}{5!} \cdot 26 = 292,201,338.
- w:en:Talk:Compact Disc Digital Audio 45 2^{16} = 65,536
- w:en:Wikipedia:Reference desk/Science/Birthday probability question 21 \frac{f(1000,365)}{g(1000,365)}
- w:en:Mired 20 M=\frac{1,000,000}{T}
- w:en:Grill (cryptology) 23 26! = 403,291,461,126,605,635,584,000,000
- w:en:Grill (cryptology) 26 \frac{26!}{2^{13} \, 13!} = 7,905,853,580,025
- w:en:Grill (cryptology) 29 \frac{26!}{2^6 \, 6! \, 14!} = 100,391,791,500
- w:en:Wikipedia:Reference desk archive/Humanities/December 2005 3395 2^{1,000,000}
- w:en:Wikipedia:Reference desk archive/Humanities/December 2005 3395 10^{300,000}
- w:en:Absolute return 26 (10,000-9,500)/10,000 = 5\%
- w:en:Absolute return 26 1000\times 10 = 10,000
- w:en:Absolute return 26 1000\times 9.5 = 9,500
- w:en:Rate of return 42 \frac{30}{1,000} = 3%
- w:en:Rate of return 58 \frac{1,346,400 - 1,200,000}{1,200,000} = 12.2\%
- w:en:Talk:Population growth 211 P_0 = 6,896,000,000
- w:en:Actuarial present value 53 100,000 \,A_{\stackrel 1 x :{\overline 3|}} = 100,000 \sum_{t=1}^{3} v^{t} Pr[T(G,x) = t]
- w:en:SIGCUM 26 10 \times 9 \times 8 \times 7 \times 6 \times 2^{5} = 967,680
- w:en:Archimedes's cattle problem 84 \begin{align}B &{}=7,460,514 \\W &{}=10,366,482 \\D &{}=7,358,060 \\Y &{}=4,149,387 \\b &{}=4,893,246 \\w &{}=7,206,360 \\d &{}=3,515,820 \\y &{}=5,439,213\end{align}
- w:en:Archimedes's cattle problem 110 B+W = 7,460,514k + 10,366,482k = (2^2)(3)(11)(29)(4657)k \,
- w:en:User:Ptikobj 54 100,000,000 \times 2^6 = 6,400,000,000
- w:en:Capacity factor 28 \frac{31,200,000\ \mbox{MW·h}}{(365\ \mbox{days}) \times (24\ \mbox{hours/day}) \times (3942\ \mbox{MW})}=0.904={90.4\%}
- w:en:Capacity factor 41 \frac{875,000\ \mbox{MW·h}}{(365\ \mbox{days}) \times (24\ \mbox{hours/day}) \times (209.3\ \mbox{MW})}=0.477 = 47.7\%
- w:en:Capacity factor 57 \frac{87,000,000\ \mbox{MW·h}}{(365\ \mbox{days}) \times (24\ \mbox{hours/day}) \times (22,500\ \mbox{MW})}=0.45 = 45\%
- w:en:Capacity factor 72 \frac{4,200,000\ \mbox{MW·h}}{(365\ \mbox{days}) \times (24\ \mbox{hours/day}) \times (2,080\ \mbox{MW})}=0.23 = 23\%
- w:en:Capacity factor 84 \frac{740,000\ \mbox{MW·h}}{(365\ \mbox{days}) \times (24\ \mbox{hours/day}) \times (290\ \mbox{MW})}= 0.291 = 29.1\%
- w:en:User:JohnOwens/Sandbox 41 e_b = {\hbar c^{10} \over 15,360 \pi^2 G^4 \, M^4} = {h c^{10} \over 30,720 \pi^3 G^4 \, M^4}
- w:en:User:JohnOwens/Sandbox 88 e_b = {2 \pi^5 k^4 \over 15 c^2 h^3} {h^4 c^{12} \over 65,536 \pi^8 k^4 G^4 \, M^4} = {\pi^2 k^4 \over 60 c^2 \hbar^3} {\hbar^4 c^{12} \over 4,096 \pi^4 k^4 G^4 \, M^4}
- w:en:User:JohnOwens/Sandbox 89 e_b = {h c^{10} \over 491,520 \pi^3 G^4 \, M^4} = {\hbar c^{10} \over 245,760 \pi^2 G^4 \, M^4}
- w:en:User:JohnOwens/Sandbox 90 P = {h c^{10} \over 491,520 \pi^3 G^4 \, M^4} A = {\hbar c^{10} \over 245,760 \pi^2 G^4 \, M^4} A
- w:en:User:JohnOwens/Sandbox 91 P = {h c^{10} \over 491,520 \pi^3 G^4 \, M^4} {8 \pi G^2 \, M^2 \over c^4} = {\hbar c^{10} \over 245,760 \pi^2 G^4 \, M^4} {8 \pi G^2 \, M^2 \over c^4}
- w:en:User:JohnOwens/Sandbox 92 P = {h c^6 \over 61,440 \pi^2 G^2 \, M^2} = {\hbar c^6 \over 30,720 \pi G^2 \, M^2}
- w:en:User:JohnOwens/Sandbox 119 P = {c^{10} \hbar \over 245,760 \pi^2 G^4 M^4} A
- w:en:User:JohnOwens/Sandbox 120 A {c^{10} \hbar \over 245,760 \pi^2 G^4 M^4} = {\hbar\,c^6 \over 15360\,\pi\,G^2 M^2}
- w:en:User:JohnOwens/Sandbox 121 A = \frac{\frac{\hbar\,c^6}{15,360\,\pi\,G^2 M^2}}{\frac{c^{10} \hbar}{245,760 \pi^2 G^4 M^4}}
- w:en:User:JohnOwens/Sandbox 122 A = \frac{\hbar\,c^6}{15,360\,\pi\,G^2 M^2} \frac{245,760 \pi^2 G^4 M^4}{c^{10} \hbar}
- w:en:User:JohnOwens/Sandbox 192 P = {\hbar c^6 \over 15,360 \pi G^2 \, M^2} = 9.0081 \times 10^{-29} \mathrm{W}
- w:en:User:JohnOwens/Sandbox 197 e_b = {\hbar c^{10} \over 245,760 \pi^2 G^4 \, M^4} = 8.2191 \times 10^{-37} \mathrm{W/m^2}
- w:en:User:JohnOwens/Sandbox 206 P = {\hbar c^6 \over 15,360 \pi G^2 \, M^2} = 6.8386 \times 10^{21} \mathrm{W}
- w:en:User:JohnOwens/Sandbox 210 e_b = {\hbar c^{10} \over 245,760 \pi^2 G^4 \, M^4} = 4.7369 \times 10^{63} \mathrm{W/m^2}
- w:en:User:JohnOwens/Sandbox 224 P = {\hbar c^6 \over 15,360 \pi G^2 \, M^2} = 2.4821 \times 10^{-81} P_\mathrm{P}
- w:en:User:JohnOwens/Sandbox 227 e_b = {\hbar c^{10} \over 245,760 \pi^2 G^4 \, M^4} = 5.9146 \times 10^{-159} P_\mathrm{P}/\ell_\mathrm{P}^2
- w:en:User:Pfafrich/Blahtex/$ bugs 32 A \ = \ P \times \left( A / P \right) \ = \ P \times { r (1+r)^n \over (1+r)^n - 1 } \ = \ $200,000 \times { 0.005(1.005)^{360} \over (1.005)^{360} - 1 }
- w:en:User:Pfafrich/Blahtex/$ bugs 33 = \ $200,000 \times 0.006 \ = \ $1,200 {\rm \ per \ month}
- w:en:User:Pfafrich/Blahtex/$ bugs 53 \frac{$\ \mbox{60,000}}{$\ \mbox{300,000}}=0.20=20\%
- w:en:User:Pfafrich/Blahtex/$ bugs 54 \frac{1.5}{100}\times$100,000=$1,500
- w:en:User:Pfafrich/Blahtex/$ bugs 61 A_p=$100,000
- w:en:User:Pfafrich/Blahtex/$ bugs 63 \mathit{R=$1,685.39}
- w:en:User:Pfafrich/Blahtex/$ bugs 65 E =\frac{10^6}{720}-\frac{719}{720}\approx$1,387.89
- w:en:User:Pfafrich/Blahtex ^\sqrt bugs 50 {10}^\mbox{10,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000}
- w:en:Talk:0.999.../Arguments 351 9,000 - 0.891 = 0.009
- w:en:Histogram equalization 220 [0,255]
- w:en:65,535 30 2^{16} - 1
- w:en:Talk:Approximations of π 255 3,1415\overline{925} \!\, .
- w:en:Talk:Approximations of π 259 \pi = (3,8,30)_{[60]} = 3 + \frac{8}{60} + \frac{30}{60^{2}} = [3;7,17] = \left\{3, \frac{22}{7}, \frac{377}{120} \right\} = 3,141\overline{6} \,\! ,
- w:en:Brahmagupta's problem 19 (x,y) = (1151,120).
- w:en:Talk:Photon entanglement 46 1/2(\sqrt{2}){[\left|1,45\right\rang \left|2,45\right\rang + \left|1,45\right\rang \left|2,135\right\rang + \left|1,135\right\rang \left|2,45\right\rang + \left|1,135\right\rang \left|2,135\right\rang + \left|1,45\right\rang \left|2,45\right\rang - \left|1,45\right\rang \left|2,135\right\rang - \left|1,135\right\rang \left|2,45\right\rang + \left|1,135\right\rang \left|2,135\right\rang}
- w:en:Talk:Photon entanglement 46 1/\sqrt{2}{\left|1,45\right\rang \left|2,45\right\rang + \left|1,135\right\rang \left|2,135\right\rang}
- w:en:Aryabhatiya 66 \pi \approx \frac{62,832}{20,000} = 3.1416
- w:en:Wikipedia:Reference desk archive/Science/April 2006 3195 Q_r=3,959.871\mbox{ mi}
- w:en:Talk:Greek numerals 144 \stackrel{\delta\phi\pi\beta}{\overline{\Mu}}\overline{\psi\theta} = 4582\times 10,000+709 = 45,820,709. \,
- w:en:Circular mil 38 A = \pi \times 230^2 = 52,900 \pi \approx 166,190.25
- w:en:Circular mil 48 211,600
- w:en:Circular mil 48 = {52,900 \times \pi}
- w:en:Circular mil 49 = {52,900 \times \pi \over 211,600}
- w:en:Circular mil 84 A = 250,000
- w:en:Circular mil 86 d = \sqrt{250,000}
- w:en:Genomic library 149 N=688,060
- w:en:Talk:Mahalanobis distance 126 Z ~ N(0, \operatorname{diag}(1,10)^2 + \operatorname{diag}(10,1)^2) = N(0,\operatorname{diag}(101,101))
- w:en:Pack-year 40 \begin{align}1 \text{ pack-year} &= \frac{1 \text{ pack}}{\text{day}} \cdot 1 \text{ year}\\&= \frac{1 \text{ pack}}{\text{day}} \cdot 365.24 \text{ days}\\&= 365.24 \text{ packs}\\&= 365.24 \text{ packs}\cdot\frac{20 \text{ cigarettes}}{\text{pack}}\\&= 7,305 \text{ cigarettes}\end{align}
- w:en:Talk:Double-precision floating-point format 41 2^{53}-1=9,007,199,254,740,991
- w:en:Talk:Double-precision floating-point format 41 2^{53}=9,007,199,254,740,992
- w:en:Standard illuminant 36 T_{new} = T_{old} \times \frac{1.438,8}{1.435} = 2,848\ \text{K} \times 1.002,648 = 2,855.54\ \text{K}.
- w:en:Standard illuminant 39 S_{A}(\lambda) = 100\left(\frac{560}{\lambda}\right)^5 \frac{\exp \frac{1.435 \times 10^7}{2,848 \times 560} - 1}{\exp\frac{1.435 \times 10^7}{2,848 \lambda} - 1}.
- w:en:Standard illuminant 144 x_D = \begin{cases}0.244,063 + 0.09911 \frac{10^3}{T} + 2.967,8 \frac{10^6}{T^2} - 4.607,0 \frac{10^9}{T^3} & 4,000\ \mathrm{K} \leq T \leq 7,000\ \ \mathrm{K} \\0.237,040 + 0.24748 \frac{10^3}{T} + 1.901,8 \frac{10^6}{T^2} - 2.006,4 \frac{10^9}{T^3} & 7,000\ \mathrm{K} < T \leq 25,000\ \mathrm{K}\end{cases}
- w:en:User talk:UncleDouggie 197 \frac {100,000 \text { articles}}{10 \text { days/edit/article}} = 10,000 \text { edits/day}= 1,000 \text { articles * } 10 \text { edits/day/article}
- w:en:Talk:Histogram equalization 227 [0,255]
- w:en:User:Jclerman/sandbox5 209 11,460 =5730 {\times} 2
- w:en:User:Jake the bear 16 EXTREME-NESS = (575,000,000 x 10^65)^2 x double kick
- w:en:File:Base happiness 2 200.png 17 [2,200]
- w:en:File:Base happiness 2 200.png 19 [1,7077888]
- w:en:Gross tonnage 49 V = \frac{50 \times \ln 10 \times GT}{W(500,000,000,000 \times \ln 10 \times GT)}
- w:en:Talk:Digital video 85 480 \times 640 (pixels/frame) = 307,200 \ pixels \ per \ frame
- w:en:Lindley's paradox 46 \textstyle \mu = np = n\theta = 98,451 \times 0.5 = 49,225.5
- w:en:Lindley's paradox 46 \textstyle \sigma^2 = n\theta (1-\theta) = 98,451\times0.5\times0.5 = 24,612.75
- w:en:Lindley's paradox 50 \begin{align}P(X \geq x \mid \mu=49225.5) = \int_{x = 49581}^{98451}\frac{1}{\sqrt{2\pi\sigma^2}}e^{-(\frac{u-\mu}{\sigma})^2/2}du \\=\int_{x = 49581}^{98451}\frac{1}{\sqrt{2\pi(24,612.75)}}e^{-\frac{(u-49225.5)^2}{24612.75}/2}du \approx 0.0117.\end{align}
- w:en:Lindley's paradox 58 \textstyle k = 49,581
- w:en:Lindley's paradox 58 \textstyle n = 98,451
- w:en:Talk:Valerie Wilson 64 PV \,=\,\$50,000\cdot\frac{1-\frac{1}{\left(1+0.05\right)^{20}}}{0.05}=\$623,110.52
- w:en:User:Alimond 14 Min\ TBAL=\frac{\$15-\$0.30}{1 \times \left[9\%-0\%\times\left(1-12\%\right)\right]/ 365}=\$59,617
- w:en:User:Alimond 15 Min\ TBAL=\frac{\$15-\$0.30}{1 \times \left[9\%-4\%\times\left(1-12\%\right)\right]/ 365}=\$97,911
- w:en:User:Alimond 17 Total\ Cost = 0+\left( \frac{12\%}{52} \times \left\{ \$35,000-\left[ \frac{\left(\$2-0\right)}{\frac{6\%\left(1-12\%\right)}{52}}\right]\right\}\right)=\$76.22
- w:en:User:Alimond 18 Total\ Cost = \$100-\left( \frac{12\%}{52} \times $35,000\right)=\$19.23
- w:en:User:Alimond 19 Total\ Cost = 0+\left( \frac{10\%}{52} \times \left\{ \$15,000-\left[ \frac{\left(\$10-0\right)}{\frac{4.5\%\left(1-12\%\right)}{52}}\right]\right\}\right)=\$3.59
- w:en:User:Alimond 20 Total\ Cost = \$100-\left( \frac{10\%}{52} \times $15,000\right)=\$71.15
- w:en:User:Alimond 21 NPV=\frac{1,000\times$0.40}{10\%/12}-\$60,000=-\$12,000
- w:en:User:Alimond 22 NPV=\frac{5,000\times$0.40}{10\%/12}-\$40,000=\$200,000
- w:en:User:Alimond 23 NPV=\frac{1,000\times$0.40}{5\%/12}-\$40,000=\$56,000
- w:en:User:Alimond 24 NPV=\frac{1,000\times$1}{10\%/12}-\$40,000=\$80,000
- w:en:User:Alimond 25 NPV=\frac{5,000\times$1}{5\%/12}-\$60,000=\$1,140,000
- w:en:User:Alimond 26 NPV=\frac{1,000\times$0.40}{(1+.10)^{(1/12)}-1}-\$40,000=\$10,162
- w:en:User:Alimond 27 NPV=\frac{1,000\times$0.40}{(1+.10)^{(1/12)}-1}-\$60,000=-\$9,838
- w:en:User:Alimond 28 NPV=\frac{5,000\times$0.40}{(1+.10)^{(1/12)}-1}-\$40,000=\$210,811
- w:en:User:Alimond 29 NPV=\frac{1,000\times$0.40}{(1+.05)^{(1/12)}-1}-\$40,000=\$58,181
- w:en:User:Alimond 30 NPV=\frac{1,000\times$1}{(1+.10)^{(1/12)}-1}-\$40,000=\$85,405
- w:en:User:Alimond 31 NPV=\frac{5,000\times$1}{(1+.05)^{(1/12)}-1}-\$60,000=\$1,167,258
- w:en:User:Alimond 32 PV=\frac{-\$20,000}{\left[1+\left(.12\times\frac{4}{365}\right)\right]}-\$8.35=-\$19,982
- w:en:User:Alimond 33 PV=\frac{-\$20,000}{\left[1+\left(.12\times\frac{1}{365}\right)\right]}-\$3.00=-\$19,996
- w:en:User:Alimond 34 PV=\frac{-\$20,000}{\left[1+\left(.08\times\frac{4}{365}\right)\right]}-\$8.35=-\$19,991
- w:en:User:Alimond 35 PV=\frac{-\$20,000}{\left[1+\left(.08\times\frac{1}{365}\right)\right]}-\$3.00=-\$19,999
- w:en:User:Alimond 36 \frac{\frac{\$8.35-\$3.00}{\$20,000}}{4-1}\times365=3.254\%
- w:en:User:Alimond 37 Z=\frac{\left|\$0-\$300,000\right|}{\$275,000}=1.091
- w:en:User:Alimond 39 EFN=30\%\times\$3,000-30\%\times\$500-\left[\frac{\$479.8}{\$5,500}\times\left(\$5,500\times130\%\right)\times\left(1-\frac{\$400}{\$479.8}\right)\right]
- w:en:User:Michael C Price/mega 334 299,792,458 \pm 1.1
- w:en:Digital scan back 38 \frac{1}{50}\mbox{ s} \times 10,000\mbox{ pixels} = 200\mbox{ s}
- w:en:Digital scan back 44 10,000\mbox{ pixels} \times 10,000\mbox{ pixels} \times 48\mbox{ bpp} \times \frac{1\mbox{ byte}}{8\mbox{ bits}} = 600\mbox{ megabytes}
- w:en:User talk:Alniko 150 \frac{745,000}{194} = 3850
- w:en:User:Hpesoj00/7 Card Probabilities 19 {4 \choose 1}\left[{47 \choose 2} + {9 \choose 1}{46 \choose 2}\right] = 41,584
- w:en:User:Hpesoj00/7 Card Probabilities 23 {13 \choose 1}{48 \choose 3} = 224,848
- w:en:User:Hpesoj00/7 Card Probabilities 30 {13 \choose 1}{4 \choose 3}{12 \choose 1}{4 \choose 2}{11 \choose 2}{4 \choose 1}^2 = 3,294,720
- w:en:User:Hpesoj00/7 Card Probabilities 35 {13 \choose 1}{4 \choose 3}{12 \choose 2}{4 \choose 2}^2 = 123,552
- w:en:User:Hpesoj00/7 Card Probabilities 40 {13 \choose 2}{4 \choose 3}^2{11 \choose 1}{4 \choose 1} = 9,152
- w:en:User:Hpesoj00/7 Card Probabilities 44 3,294,720 + 123,552 + 9,152 = 3,473,184\,
- w:en:User:Hpesoj00/7 Card Probabilities 48 {4 \choose 1}\left[{13 \choose 5}{39 \choose 2} + {13 \choose 6}{39 \choose 1} + {13 \choose 7}\right] - 41,584 = 4,047,644
- w:en:User:Hpesoj00/7 Card Probabilities 60 {4 \choose 1}^7 = 16,384\,
- w:en:User:Hpesoj00/7 Card Probabilities 68 16,384 - 844 = 15,541\,
- w:en:User:Hpesoj00/7 Card Probabilities 72 217 \cdot 15,541 = 3,372,180\,
- w:en:User:Hpesoj00/7 Card Probabilities 86 {4 \choose 1}^5 = 1,024\,
- w:en:User:Hpesoj00/7 Card Probabilities 94 1,024 - 34 = 990\,
- w:en:User:Hpesoj00/7 Card Probabilities 98 71 \cdot 36 \cdot 990 = 2,530,440\,
- w:en:User:Hpesoj00/7 Card Probabilities 112 10 \cdot 20 \cdot 253 = 50,600\,
- w:en:User:Hpesoj00/7 Card Probabilities 126 6 \cdot \left[64 - {2 \choose 1}\right] + 24 \cdot (64 - 1) + 6 \cdot 64 = 2,268\,
- w:en:User:Hpesoj00/7 Card Probabilities 130 10 \cdot 10 \cdot 2,268 = 226,800\,
- w:en:User:Hpesoj00/7 Card Probabilities 134 3,372,180 + 2,530,440 + 50,600 + 226,800 = 6,180,020\,
- w:en:User:Hpesoj00/7 Card Probabilities 138 {13 \choose 5} - 10 = 1,277
- w:en:User:Hpesoj00/7 Card Probabilities 150 1,277 \cdot 20 \cdot 253 = 6,461,620\,
- w:en:User:Hpesoj00/7 Card Probabilities 158 {13 \choose 4}{4 \choose 3}{4 \choose 2}^3{4 \choose 1} = 2,471,040
- w:en:User:Hpesoj00/7 Card Probabilities 164 \left[{13 \choose 5} - 10\right]{5 \choose 2} \cdot 2,268 = 28,962,360
- w:en:User:Hpesoj00/7 Card Probabilities 168 2,471,040 + 28,962,360 = 31,433,400\,
- w:en:User:Hpesoj00/7 Card Probabilities 172 {13 \choose 6} - 9 - \left[2 \cdot {7 \choose 1} + 8 \cdot {6 \choose 1}\right] = 1,645
- w:en:User:Hpesoj00/7 Card Probabilities 180 1645 \cdot 36 \cdot 990 = 58,627,800
- w:en:User:Hpesoj00/7 Card Probabilities 184 {13 \choose 6} - 8 - \left[2 \cdot {6 \choose 1} + 7 \cdot {5 \choose 1}\right] - \left[2 \cdot {7 \choose 2} + 8 \cdot {6 \choose 2}\right] = 1,499
- w:en:User:Hpesoj00/7 Card Probabilities 188 {4 \choose 1}^7 - 844 = 15,540
- w:en:User:Hpesoj00/7 Card Probabilities 192 1,499 \cdot 15,540 = 23,294,460\,
- w:en:Talk:Integrated pest management 55 46/342.34675.9875.484<5748732 $ 7584,5584,57564438m430+8678=$67432.434.3245.432345.4245.32452345.454234
- w:en:Talk:African Americans/Archive 7 507 1,355%
- w:en:Graphical timeline of the Stelliferous Era 16 10 \times \log_{10} 1,000,000 = 10\times 6 = 60
- w:en:Wikipedia:Reference desk archive/Science/2006 August 28 214 T = \frac{E_{photon}}{k} = \frac{h c}{\lambda k} = 28,800
- w:en:Talk:Chebyshev function 40 0<n<2,000,000,000
- w:en:Wheat and chessboard problem 36 T_{64} = 1 + 2 + 4 + \cdots + 9,223,372,036,854,775,808 = 18,446,744,073,709,551,615
- w:en:Wikipedia:Reference desk archive/Computing/2006 September 28 54 2^{10} = 1,024
- w:en:Wikipedia:Reference desk archive/Computing/2006 September 28 56 2^{20} = 1,048,576
- w:en:Wikipedia:Reference desk archive/Computing/2006 September 28 58 2^{30} = 1,073,741,824
- w:en:Wikipedia:Does Wikipedia traffic obey Zipf's law? 37 \sqrt{\frac{6}{2,700,000}} \approx 0.0015
- w:en:Template talk:Uspop 39 {86,400 \over 11} = 7,854
- w:en:Template talk:Uspop 41 {29,953 \over 7854} = 3.8
- w:en:User:Valoem/Poker probability (Omaha) 28 {52 \choose 4} = 270,725
- w:en:User:Valoem/Poker probability (Omaha) 577 {52 \choose 3} = 22,100
- w:en:User:Valoem/Poker probability (Omaha) 581 {52 \choose 4} = 270,725
- w:en:User:Valoem/Poker probability (Omaha) 585 {52 \choose 5} = 2,598,960
- w:en:User:Valoem/Poker probability (Omaha) 589 {48 \choose 3} = 17,296
- w:en:User:Valoem/Poker probability (Omaha) 593 {48 \choose 4} = 194,580
- w:en:User:Valoem/Poker probability (Omaha) 597 {48 \choose 5} = 1,712,304
- w:en:User:Valoem/Poker probability (Omaha) 619 \begin{matrix}{52 \choose 3} = 22,100\end{matrix}
- w:en:User:Valoem/Poker probability (Omaha) 635 \begin{matrix}{52 \choose 4} = 270,725\end{matrix}
- w:en:User:Valoem/Poker probability (Omaha) 665 \begin{matrix}{52 \choose 5} = 2,598,960\end{matrix}
- w:en:User:Valoem/Poker probability (Omaha) 1223 \begin{matrix} {49 \choose 2} = 1,176 \end{matrix}
- w:en:User:Valoem/Poker probability (Omaha) 1225 {52 \choose 3}{3 \choose 3}{49 \choose 2} = 25,989,600
- w:en:User:Valoem/Poker probability (Omaha) 1227 \begin{matrix} {48 \choose 2} = 1,128 \end{matrix}
- w:en:User:Valoem/Poker probability (Omaha) 1229 {52 \choose 4}{4 \choose 3}{48 \choose 2} = 1,221,511,200
- w:en:User:Valoem/Poker probability (Omaha) 1231 \begin{matrix} {47 \choose 2} = 1,081 \end{matrix}
- w:en:User:Valoem/Poker probability (Omaha) 1233 {52 \choose 5}{5 \choose 3}{47 \choose 2} = 28,094,757,600
- w:en:User:Valoem/Poker probability (Omaha) 1283 432 \times {4 \choose 1} + 64 \times {4 \choose 1}{39 \choose 1} = 11,712
- w:en:User:Valoem/Poker probability (Omaha) 1287 1,208 \times {4 \choose 1} + 432 \times {4 \choose 1}{39 \choose 1} + 64 \times {4 \choose 1}{39 \choose 2} = 261,920
- w:en:User:Valoem/Poker probability (Omaha) 1295 {13 \choose 1}{4 \choose 3} + {13 \choose 1}{4 \choose 2}{12 \choose 1}{4 \choose 1} = 3,796
- w:en:User:Valoem/Poker probability (Omaha) 1297 \begin{matrix} 64 \times {4 \choose 1}{3 \choose 1}{3 \choose 1} = 2,304\end{matrix}
- w:en:User:Valoem/Poker probability (Omaha) 1302 {13 \choose 1}{4 \choose 3}{12 \choose 1}{4 \choose 1} + {13 \choose 2}{4 \choose 2}^2 + \left [ {13 \choose 2}{4 \choose 2}{12 \choose 2}{4 \choose 1}^2 - 2,304 \right ] = 85,368
- w:en:User:Valoem/Poker probability (Omaha) 1304 \begin{matrix} 64 \times {4 \choose 1}{3 \choose 1}{3 \choose 2} = 2,304 \end{matrix}
- w:en:User:Valoem/Poker probability (Omaha) 1304 \begin{matrix} 64 \times {4 \choose 1}{3 \choose 2}{3 \choose 1}^2 = 6,912 \end{matrix}
- w:en:User:Valoem/Poker probability (Omaha) 1305 \begin{matrix} 432 \times {4 \choose 1}{3 \choose 1} = 20,736 \end{matrix}
- w:en:User:Valoem/Poker probability (Omaha) 1306 \begin{matrix} 64 \times {4 \choose 1}{3 \choose 1}{3 \choose 1}{10 \choose 1}{3 \choose 1} = 69,120 \end{matrix}
- w:en:User:Valoem/Poker probability (Omaha) 1307 \begin{matrix} 64 \times {4 \choose 1}{10 \choose 1}{3 \choose 2} = 7,680 \end{matrix}
- w:en:User:Valoem/Poker probability (Omaha) 1313 3,744\,
- w:en:User:Valoem/Poker probability (Omaha) 1315 + {13 \choose 1}{4 \choose 3}{12 \choose 2}{4 \choose 1}^2 - 2,304
- w:en:User:Valoem/Poker probability (Omaha) 1316 52,608\,
- w:en:User:Valoem/Poker probability (Omaha) 1318 + {13 \choose 2}{4 \choose 2}^2{11 \choose 2}{4 \choose 1} - 6,912
- w:en:User:Valoem/Poker probability (Omaha) 1319 116,640\,
- w:en:User:Valoem/Poker probability (Omaha) 1321 + {13 \choose 1}{4 \choose 2}{12 \choose 3}{4 \choose 1}^3 - 97,536
- w:en:User:Valoem/Poker probability (Omaha) 1322 1,000,704\,
- w:en:User:Valoem/Poker probability (Omaha) 1324 1,173,696\,
- w:en:User:Valoem/Poker probability (Omaha) 1339 \begin{matrix}{13 \choose 5} - 1,208 = 79\end{matrix}
- w:en:User:Valoem/Poker probability (Omaha) 1345 283 \times {4 \choose 1} + 222 \times {4 \choose 1}{10 \choose 1}{3 \choose 1} = 27,772
- w:en:User:Valoem/Poker probability (Omaha) 1352 79 \times {4 \choose 1} + 283 \times {4 \choose 1}{9 \choose 1}{3 \choose 1} + 222 \times {4 \choose 1}{10 \choose 2}{3 \choose 1}^2 = 390,520
- w:en:User:Valoem/Poker probability (Omaha) 1360 64 \times 60 = 3,840\,
- w:en:User:Valoem/Poker probability (Omaha) 1364 432 \times 204 = 88,128\,
- w:en:User:Valoem/Poker probability (Omaha) 1364 1,208 \times 600 = 724,800\,
- w:en:User:Valoem/Poker probability (Omaha) 1372 79 \times 600 = 47,400\,
- w:en:User:Valoem/Poker probability (Omaha) 1372 222 \times 60 = 13,320\,
- w:en:User:Valoem/Poker probability (Omaha) 1372 283 \times 204 = 57,732\,
- w:en:User:Valoem/Poker probability (Omaha) 2171 P_f = \frac{C}Vorlage:48 \choose 3 = \frac{C}{17,296}.
- w:en:Wikipedia talk:WikiProject Mathematics/Archive 18 655 \sqrt[20]{2,535,099,102,664}
- w:en:Talk:Howland will forgery trial 37 p(r = 30 | \theta)= \frac{1}{B(252.5,1008.5)}\int_0^1 \theta^{30} \theta^{251.5}(1 - \theta)^{1007.5}d\theta = 4.153092037700561 \times 10^{-21}.
- w:en:Wikipedia:Reference desk/Archives/Science/2006 November 20 278 \langle 3895\,\mathrm{km/h} \,\angle 28.58^\circ\rangle+\langle(0.92519600-1)3895\,\mathrm{km/h} \,\angle 0\rangle-\langle1669.8\,\mathrm{km/h} \,\angle 0\rangle=\langle 1459.2,1863.3\rangle\,\mathrm{km/h}=\langle 2366.675205853\,\mathrm{km/h} \,\angle 51.93^\circ\rangle
- w:en:65,537 23 2^{2^{n}} +1
- w:en:65,537 23 n = 4
- w:en:65,537 27 2^{2^{0}} + 1 = 2^{1} + 1 = 3,
- w:en:65,537 29 2^{2^{1}} + 1= 2^{2} +1 = 5,
- w:en:65,537 31 2^{2^{2}} + 1 = 2^{4} +1 = 17,
- w:en:65,537 33 2^{2^{3}} + 1= 2^{8} + 1= 257,
- w:en:65,537 35 2^{2^{4}} + 1 = 2^{16} + 1 = 65537.
- w:en:65,537 39 2^{2^{5}} + 1 = 2^{32} + 1 = 4294967297 = 641 \times 6700417
- w:en:65,537 43 2^{2^{6}} + 1 = 2^{64} + 1 = 274177 \times 67280421310721
- w:en:65,537 45 10^{n} + 27
- w:en:Cephalopod size 14 \left ( \frac{495,000}{0.00015} \right ) = 3,300,000,000
- w:en:Cephalopod size 14 \left ( \frac{495,000}{0.2} \right ) = 2,475,000
- w:en:Talk:Special relativity/Archive 3 160 1sec=i*300,000,000m
- w:en:Talk:E8 (mathematics) 175 (3,1) + (1,133) + (2,56) \,\!
- w:en:Talk:Transcendental Chess 20 2880^2=8,294,400
- w:en:Talk:Computing π 58 \pi_0,\pi_1=0.5, \pi_2=2, \pi_3=4, \pi_4=17, \pi_5=37, \pi_6=164, \pi_7=368, \pi_8=1,667, \pi_9=3,803, \pi_1~_0
- w:en:Talk:Computing π 60 =17,452, \pi_1~_1=40,232, \pi_1~_2=186,218, \pi_1~_3=432,386, \pi_1~_4=2,013,368, \pi_1~_5=4,700,096, ...
- w:en:IK Pegasi 174 \begin{smallmatrix} 10^{5.96} \approx 912,000 \end{smallmatrix}
- w:en:IK Pegasi 178 \begin{smallmatrix} \lambda_b = (2.898 \times 10^6 \operatorname{nm\ K})/(35,500\ \operatorname{K}) \approx 82\, \end{smallmatrix}
- w:en:Talk:82 G. Eridani 36 \begin{align} \frac{L}{L_{sun}} & = \left ( \frac{R}{R_{sun}} \right )^2 \left ( \frac{T_{eff}}{T_{sun}} \right )^4 \\ & = 0.92^2 \left ( \frac{5,401}{5,778} \right )^4 = 0.65\end{align}
- w:en:User:Michael Hardy/scratchwork 441 \begin{array}{lclclclc}\{5,7\} & \overset{-1}\mapsto & \{2,5,7,17\} & \overset{-1}\mapsto & \{2,5,7,17,29,41\} & \overset{+1}\mapsto & \{2,3,5,7,17,19,29,41,103,241\} \\& & & & & \overset{+1}\mapsto & \{2,3,5,7,13,17,19,29,41,103,241,105727,1456561\}\end{array}
- w:en:User:Michael Hardy/scratchwork 448 \begin{array}{lclclclc}\{5,11\} & \overset{-1}\mapsto & \{2,3,5,11\} & \overset{-1}\mapsto & \{2,3,5,7,11,47\} & \overset{-1}\mapsto & \{2,3,5,7,11,47,151,719\} \\& & & & & \overset{-1}\mapsto & \{2,3,5,7,11,47,67,79,151,719,1249,1783\}\end{array}
- w:en:Technetium-99m 109 \ce{^{99\!m}_{43}Tc ->[\ce{\gamma\ 141 keV}][\ce{6 h}] {}^{99}_{43}Tc ->[\ce{\beta^-\ 249 keV}][211,000\ \ce{y}] \overbrace{\underset{(stable)}{^{99}_{44}Ru}}^{ruthenium-99}}
- w:en:User:Doug Bell/Probability derivations for making rank-based hands in Omaha hold 'em 22 \begin{matrix} {48 \choose 5} = 1,712,304 \end{matrix}
- w:en:User:Doug Bell/Probability derivations for making rank-based hands in Omaha hold 'em 22 \begin{matrix} {48 \choose 3} = 17,296 \end{matrix}
- w:en:User:Doug Bell/Probability derivations for making rank-based hands in Omaha hold 'em 22 \begin{matrix} {48 \choose 4} = 194,580 \end{matrix}
- w:en:Lightness 50 V^2 = 1.474,2 Y - 0.004,743 Y^2.
- w:en:Lightness 53 Y = 1.221,9 V - 0.231,11 V^2 + 0.239,51 V^3 - 0.021,009 V^4 + 0.000,840,4 V^5.
- w:en:User:Dravick/MySandBox 42 max \theta = \arctan(\frac{(12,3cm + 0,1cm) - (7,5cm - 0,1cm)}{(9,8cm - 0,1cm) - (3,9cm + 0,1cm)}) = \arctan(\frac{5,0}{5,7}) \approx 41,2570^\circ
- w:en:User:Dravick/MySandBox 43 min \theta = \arctan(\frac{(12,3cm - 0,1cm) - (7,5cm + 0,1cm)}{(9,8cm + 0,1cm) - (3,9cm - 0,1cm)}) = \arctan(\frac{4,6}{6,1}) \approx 37,0199^\circ
- w:en:User:Dravick/MySandBox 48 \Delta \theta = \frac{41,2570^\circ - 37,0199^\circ}{2} = 2,11855^\circ \approx 2^\circ
- w:en:Misiurewicz point 85 \frac{1}{6}_{10} = \frac{1}{2*3}_{10}= 0,16666..._{10} = 0.0(01)..._2
- w:en:Wikipedia talk:WikiProject Aircraft/Archive 15 163 350 ft = (\frac{10,000}{1,000})\times 35 mils
- w:en:User talk:SamSim/Sandbox 75 \langle 10,100(0,2)2 \rangle = \langle \langle 10,100(0,1)2 \rangle ,100(100)2 \rangle
- w:en:User talk:SamSim/Sandbox 77 \langle 10,100(0,3)2 \rangle
- w:en:User talk:SamSim/Sandbox 79 \langle 10,100(0,4)2 \rangle
- w:en:User talk:SamSim/Sandbox 81 \langle 10,100(0,5)2 \rangle
- w:en:User talk:SamSim/Sandbox 83 \langle 10,100(0,6)2 \rangle
- w:en:User talk:SamSim/Sandbox 109 \langle 10,100(0,0,1)2 \rangle = \langle 10,100(0,100)2 \rangle
- w:en:User talk:SamSim/Sandbox 111 \langle 10,100(0,0,2)2 \rangle = \langle 10,100(0,200)2 \rangle
- w:en:User talk:SamSim/Sandbox 113 \langle 10,100(0,0,3)2 \rangle = \langle 10,100(0,300)2 \rangle
- w:en:User talk:SamSim/Sandbox 115 \langle 10,100(0,0,0,1)2 \rangle = \langle 10,100(0,100^2)2 \rangle
- w:en:User talk:SamSim/Sandbox 117 \langle 10,100(0,0,0,0,1)2 \rangle = \langle 10,100(0,100^3)2 \rangle
- w:en:User talk:SamSim/Sandbox 119 \begin{matrix} \langle 10,100(& \underbrace{ 0,0,\ldots,0 }&,1)2 \rangle \\ &100 \end{matrix} = \langle 10,100(0,100^{99})2 \rangle
- w:en:User talk:SamSim/Sandbox 143 \langle 10,100((1)1)2 \rangle = \begin{matrix} \langle 10,100(& \underbrace{ 0,0,\ldots,0 }&,1)2 \rangle \\ &100 \end{matrix}
- w:en:User talk:SamSim/Sandbox 202 \langle 10,100((0,1)1)2 \rangle = \langle 10,100((100)1)2 \rangle
- w:en:User talk:SamSim/Sandbox 204 \langle 10,100(((1)1)1)2 \rangle = \langle 10,100((0,0,\ldots,1)1)2 \rangle = \langle 10,100((100^{100})1)2 \rangle
- w:en:User talk:SamSim/Sandbox 212 \langle 10,100,3 \rangle = 10\uparrow\uparrow\uparrow100
- w:en:User talk:SamSim/Sandbox 216 \langle 10,100,4 \rangle = 10\uparrow\uparrow\uparrow\uparrow100
- w:en:User talk:SamSim/Sandbox 220 \langle 10,10,100 \rangle
- w:en:User talk:SamSim/Sandbox 222 \langle 10,100(100)2 \rangle = \text{gongulus}
- w:en:User talk:SamSim/Sandbox 320 \{10,100\} = 10^{100}
- w:en:Wikipedia:Reference desk/Archives/Mathematics/2007 February 6 120 0,255
- w:en:Elitserien (speedway) 105 8,3966667 = \frac{ 8,11 * 12 + ((14 * 5 / 4) - 7,76)} { 12}
- w:en:User:MYCHEMICALROMANCEROX 10 798,889 + 78979879 =
- w:en:User:MYCHEMICALROMANCEROX 13 798,889 + 78979879 =
- w:en:User talk:Zero Memory 130 F(1) - F(0) = \frac{\pi}{9} \sqrt{3} = 0,60459978807807261686469275254739
- w:en:Talk:Quadratic irrational number 46 2\sqrt{42} = 12,9614 \ldots = [12;\overline{1,24}] \!\, ,
- w:en:Talk:Quadratic irrational number 48 1+2\sqrt{2} = 3,8284 \ldots = [3;\overline{1,4}] \!\, ,
- w:en:Talk:Quadratic irrational number 51 1+42\sqrt{42} = 273,1911 \ldots = [273;\overline{5,4,3,2,1,10,2,2,2,1,10,1,7,10,1,59,1,1,2,1,3,10,1,5,3,1,1,1,3,5,1,10,3,1,2,1,1,59,1,10,7,1,10,1,2,2,2,10,1,2,3,4,5,544}] \!\, ,
- w:en:Talk:Quadratic irrational number 53 (42+42\sqrt{42})/42 = 7,4807 \ldots = [7;\overline{2,12}] \!\, ,
- w:en:Talk:Quadratic irrational number 55 (40+41\sqrt{42})/43 = 7,1095 \ldots = [7;\overline{9,7,1,3,4,5,1,11,1,21,5,38,1,399,1,11,1,3,1,1}\ldots] \!\, ,
- w:en:Talk:Quadratic irrational number 63 (42+\sqrt{5})/42 = 1,0532 \ldots = [1;18,\overline{1,3,1,1,1,1,4,1,1,1,1,3,1,36}] \!\, ,
- w:en:Talk:Quadratic irrational number 65 (13+\sqrt{11})/79 = 0,2065 \ldots = [0;4,1,5,\overline{3,6}] \!\, ,
- w:en:Kazhdan–Lusztig polynomial 77 \begin{align}152 q^{22} &+ 3,472 q^{21} + 38,791 q^{20} + 293,021 q^{19} + 1,370,892 q^{18} + 4,067,059 q^{17} + 7,964,012 q^{16}\\&+ 11,159,003 q^{15} + 11,808,808 q^{14} + 9,859,915 q^{13} + 6,778,956 q^{12} + 3,964,369 q^{11} + 2,015,441 q^{10}\\&+ 906,567 q^9 + 363,611 q^8 + 129,820 q^7 + 41,239 q^6 + 11,426 q^5 + 2,677 q^4 + 492 q^3 + 61 q^2 + 3 q\end{align}
- w:en:Relative change and difference 117 \frac{\$10,000}{\$40,000} = 0.25 = 25\%,
- w:en:Relative change and difference 119 \frac{\$50,000}{\$40,000} = 1.25 = 125\%,
- w:en:Relative change and difference 123 \frac{-\$10,000}{\$50,000} = -0.20 = -20\%
- w:en:Relative change and difference 125 \frac{\$40,000}{\$50,000} = 0.8 = 80\%
- w:en:Talk:Compact fluorescent lamp/Archive 1 232 (50 \ therms) \times \frac{105,000,000 \ J}{1 \ therm} \times \frac{1 \ kW*hour}{3,600,000 J} = 1465 \ kW*hours
- w:en:Skewb Ultimate 37 \frac{6!\times 2^5\times 4!\times 3^6}{4} = 100,776,960.
- w:en:65,536 20 2^{16}
- w:en:65,536 25 2^{2^{2^2}}
- w:en:65,536 30 2 \uparrow 16
- w:en:65,536 34 2 \uparrow 2 \uparrow 2 \uparrow 2
- w:en:65,536 38 2 \uparrow\uparrow 4
- w:en:65,536 42 2 \uparrow\uparrow\uparrow 3
- w:en:User:Thisoldmage 136 (199,253)
- w:en:User:Thisoldmage 136 (203,248)
- w:en:Shamir's Secret Sharing 74 \left(x_0,y_0\right)=\left(2,1942\right);\left(x_1,y_1\right)=\left(4,3402\right);\left(x_2,y_2\right)=\left(5,4414\right)\,\!
- w:en:Shamir's Secret Sharing 106 D_0=(1,1494)
- w:en:Shamir's Secret Sharing 106 D_1=(2,1942)
- w:en:Shamir's Secret Sharing 121 a_2\in[0,1,\dots,148,149]
- w:en:Shamir's Secret Sharing 123 S\in[1046+2\times0,1046+2\times1,\dots,1046+2\times148,1046+2\times149]
- w:en:Shamir's Secret Sharing 125 S\in[1046,1048,\dots,1342,1344]
- w:en:Shamir's Secret Sharing 140 \left(1,1494\right);\left(2,329\right);\left(3,965\right);\left(4,176\right);\left(5,1188\right);\left(6,775\right)
- w:en:Shamir's Secret Sharing 144 D_0=\left(1,1494\right)
- w:en:Shamir's Secret Sharing 144 D_1=\left(2,329\right)
- w:en:Shamir's Secret Sharing 156 [448,445,442,...]
- w:en:User:Lenthe/abc conjecture (draft) 34 Q(3,125,128)=\frac{\log(128)}{\log(\operatorname{rad}(3\cdot 125\cdot 128))} =\frac{\log(128)}{\log(30)}\approx 1.42657
- w:en:User:Tikai/math 825 c=\sqrt{\frac{\gamma P}{\rho}}=\sqrt{1.4(101,325Pa)}{\frac{1.2kg}{m^3}}=343.820m/s
- w:en:Binomial approximation 55 (1+x)^\alpha > 22,000
- w:en:User:Tetraglot/Sandbox 54 165 Cal = 165 Cal \cdot \frac{1000 cal}{1 cal} \cdot \frac{4.184 j}{1 cal} = 690,360 j = 690. \times 10^5 j
- w:en:Talk:Parthenon/Archive 2 128 \textstyle\frac{40,041,470.meters}{360 x 60 x 60}
- w:en:Reciprocal Fibonacci constant 48 \psi =[3;2,1,3,1,1,13,2,3,3,2,1,1,6,3,2,4,362,2,4,8,6,30,50,1,6,3,3,2,7,2,3,1,3,2, \dots ] \!\, .
- w:en:Wikipedia:Reference desk/Archives/Science/2007 July 17 74 \Delta Q = -2.4 * 6.667 * 3600 = -57,600
- w:en:Wikipedia:Reference desk/Archives/Science/2007 July 17 105 \Delta Q = -2.4 * 6.667 * 3600 = -57,600
- w:en:Talk:Surface brightness 45 k=\frac{ \pi }{ 648,000 }
- w:en:Arrhenius plot 74 \ln(k) = 23.1 - 12,667 (1/T)
- w:en:Arrhenius plot 77 k = e^{23.1} \cdot e^{-12,667/T}
- w:en:Arrhenius plot 81 k = 1.08 \times 10^{10} \cdot e^{-12,667/T}
- w:en:Talk:Navajo Generating Station 67 \frac{16,952,000\ \mbox{MW·h}}{(365\ \mbox{days}) \times (24\ \mbox{hours/day}) \times (2250\ \mbox{MW})}=0.86={86\%}
- w:en:Eight-point algorithm 139 (700,700) \pm (100,100) \,
- w:en:Wikipedia:Reference desk/Archives/Mathematics/2007 August 21 196 32,000,000 \times (1 + \sqrt{2})
- w:en:Modified Dietz method 333 = 250 - 1,000 + 1,200
- w:en:Modified Dietz method 342 = 1,000 - \frac {7}{8} \times 1,200
- w:en:Modified Dietz method 343 = 1,000 - 1,050
- w:en:Modified Dietz method 374 \text {Start value} = 1,000 \text { dollars}
- w:en:Modified Dietz method 377 = 250 + 1,200
- w:en:Modified Dietz method 378 = 1,450
- w:en:Modified Dietz method 381 = \frac {1,450 - 1,000}{1,000}
- w:en:User:Didero/Sandbox 38 F(1+i)^n, F = 1.000.000, n = 5 \rightarrow (1+i)^5 = 1,8 \rightarrow \ 1+i = \sqrt[5]{1,8} = 1,124 \rightarrow i = 0,12 = 12 %
- w:en:User:Didero/Sandbox 43 1. P = \sum_{t=1}^n \frac{C}{(1+i)^t} = \frac{1100}{1,12} + \frac{1210}{1,12^2} + \frac{1331}{1,12^3} = \frac{1100}{1,120} + \frac{1210}{1,125} + \frac{1331}{1,404} = 982 + 1076 + 948 = 3006
- w:en:Wikipedia:Reference desk/Archives/Mathematics/2007 September 15 80 p(2000) = 150,000
- w:en:User:Doug Bell/Probability derivations for making low hands in Omaha hold 'em 52 \begin{matrix} {48 \choose 5} = 1,712,304 \end{matrix}
- w:en:User:Doug Bell/Probability derivations for making low hands in Omaha hold 'em 52 \begin{matrix} {48 \choose 3} = 17,296 \end{matrix}
- w:en:User:Doug Bell/Probability derivations for making low hands in Omaha hold 'em 52 \begin{matrix} {48 \choose 4} = 194,580 \end{matrix}
- w:en:Epstein frame 26 P_c = \frac {N_1}{N_2} \cdot P_m - \frac {\left( 1,111 \cdot |\bar{U_2}| \right)^2}{R_i}
- w:en:User:Benjamin Mako Hill/11BP 28 eleventy \; billion = eleventy \times billion = 110 \times 1,000,000,000 = 110,000,000,000
- w:en:User:Benjamin Mako Hill/11BP 49 eleventy \; billion = eleventy \times billion = 110 \times 1,000,000,000 = 110,000,000,000
- w:en:User:Benjamin Mako Hill/11BP 52 100 + 10,000,000,000 = 10,000,000,100
- w:en:User:Benjamin Mako Hill/11BP 52 100 \; AND \; 10,000,000,000 = 0
- w:en:Wikipedia:Reference desk/Archives/Science/2007 October 24 129 \Delta t = \gamma \ \Delta t_0 = \frac{8\;years}{\sqrt{1-(149,896,229\;m/s)^2/(299,792,458\;m/s)^2}} \,
- w:en:Wikipedia:Reference desk/Archives/Science/2007 October 24 130 \Delta t = \gamma \ \Delta t_0 = \frac{252,288,000\;seconds}{\sqrt{1-(149,896,229\;m/s)^2/(299,792,458\;m/s)^2}} \,
- w:en:Wikipedia:Reference desk/Archives/Science/2007 October 24 131 \Delta t = \gamma \ \Delta t_0 = \sqrt{168,192,003\;s^2}
- w:en:Rook polynomial 87 {64 \choose 8} = \frac{64!}{8!(64-8)!} = 4,426,165,368.
- w:en:Rook polynomial 107 \textstyle{\frac{8! 8!}{3!5!5!}} = 18,816
- w:en:User talk:Jarek Duda 153 (11,)\leftrightarrow(8,0),\leftrightarrow(6,00),\leftrightarrow(1,001)\leftrightarrow(0,0010)
- w:en:Federal University of ABC 144 I_k = (0,07 \cdot CR) + (0,63 \cdot CPk) + (0,005 \cdot T)
- w:en:Wikipedia:Reference desk/Archives/Science/2007 November 17 226 F=\frac{\pi^2 EI}{(Kl)^2}=\frac{\pi^2 \cdot 210,000,000,000 \ \mathrm{Pa} \cdot \frac{\pi}{64} ((3 \ \mathrm{m})^4 - (2.8 \ \mathrm{m})^4)}{(2 \cdot 65 \ \mathrm{m})^2}=117,599,000 \ \mathrm{N}
- w:en:Wikipedia:Reference desk/Archives/Science/2007 November 17 228 F=\mathrm{Cross \ sectional \ area} \cdot \mathrm{Yield \ strength}=(\pi \cdot (1.5 \ \mathrm{m})^2-\pi \cdot (1.4 \ \mathrm{m})^2) \cdot 248,000,000 \ \mathrm{Pa}=225,943,000 \ \mathrm{N}
- w:en:Wikipedia:Reference desk/Archives/Mathematics/2007 December 1 96 113,160,359_{631}
- w:en:3C 20 33 700 Mpc*sin(76.8 arcsec) = 850,000 ly
- w:en:Talk:Waterboarding/Archive 7 5149 {3,000\over3,000,000} \times 100% = 0.1%
- w:en:DMRG of the Heisenberg model 45 |1000\dots0\rangle\equiv|f_1\rangle=|u_1,t_1,s_1,r_1\rangle\equiv|100,100,100,100\rangle
- w:en:DMRG of the Heisenberg model 49 |0100\dots0\rangle\equiv|f_2\rangle=|u_1,t_1,s_1,r_2\rangle\equiv|100,100,100,010\rangle
- w:en:User talk:AtomicPunk23 22 1/2*(99800*251.67*251.67) = 3,160,555,666
- w:en:Burton Wold Wind Farm 78 \frac{43,416 \mbox{MWh}}{(366 \mbox{days}) \times (24 \mbox{hours/day}) \times (20 \mbox{MW})}=0.2471 \approx{25\%}
- w:en:User:GabrielVelasquez/Solar Constant Formula 51 AU_{\odot}=149,597,870.691 \hbox{ km}
- w:en:Talk:Hyperdeterminant 22 ijk\neq 000,111
- w:en:Occupancy grid mapping 30 2^{10,000}
- w:en:Cribbage statistics 21 {52 \choose 4} \times 48 = 12,994,800
- w:en:Cribbage statistics 23 {52 \choose 5} \times 5 = 12,994,800
- w:en:Cribbage statistics 307 {52 \choose 4} \times {48 \choose 4} \times 44 = 2,317,817,502,000
- w:en:User:DaAaAaAaAaA 21 Schenkel McDoo - pi + 1,000,000,000 = Ya Guys! Maybe find some coin!
- w:en:User:Teratornis/Energy 5102 ( 25 \mbox{kWh/100 mi}) \times (10,000 \mbox{mi/yr})=2500 \mbox{kWh/yr}
- w:en:User:Teratornis/Energy 5106 ( 1,800 \mbox{kW} ) \times ( 0.25 ) \times (8,760 \mbox{hr/yr}) \times (0.9) = 3,547,800 \mbox{kWh/yr}
- w:en:User:Teratornis/Energy 5110 \frac{3,547,800}{2500}=1,419
- w:en:Ant on a rubber rope 91 T=(e^{100,000}-1)\,\mathrm{s}\,\!\approx2.8\times10^{43,429}\,\mathrm{s}
- w:en:Talk:Decibel/Archive 1 324 L_\mathrm{p}=20\, \log_{10}\left(\frac{101,325}{2\times10^{-5}}\right)= 194.09 \mbox{ dB SPL}
- w:en:Moving target indication 37 \text{Doppler} = 180,000^\circ/\text{s} = 720\left(\frac{75 \times 10^9}{3 \times 10^8}\right) = 720 \left(\frac{\text{Velocity} \times \text{Transmit Frequency}}{C} \right)
- w:en:Wikipedia:Reference desk/Archives/Mathematics/2008 May 12 43 \frac{49!}{(49-6)!}\cdot \frac{1}{6!} = \frac{49\cdot 48 \cdot 47 \cdot 46 \cdot 45 \cdot 44}{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} = 13,983,816
- w:en:Schema (genetic algorithms) 41 {\uparrow}s=\{100,101\}
- w:en:Schema (genetic algorithms) 45 A = \{100,000,010\}
- w:en:Q-ratio (poker) 22 Q = \frac {20,000} {10,000} \times \frac {20} {50} = 0.8
- w:en:Talk:Almost integer 31 \frac{e^\pi-\pi-1}{6\pi} \approx 1,0079
- w:en:Talk:Impulse excitation technique 15 T = 1+6,858\left( \frac{t} {L} \right)
- w:en:Talk:Impulse excitation technique 15 T = 1+6,858\left( \frac{t} {L} \right)^2
- w:en:Talk:Impulse excitation technique 17 E = 1,6067\left( \frac{L^3} {d^4} \right)mf_f^2T'
- w:en:Talk:Impulse excitation technique 17 T' = 1+4,939\left( \frac{d} {L} \right)^2
- w:en:4,294,967,295 17 3 \cdot 5 \cdot 17 \cdot 257 \cdot 65537
- w:en:4,294,967,295 20 2\pi/n
- w:en:4,294,967,295 20 \cos(2\pi/n)
- w:en:Talk:Kepler's laws of planetary motion/Archive 1 295 AU_{\odot}=149,597,870.691 \hbox{ km}
- w:en:Euler spiral 265 2R_c L_s = 60,000
- w:en:User:Robert Treat/the universe's degenerate and dark eras 99 10^{10^{10,000,000}}
- w:en:User:Endo999 1516 668,814
- w:en:User:Endo999 1516 333,117,181
- w:en:Wikipedia:Reference desk/Archives/Mathematics/2008 October 15 76 FV = $1,000 \cdot (1+8%)^\frac{400}{365}
- w:en:RW Cephei 83 \sqrt{(5772/5018)^4 * 550,000} = 981.23\ R\odot
- w:en:RW Cephei 83 \sqrt{(5772/4015)^4 * 550,000} = 1532.72\ R\odot
- w:en:RW Cephei 83 \sqrt{(5772/3749)^4 * 550,000} = 1757.94\ R\odot
- w:en:Irrational number 149 10,000A=7\,162.162\,162\,\ldots
- w:en:Schiehallion experiment 85 \tfrac{17,804}{9,933}
- w:en:Formulas for generating Pythagorean triples 48 1\tfrac{7}{8}\xrightarrow{\text{yields}}[15,8,17],2\tfrac{11}{12}\xrightarrow{\text{yields}}[35,12,37],3\tfrac{15}{16}\xrightarrow{\text{yields}}[63,16,65],4\tfrac{19}{20}\xrightarrow{\text{yields}}[99,20,101],\ldots
- w:en:User:Heptalogos 72 P( c | b ) = \frac{ P( C \cap B ) } { P( B ) } = \frac{ \frac{2500} {10,000} } { \frac{5000} {10,000} } = \frac{1}{2}
- w:en:User:Heptalogos 120 P( c | b ) = \frac{ P( C \cap B ) } { P( B ) } = \frac{ \frac{5000} {10,000} } { \frac{7500} {10,000} } = \frac{2}{3}
- w:en:User:Heptalogos 210 P( c | b ) = \frac{ P( C \cap J ) } { P( J ) } = \frac{ \frac{100} {10,000} } { \frac{199} {10,000} } = \frac{100}{199}
- w:en:Wikipedia talk:WikiProject Chemical and Bio Engineering/Archive 1 381 H_{375,000,000} O_{132,000,000} C_{85,700,000} N_{6,430,000} Ca_{1,500,000} P_{1,020,000} S_{206,000} Na_{183,000} \,
- w:en:Wikipedia talk:WikiProject Chemical and Bio Engineering/Archive 1 382 K_{177,000} C_{l127,000} Mg_{40,000} Si_{38,600} Fe_{2,680} Zn_{2,110} Cu_{76} I_{14} Mn_{13} F_{13} Cr_7 Se_4 Mo_3 Co_1 \,
- w:en:Marginal product of labor 90 \Pi = 81,000 - 60,750
- w:en:Marginal product of labor 91 \Pi = 20,250
- w:en:User:S11.1/sandbox 18 D = 0,0825 m \
- w:en:User:Cadgodspeek29 21 O_{\min } =2,666c+8h+s-o
- w:en:User:Cadgodspeek29 23 L_{\min } =\frac{O_{\min } }{0,232}
- w:en:User:Cadgodspeek29 25 L_Vorlage:\rm stv =\lambda L_{\min } =\lambda \frac{O_{\min } }{0,232}
- w:en:User:Cadgodspeek29 35 m_Vorlage:\rm dp =3,666c+2s+\left(\lambda -1\right)O_{\min } +9h+w+n+0,768\lambda L_{\min }
- w:en:User:Cadgodspeek29 37 m_Vorlage:\rm sdp =3,666c+2s+\left(\lambda -1\right)O_{\min } +n+0,768\lambda L_{\min }
- w:en:User:Cadgodspeek29 39 n_Vorlage:\rm dp =0,0833c+0,0625s+\left(\lambda -1\right)O_{\min } +0,0357n+0,79\lambda L_{\min } +0,0555w+0,5h
- w:en:User:Cadgodspeek29 41 n_Vorlage:\rm sdp =0,0833c+0,0625s+\left(\lambda -1\right)O_{\min } +0,0357n+079\lambda L_{\min }
- w:en:User:Mr. Comodor 16 \tfrac{3}{1,000}
- w:en:Talk:Southwest Windpower 24 \frac{\$ 15,000}{100,000 \mbox{kWh}}=\$ 0.15/\mbox{kWh}
- w:en:Wikipedia:Reference desk/Archives/Mathematics/2009 June 15 58 f(4,1981) = f(3, f(4, 1980))\,\!
- w:en:Wikipedia:Reference desk/Archives/Mathematics/2009 June 15 60 f(4, 1980) = f(3,f(4,1979))\,\!
- w:en:Wikipedia:Reference desk/Archives/Mathematics/2009 June 15 62 f(4, 1979) = f(3,f(4,1978))\,\!
- w:en:Talk:Coal/Archive 2 639 \tfrac{237,295}{891,530} \approx 26.6 \%
- w:en:Passenger load factor 28 \frac{(5\ \text{flights})(200\ \text{km/flight})(60\ \text{passengers})}{(5\ \text{flights})(200\ \text{km/flight})(100\ \text{seats})} = \frac{60,000\ \text{passenger }\cdot\text{ km} }{100,000\ \text{seat }\cdot\text{ km}} = 0.6 = 60\%
- w:en:Single-precision floating-point format 241 [-16777216,16777216]
- w:en:Single-precision floating-point format 242 [16777217,33554432]
- w:en:Talk:ITER/Archive 1 251 A_{cross-section} = \frac{\pi}{4}D_{polar}*D_{equatorial} = \frac{\pi}{4}12,713.500*12,756.270 = 1.27373e8 km^2
- w:en:Talk:ITER/Archive 1 255 T_{earth} = T_{rad-sun}(\frac{A_{cross-section}}{A_{earth}})^{1/4} = 394.24 * (\frac{1.27373e8}{510,065,284.702})^{1/4} = 278.697 K
- w:en:Talk:ITER/Archive 1 259 T_{earth} = (T_{rad-sun}^4*\frac{A_{cross-section}}{A_{earth}} + \frac{Electricity}{e\sigma A_{earth}})^{1/4} = (394.24^4*\frac{1.27373e8}{510,065,284.702} - \frac{1.69521e12}{0.364 * 5.6703e-8 * 510,065,284.702e6})^{1/4} = 278.69 K
- w:en:Wikipedia:Reference desk/Archives/Science/2009 July 29 261 1,621,200 \cdot 50 = 64,48 \cdot R \cdot T \,\!
- w:en:Wikipedia:Reference desk/Archives/Mathematics/2009 August 6 76 g(a_{m,n}) = \begin{bmatrix} 4 & 8 & 16 & 32 \\ 9 & 27 & 81 & 243 \\ 16 & 64 & 256 & 1,024 \\ 25 & 125 & 625 & 3,125 \end{bmatrix}.
- w:en:Wikipedia:Reference desk/Archives/Mathematics/2009 August 11 113 ^{43}C_3 = \frac{43!}{3!(43-3)!} = 12,341
- w:en:Wikipedia:Reference desk/Archives/Mathematics/2009 August 11 115 ^{49}C_6 = \frac{49!}{6!(49-6)!} = 13,983,816
- w:en:Wikipedia:Reference desk/Archives/Mathematics/2009 August 11 117 \frac{ \mbox{No. losing}}{ \mbox{No. winning}} = \frac{13,736,996}{246,820} \ .
- w:en:Wikipedia:Reference desk/Archives/Mathematics/2009 August 23 180 0 \le n \le 1,000,000
- w:en:User talk:Doomed Rasher/LaTeX 125 (3,30,90,450)\,\!
- w:en:Wikipedia:Reference desk/Archives/Science/2009 August 26 165 f_p= \frac{( ( 6.955 \times 10^8 )^2 ) \times (5.67051 \times 10^{-8}) \times (5778^4)} { ( ( 1- ( 1\times 0.016710219) ) \times 149597876600 )^2 } = 1,412.903 \ W/m^2
- w:en:Wikipedia:Reference desk/Archives/Science/2009 August 26 175 \frac{6.9\times 10^3 \ W/m^2} { 1,366.079\ W/m^2 } = 505%
- w:en:User:Brews ohare/Speed of light (1983 definition) 162 \ell_1 = \frac {t_1}{t_2} \ell_2 = \frac {\ell_2}{t_2} t_1 = \frac {1~\mathrm{m}}{1/299,792,458~\mathrm{s}} t_1 = 299,792,458~\mathrm {m/s} \times t_1,
- w:en:Wikipedia:Reference desk/Archives/Science/2009 August 27 121 f_p= \frac{( ( 6.955 \times 10^8 )^2 ) \times (5.67051 \times 10^{-8}) \times (5778^4)} { ( ( 1- ( 1\times 0.016710219) ) \times 149597876600 )^2 } = 1,412.903 \ W/m^2
- w:en:Wikipedia:Reference desk/Archives/Science/2009 August 27 131 \frac{6.9\times 10^3 \ W/m^2} { 1,366.079\ W/m^2 } = 505%
- w:en:Talk:Tetration 573 \sqrt{3,125}_s
- w:en:Talk:Tetration 575 \sqrt{8,105}_s
- w:en:Talk:Tetration 577 \sqrt{8,106}_s
- w:en:Talk:Tetration 579 \sqrt{46,656}_s
- w:en:Talk:Tetration 581 \sqrt{135,936}_s
- w:en:Talk:Tetration 583 \sqrt{135,937}_s
- w:en:Talk:Tetration 585 \sqrt{823,543}_s
- w:en:Talk:Tetration 587 \sqrt{2,678,053}_s
- w:en:Talk:Tetration 589 \sqrt{2,678,054}_s
- w:en:Talk:Tetration 591 \sqrt{16,777,216}_s
- w:en:Talk:Tetration 593 \sqrt{60,393,152}_s
- w:en:Talk:Tetration 595 \sqrt{60,393,153}_s
- w:en:Wikipedia:Reference desk/Archives/Mathematics/2009 September 25 52 C^{49}_6 = {49 \choose 6} = 13,983,816
- w:en:Wikipedia:Reference desk/Archives/Mathematics/2009 September 25 56 \frac{49\times \cdots \times 44}{6 \times 5 \times \cdots \times 1} = 13,983,816
- w:en:Talk:Proxima Centauri/Archive 1 26 \frac{L}{L_{sun}} = 0.145^2 \left ( \frac{3,040}{5,778} \right )^4 = 0.0210 \cdot 0.0766 = 0.0016
- w:en:User:Nil Einne/Sandbox/RDS 495 x=2,371
- w:en:User:Nil Einne/Sandbox/RDS 497 100*0.385x=-2,371
- w:en:User:Nil Einne/Sandbox/RDS 498 x=-2,371/38.5
- w:en:User:Nil Einne/Sandbox/RDS2 559 x=2,371
- w:en:User:Nil Einne/Sandbox/RDS2 561 100*0.385x=-2,371
- w:en:User:Nil Einne/Sandbox/RDS2 562 x=-2,371/38.5
- w:en:User:Nil Einne/Sandbox/RDS3 560 x=2,371
- w:en:User:Nil Einne/Sandbox/RDS3 562 100*0.385x=-2,371
- w:en:User:Nil Einne/Sandbox/RDS3 563 x=-2,371/38.5
- w:en:Wikipedia:Reference desk/Archives/Science/2009 November 3 203 x=2,371
- w:en:Wikipedia:Reference desk/Archives/Science/2009 November 3 205 100*0.385x=-2,371
- w:en:Wikipedia:Reference desk/Archives/Science/2009 November 3 206 x=-2,371/38.5
- w:en:User talk:Mannysardina 192 \cfrac{-1}{1}; \cfrac{1}{1}; \cfrac{5}{4}; \cfrac{131}{104}; \cfrac{286}{227}; \cfrac{17,494}{13,885}; \cfrac{49,147}{39,008}; \cfrac{4,725,601}{3,750,712}; \dots
- w:en:User talk:Mannysardina 226 \cfrac{-5}{1}; \cfrac{5}{1}; \cfrac{635}{126}; \cfrac{96,389}{19,126}; \cfrac{30,481,910}{6,048,377}; \cfrac{53,981,534,830}{10,711,293,147}; \cfrac{399,063,623,035}{79,184,251,876}; \dots
- w:en:User talk:Mannysardina 236 \cfrac{-5}{4}; \cfrac{5}{4}; \cfrac{635}{504}; \cfrac{96,389}{76,504}; \cfrac{15,240,955}{12,096,754}; \cfrac{26,990,767,415}{21,422,586,294}; \cfrac{399,063,623,035}{316,737,007,504}; \dots
- w:en:Histogram matching 64 G_1\in[0,255]
- w:en:Wikipedia:Reference desk/Archives/Mathematics/2009 December 5 72 \binom{20}{5}\binom{15}{5}\binom{10}{5} = 11,732,745,024
- w:en:Wikipedia:Reference desk/Archives/Mathematics/2009 December 5 73 \frac{2,161,295,136}{8,799,558,768} = \frac{14}{57}
- w:en:Wikipedia:Reference desk/Archives/Mathematics/2009 December 5 73 \binom{19}{5}\binom{15}{5}\binom{10}{5} = 8,799,558,768
- w:en:Wikipedia:Reference desk/Archives/Mathematics/2009 December 5 73 \binom{18}{5}\binom{14}{4}\binom{10}{5} = 2,161,295,136
- w:en:Talk:Atomic clock 73 = (\frac{1}{9,192,631,770 Hz}) (\frac {10^{-5}}{1 sec}) \approx 10^{-15}\,
- w:en:User:JuPitEer/Sporcle Quiz 96 Boy \in [1900,2000)
- w:en:User:JuPitEer/Sporcle Quiz 106 \theta\in (180,360)
- w:en:Wikipedia talk:WikiProject Engineering/Archive 4 137 H_{375,000,000} O_{132,000,000} C_{85,700,000} N_{6,430,000} Ca_{1,500,000} P_{1,020,000} S_{206,000} Na_{183,000} \,
- w:en:Wikipedia talk:WikiProject Engineering/Archive 4 138 K_{177,000} C_{l127,000} Mg_{40,000} Si_{38,600} Fe_{2,680} Zn_{2,110} Cu_{76} I_{14} Mn_{13} F_{13} Cr_7 Se_4 Mo_3 Co_1 \,
- w:en:Wikipedia:Reference desk/Archives/Mathematics/2010 March 20 49 10,000(1+\frac{5%}{12})^{3}
- w:en:Talk:PageRank/Archive 1 741 \mathbf{R} =\begin{bmatrix}PR(A)\\PR(B)\\\vdots\\PR(K)\end{bmatrix}=\dfrac{1}{579662461}\cdot\begin{pmatrix}19002201\\222822800\\198772220\\22657320\\46886400\\22657320\\9372840\\9372840\\9372840\\9372840\\9372840\end{pmatrix}\approx\begin{pmatrix}0,03278149\\0,38440095\\0,34291029\\0,03908709\\0,08088569\\0,03908709\\0,01616948\\0,01616948\\0,01616948\\0,01616948\\0,01616948\end{pmatrix}
- w:en:Dry Lake Wind Power Project 46 \frac{132,450 \mbox{ MWh}}{(8760 \mbox{ h/yr}) \times (63 \mbox{ MW})} \approx{24\%}
- w:en:Dry Lake Wind Power Project 83 \frac{2,000,000 \mbox{ tons} \times 63 \mbox{ MW}}{1000 \mbox{ MW}} = 126,000 \mbox{ tons}
- w:en:Dry Lake Wind Power Project 87 \frac{818,000,000 \mbox{ gallons} \times 63 \mbox{ MW}}{1000 \mbox{ MW}} = 51,534,000 \mbox{ gallons}
- w:en:Error analysis for the Global Positioning System 75 \frac{0.01 \times 300,000,000 m/s}{(1.023 \times 10^6 /\mathrm{s})}
- w:en:Error analysis for the Global Positioning System 77 \frac {(0.01 \times 300,000,000\ \mathrm{m/s})} {(10.23 \times 10^6 / \mathrm{s})}
- w:en:Wikipedia talk:WikiProject Chemistry/Archive 20 601 H_{375,000,000} O_{132,000,000} C_{85,700,000} N_{6,430,000} Ca_{1,500,000} P_{1,020,000} S_{206,000} Na_{183,000} \,
- w:en:Wikipedia talk:WikiProject Chemistry/Archive 20 602 K_{177,000} C_{l127,000} Mg_{40,000} Si_{38,600} Fe_{2,680} Zn_{2,110} Cu_{76} I_{14} Mn_{13} F_{13} Cr_7 Se_4 Mo_3 Co_1 \,
- w:en:Wikipedia talk:WikiProject Council/Archive 15 254 H_{375,000,000} O_{132,000,000} C_{85,700,000} N_{6,430,000} Ca_{1,500,000} P_{1,020,000} S_{206,000} Na_{183,000} \,
- w:en:Wikipedia talk:WikiProject Council/Archive 15 255 K_{177,000} C_{l127,000} Mg_{40,000} Si_{38,600} Fe_{2,680} Zn_{2,110} Cu_{76} I_{14} Mn_{13} F_{13} Cr_7 Se_4 Mo_3 Co_1 \,
- w:en:Talk:Hoover Dam/Archive 1 201 1,500,000*3 / 5280 = 852.273
- w:en:User:Sadalsuud/Sandbox 56 1) Weiner: \qquad d_B = {\left ( {\frac {149,597,871 km}{696,000 km}} \right )} {\left ( 5.5 AU \right )} = 1,180 R_{\odot}
- w:en:User:Sadalsuud/Sandbox 57 2) Perrin: \qquad d_B = {\left ( {\frac {149,597,871 km}{696,000 km}} \right )} {\left ( 4.3 AU \right )} = 924 R_{\odot}
- w:en:User:Sadalsuud/Sandbox 67 \frac{L_{\rm B}}{L_{\odot}} = {\left ( {\frac{1,180}{1}} \right )}^2 {\left ( {\frac{3,641}{5,778}} \right )}^4 = 219,552 L_{\odot}
- w:en:User:Sadalsuud/Sandbox 363 1) Weiner: \qquad d_B = {\left ( {\frac {149,597,871 km}{696,000 km}} \right )} {\left ( 5.5 AU \right )} = 1,180 R_{\odot}
- w:en:User:Sadalsuud/Sandbox 364 2) Perrin: \qquad d_B = {\left ( {\frac {149,597,871 km}{696,000 km}} \right )} {\left ( 4.3 AU \right )} = 917 R_{\odot}
- w:en:User:Sadalsuud/Sandbox 1289 d_B = {\left ( 5.5 AU \right )} {\left ( {\frac {149,597,871 km}{696,000 km}} \right )} = 1,180 R_{\odot}
- w:en:User:Sadalsuud/Sandbox 1370 \frac{L_{\rm B}}{L_{\odot}} = {\left ( {\frac{1,180}{1}} \right )}^2 {\left ( {\frac{3,500}{5,778}} \right )}^4 = 187,468 L_{\odot}
- w:en:User:Sadalsuud/Sandbox 1374 \frac{L_{\rm B}}{L_{\odot}} = {\left ( {\frac{1,000}{1}} \right )}^2 {\left ( {\frac{3,500}{5,778}} \right )}^4 = 134,636 L_{\odot}
- w:en:Wikipedia talk:WikiProject Mathematics/Archive 63 58 \definecolor{aqua}{RGB}{0,255,255}\pagecolor{aqua}123456789
- w:en:Wikipedia talk:WikiProject Mathematics/Archive 63 61 \definecolor{aqua}{RGB}{0,255,255}\pagecolor{aqua}123456789
- w:en:Talk:Observable universe/Archive 2 230 9,460,800,000,000 * 93,000,000,000 = 879,854,400,000,000,000,000,000
- w:en:Randles–Sevcik equation 20 i_p = 268,600 \ n^{\frac{3}{2}} AD^{\frac{1}{2}} Cv^{\frac{1}{2}}
- w:en:Wikipedia talk:WikiProject Physics/Archive August 2010 229 H_{375,000,000} O_{132,000,000} C_{85,700,000} N_{6,430,000} Ca_{1,500,000} P_{1,020,000} S_{206,000} Na_{183,000} \,
- w:en:Wikipedia talk:WikiProject Physics/Archive August 2010 230 K_{177,000} C_{l127,000} Mg_{40,000} Si_{38,600} Fe_{2,680} Zn_{2,110} Cu_{76} I_{14} Mn_{13} F_{13} Cr_7 Se_4 Mo_3 Co_1 \,
- w:en:Wikipedia:Reference desk/Archives/Mathematics/2010 September 9 116 \tfrac{57,851}{7,200}
- w:en:Wikipedia:Reference desk/Archives/Mathematics/2010 September 9 116 8\tfrac{251}{7,200}
- w:en:Wikipedia:Reference desk/Archives/Mathematics/2010 September 9 124 8\tfrac{251}{7,200}
- w:en:User:Conorbrady.ie/math 11 V={\sqrt{{S \over 78} \times M} \over 10,000}
- w:en:User:Conorbrady.ie/math 14 V={\sqrt{{S \over 78} \times M} \over 10,000}
- w:en:Talk:Petroleum/Archive 3 288 Q_v = 12,400 - 2,100d^2
- w:en:User:Reuqr/Test page 17 \, \begin{matrix} {52 \choose 5} = 2,598,960 \end{matrix}
- w:en:User:Reuqr/Test page 19 \begin{matrix} {52 \choose 5} = 2,598,960 \end{matrix}
- w:en:User:Reuqr/Test page 134 {13 \choose 1}{4 \choose 3}{12 \choose 1}{4 \choose 2} = 3,744
- w:en:User:Reuqr/Test page 137 {13 \choose 5}{4 \choose 1} - 40 = 5,108
- w:en:User:Reuqr/Test page 140 {10 \choose 1}{4 \choose 1}^5 - 40 = 10,200
- w:en:User:Reuqr/Test page 143 {13 \choose 1}{4 \choose 3}{12 \choose 2}{4 \choose 1}^2 = 54,912
- w:en:User:Reuqr/Test page 146 {13 \choose 2}{4 \choose 2}^2{11 \choose 1}{4 \choose 1} = 123,552
- w:en:User:Reuqr/Test page 149 {13 \choose 1}{4 \choose 2}{12 \choose 3}{4 \choose 1}^3 = 1,098,240
- w:en:User:Reuqr/Test page 152 \left[{13 \choose 5} - 10\right]\left[{4 \choose 1}^5 - 4\right] = {52 \choose 5} - 1,296,420 = 1,302,540
- w:en:User:Reuqr/Test page 155 {n\choose r} = {{n!} \over {r!(n - r)!}} = {52 \choose 5} = {{52!} \over {5!(52 - 5)!}} = 2,598,960
- w:en:Talk:Graham's number/Archive 1 120 9^{9^{9^9}}=9^{9^{387,420,489}}
- w:en:Talk:Graham's number/Archive 2 95 3 \uparrow \uparrow 3 = 3 \uparrow 3 \uparrow 3 = 3^{3^3} = 3^{27} = 7,625,597,484,987
- w:en:Talk:Graham's number/Archive 2 105 3 \uparrow \uparrow \uparrow (7,625,597,484,987)
- w:en:RD-120 34 \frac{833,565\ \mathrm{N}}{(1,125\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=75.55
- w:en:RD-120 35 \frac{912,018\ \mathrm{N}}{(1,125\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=82.66
- w:en:Wikipedia talk:WikiProject Mathematics/Archive 66 383 1,000,000\,
- w:en:User:Theislikerice/Sandbox 36 1 = {1 \mbox{atm} \over 101,300 \mbox{Pa}}
- w:en:44,100 Hz 52 2^2 \cdot 3^2 \cdot 5^2 \cdot 7^2
- w:en:Wikipedia:Reference desk/Archives/Mathematics/2010 October 29 53 \frac{1}{13,983,815} \approx 7.2 \times 10^{-8} .
- w:en:Wikipedia:Reference desk/Archives/Mathematics/2010 October 29 55 \frac{25,550}{13,983,815} \approx 0.0018 \sim 0.18% .
- w:en:Time-weighted return 181 = \frac {19,800}{18,000}
- w:en:Normalized Google distance 34 N=25,270,000,000,000
- w:en:User:Cryptoproject2010 64 \left \langle N,e\right \rangle = \left \langle 90581,17993\right \rangle
- w:en:User:Cryptoproject2010 81 d < \frac{N^{ \frac{1}{4}}}{3} \approx 5,783
- w:en:2001 Philippine House of Representatives elections 121 \mathrm{Seats} = (\frac{\mathrm{802,060}}{\mathrm{1,708,253}}) {3} = {1.41}
- w:en:Wikipedia talk:WikiProject Mathematics/Archive 68 167 \definecolor{orange}{RGB}{255,165,0}\pagecolor{orange}e^{i \pi} + 1 = 0\,\!
- w:en:Wikipedia talk:WikiProject Mathematics/Archive 68 174 \definecolor{orange}{RGB}{255,165,0}\pagecolor{orange}e^{i \pi} + 1 = 0\,\!
- w:en:User:Wiener's Attack 49 \left \langle N,e\right \rangle = \left \langle 90581,17993\right \rangle
- w:en:User:Wiener's Attack 71 d < \frac{N^{ \frac{1}{4}}}{3} \approx 5,783
- w:en:User talk:Fentener van Vlissingen/Verso 17 \frac{\ln(37,056) - \ln(163)}{\ln(108,211) - \ln(163)} = 0,835082
- w:en:User talk:Fentener van Vlissingen/Verso 21 \textrm{HDI} = \sqrt[3]{0.955696 \cdot 0.773189 \cdot 0,835082} = 0.851
- w:en:Wiener's attack 69 \left \langle N,e\right \rangle = \left \langle 90581,17993\right \rangle
- w:en:User:Eml5526.s11.team2.oztekin/HW2 1206 \displaystyle \mathbf{\Gamma ^{-1}}= 1.0e0.005\times \left[ \begin{matrix} \begin{matrix} \begin{matrix} \begin{matrix} 0,0002 \\ -0,003 \\\end{matrix} \\ 0,0105 \\ -0,014 \\ 0,0063 \\\end{matrix} & \begin{matrix} \begin{matrix} -0,003 \\ 0,0480 \\\end{matrix} \\ -0,189 \\ 0,2688 \\ -0,126 \\\end{matrix} \\\end{matrix} & \begin{matrix} \begin{matrix} 0,0105 \\ -0,189 \\\end{matrix} \\ 0,7938 \\ -1,176 \\ 0,5670 \\\end{matrix} & \begin{matrix} \begin{matrix} -0,014 \\ 0,2688 \\\end{matrix} \\ -1,176 \\ 1,792 \\ -0,882 \\\end{matrix} & \begin{matrix} \begin{matrix} 0,0063 \\ -0,126 \\\end{matrix} \\ 0,5670 \\ -0,8820 \\ 0,4410 \\\end{matrix} \\\end{matrix} \right]
- w:en:User:Marc van Leeuwen/sandbox 31 {52 \choose 5} = \frac{52^{\underline{5}}}{5!} = \frac{52\times51\times50\times49\times48}{5\times4\times3\times2\times1} = \frac{311,875,200}{120} = 2,598,960.
- w:en:User:Sj/Archive/Eleventy-billion pool 26 eleventy \; billion = eleventy \times billion = 110 \times 1,000,000,000 = 110,000,000,000
- w:en:User:Sj/Archive/Eleventy-billion pool 47 eleventy \; billion = eleventy \times billion = 110 \times 1,000,000,000 = 110,000,000,000
- w:en:User:Sj/Archive/Eleventy-billion pool 50 100 + 10,000,000,000 = 10,000,000,100
- w:en:User:Sj/Archive/Eleventy-billion pool 50 100 \; AND \; 10,000,000,000 = 0
- w:en:User talk:Martin Hogbin/Archive0 450 \ell_1 = \frac {t_1}{t_2} \ell_2 = \frac {\ell_2}{t_2} t_1 = \frac {1~\mathrm{m}}{1/299,792,458~\mathrm{s}} t_1 = 299,792,458~\mathrm {m/s} \times t_1,
- w:en:User talk:Kvadrate 22 \frac{37.5 lb}{1} * \frac{453.6 g}{1 lb} \approx 17,010 g
- w:en:User talk:Kvadrate 32 E=(0.13 J/g*K)*(17,010 g)*(267.1 K - 233 K)\approx75,400 J
- w:en:User talk:Kvadrate 35 E=\frac{75,400 J}{1} * \frac{1 calorie}{4.184 J} \approx 18,000 calories
- w:en:Wikipedia talk:WikiProject Engineering/Archive 5 421 H_{375,000,000} O_{132,000,000} C_{85,700,000} N_{6,430,000} Ca_{1,500,000} P_{1,020,000} S_{206,000} Na_{183,000} \,
- w:en:Wikipedia talk:WikiProject Engineering/Archive 5 422 K_{177,000} C_{l127,000} Mg_{40,000} Si_{38,600} Fe_{2,680} Zn_{2,110} Cu_{76} I_{14} Mn_{13} F_{13} Cr_7 Se_4 Mo_3 Co_1 \,
- w:en:Talk:Googolplex/Archive 1 309 10^{10^{1,000,000,009}}
- w:en:Talk:Pi/Archive 8 343 \pi=[3;7,17,1,444,1,1,1,2,1,3,1,16,2,1,1,2,2,2,2,1,124,\cdots]
- w:en:Talk:Pi/Archive 8 353 \pi=[3;7,13,1,204,1,1,1,2,1,3,1,12,2,1,1,2,2,2,2,1,70,\cdots]
- w:en:Wikipedia:Village pump (miscellaneous)/Archive 32 249 2^{32-16} = 2^{16} = 65,536
- w:en:Wikipedia:Village pump (miscellaneous)/Archive 32 249 650,000
- w:en:Wikipedia:Reference desk/Archives/Mathematics/2011 May 3 113 \gcd(1176,1350) = 2^1 \cdot 3^1 \cdot 5^0 \cdot 7^0 = 6 \, .
- w:en:User:Zataxuava/Fibonacci word fractal 40 \scriptstyle{3\frac{\log{\phi}}{{\log({1+\sqrt{2}})}}= 1,6379}
- w:en:User:Zataxuava/Fibonacci word fractal 42 \scriptstyle{\frac{\log{3}}{{\log({1+\sqrt{2}})}}= 1,2465}
- w:en:Wikipedia:Reference desk/Archives/Computing/2011 June 16 111 256^{239,667,608}
- w:en:Blood gas tension 46 \ce{SO2} = \left(\frac{23,400}{p\ce{O2}^3 + 150 p\ce{O2}} +1\right)^{-1}
- w:en:Talk:Mathematics in medieval Islam/Archive 2 329 6,338.3
- w:en:Talk:Mathematics in medieval Islam/Archive 2 329 6,339.6
- w:en:Talk:Mathematics in medieval Islam/Archive 2 329 13,331,728
- w:en:Talk:Mathematics in medieval Islam/Archive 2 329 6,575
- w:en:Talk:Mathematics in medieval Islam/Archive 2 329 12,851,369 + 5/6+ 7/600
- w:en:Momentum–depth relationship in a rectangular channel 261 F_\text{thrust-gate} = 76,142 \quad lbs
- w:en:User:Doggitydogs/GPS 2073 \frac {(0.01 \times 300,000,000\ \mathrm{m/s})} {(10.23 \times 10^6 / \mathrm{s})}
- w:en:Hyperoperation 88 H_{123}(456,789)
- w:en:User:Kimhoon1865 33 t_{rec} = t_0 (\frac{R}{R_0}) = t_0 (\frac{T_0}{T_rec})^{3/2} \approx 1.4 \times 10^{10} years \times (\frac{2.37K}{3500K})^{3/2} \approx 300,000 years
- w:en:Markarian 501 30 456 Mly*sin(1.2-94.86 arcmin) = 159,000-12,581,000 ly
- w:en:Ecometrics 92 1 truckload =200 kcalories(200,000 calories); there are separate trucks for meat and feed;
- w:en:Ecometrics 98 50truckloads300miles0.654lbs(CO2/Mile) =9,810lbs\text{ CO2 emitted}
- w:en:Ecometrics 103 ((500truckloads300miles)+(50truckloads600miles))0.654lbs(CO2/miles)=180,000 lbs\text{ CO2 emitted}
- w:en:User:Nimdil 28 \sqrt{\Delta} = 1,61245
- w:en:User:Nimdil 30 x_1 = \frac{1,8 - 1,61245}{4} = \frac {0,18755}{4} = 0,04689
- w:en:Talk:Human Development Index/Archive 2 301 I_{G,max}= 87,478
- w:en:User talk:Syaffuan 56 S_{50} = \frac{50}{2}[2(3) + (49)(5)] = 6,275.
- w:en:User:Turtlesoup4290 57 \big\langle4536,2658,2806,100,100\big\rangle
- w:en:Wikipedia:Reference desk/Archives/Science/2012 March 2 165 101,000 Pa \over{1.001 {kg\over{m^3}}}}={v_{escaping}^2 \over 2}
- w:en:Talk:Ultimate fate of the universe/Archive 1 440 ^{1,941,887,750,000}
- w:en:User:Garo/sandbox 31 D_0=\left(1,1494\right);D_1=\left(2,1942\right);D_2=\left(3,2578\right);D_3=\left(4,3402\right);D_4=\left(5,4414\right);D_5=\left(6,5614\right)\,\!
- w:en:User:Garo/sandbox 38 \left(x_0,y_0\right)=\left(2,1942\right);\left(x_1,y_1\right)=\left(4,3402\right);\left(x_2,y_2\right)=\left(5,4414\right)\,\!
- w:en:User:Garo/sandbox 59 D_0=(1,1494)
- w:en:User:Garo/sandbox 59 D_1=(2,1942)
- w:en:User:Garo/sandbox 74 a_2\in[0,1,\dots,148,149]
- w:en:User:Garo/sandbox 76 S\in[1046+2\times0,1046+2\times1,\dots,1046+2\times148,1046+2\times149]
- w:en:User:Garo/sandbox 78 S\in[1046,1048,\dots,1342,1344]
- w:en:User:Garo/sandbox 89 \left(1,1494\right);\left(2,329\right);\left(3,965\right);\left(4,176\right);\left(5,1188\right);\left(6,775\right)
- w:en:User:Garo/sandbox 93 D_0=\left(1,1494\right)
- w:en:User:Garo/sandbox 93 D_1=\left(2,329\right)
- w:en:User:Garo/sandbox 105 [448,445,442,...]
- w:en:Talk:Cubic function/Archive 4 190 4\left(\frac{X-1}{2*7}\right)^3+3\left(\frac{X-1}{2*7}\right)=4x^3+3x=f(x)=h(x)=\frac{74}{7^3}\approx0,21574>0\text{ and }p>0.
- w:en:Talk:Cubic function/Archive 4 212 Re(x_{1;2})=x_H=-\frac{x_R}{2}=-\frac{4}{7}\approx-0.5714, x_A\approx-0.0922, Im(x_{1;2})=x_A-x_H=\frac{\sqrt{45}}{14}\approx 0,4792.
- w:en:Talk:Cubic function/Archive 4 221 Re(x_{1;2})=x_H=-\frac{x_R}{2}=-\frac{1}{28}\approx0.0357, x_A\approx-0.8325, Im(x_{1;2})=x_A-x_H=\frac{\sqrt{591}}{28}\approx 0,8682.
- w:en:Wikipedia talk:WikiProject Sociology/Archive 7 74 H_{375,000,000} O_{132,000,000} C_{85,700,000} N_{6,430,000} Ca_{1,500,000} P_{1,020,000} S_{206,000} Na_{183,000} \,
- w:en:Wikipedia talk:WikiProject Sociology/Archive 7 75 K_{177,000} C_{l127,000} Mg_{40,000} Si_{38,600} Fe_{2,680} Zn_{2,110} Cu_{76} I_{14} Mn_{13} F_{13} Cr_7 Se_4 Mo_3 Co_1 \,
- w:en:User:Paetech/sandbox 23 PV_0 \ = \ \frac{W 10,000,000}{(1+0.1)^1}= W 9,090,909.09
- w:en:Help talk:Displaying a formula/Archive 2 371 \definecolor{blue}{RGB}{0,0,255}\pagecolor{blue}e^{i \pi} + 1 = 0\,\!
- w:en:Help talk:Displaying a formula/Archive 2 649 \definecolor{olive}{RGB}{128,128,0} \pagecolor{olive}e^{i \pi} + 1 = 0\,\!
- w:en:Help talk:Displaying a formula/Archive 2 657 \definecolor{olive}{RGB}{128,128,0} \pagecolor{olive}e^{i \pi} + 1 = 0\,\!
- w:en:Wikipedia:Reference desk/Archives/Science/2012 July 4 137 \int_{r}^{\infty}\psi^2\, dv = {1 \over 10^{100}\times 31,557,600\times 10^9}
- w:en:Common Consolidated Corporate Tax Base 68 Germany: 30\% \cdot \euro 1,000,000 \cdot \left[ \frac{1}{3} \cdot \frac{\euro 150,000,000}{\euro 200,000,000} + \frac{1}{3} \cdot \frac{\euro 3,000,000}{\euro 8,000,000} + \frac{1}{3} \cdot \frac{\euro 135,000,000}{\euro 200,000,000} \right] = \euro 180,000.
- w:en:Common Consolidated Corporate Tax Base 70 Slovakia: 19\% \cdot \euro 1,000,000 \cdot \left[ \frac{1}{3} \cdot \frac{\euro 50,000,000}{\euro 200,000,000} + \frac{1}{3} \cdot \frac{\euro 5,000,000}{\euro 8,000,000} + \frac{1}{3} \cdot \frac{\euro 65,000,000}{\euro 200,000,000} \right] = \euro 76,000.
- w:en:Common Consolidated Corporate Tax Base 140 Germany: 30\% \cdot \euro 1,000,000 \cdot \left[ \frac{1}{3} \cdot \frac{\euro 50,000,000}{\euro 200,000,000} + \frac{1}{3} \cdot \frac{\euro 3,000,000}{\euro 8,000,000} + \frac{1}{3} \cdot \frac{\euro 135,000,000}{\euro 200,000,000} \right] = \euro 130,000.
- w:en:Common Consolidated Corporate Tax Base 142 Slovakia: 19\% \cdot \euro 1,000,000 \cdot \left[ \frac{1}{3} \cdot \frac{\euro 150,000,000}{\euro 200,000,000} + \frac{1}{3} \cdot \frac{\euro 5,000,000}{\euro 8,000,000} + \frac{1}{3} \cdot \frac{\euro 65,000,000}{\euro 200,000,000} \right] = \euro 107,667.
- w:en:NML Cygni 102 \sqrt{(5772/2500)^4 * 270,000} = 2769.84\ R\odot
- w:en:NML Cygni 104 \sqrt{(5772/3250)^4 * 270,000} = 1638.96\ R\odot
- w:en:User:Mogi Beans/sandbox 193 V_f = 10,000 (1.025)^{60} + 500 \frac {(1.025)^{61} - (1.025) }{ 0.025 }
- w:en:User:Mogi Beans/sandbox 195 V_f = 43,997.90 + 69,695.60
- w:en:User:Mogi Beans/sandbox 197 V_f = 113,693.50
- w:en:User:Mogi Beans/sandbox 350 u = 398,600.4418 {km^3 \over s^2 }
- w:en:User:Mogi Beans/sandbox 929 \frac { \ln { \frac {1,000,000} {1,000} }} { \ln {1.005} } = 1385
- w:en:User:Stockequation/sandbox 190 v_r=98,042
- w:en:User:Stockequation/sandbox 194 b_o=\frac{98,042(1-w_r)}{2a_v}=0
- w:en:User:Stockequation/sandbox 194 s_o=\frac{98,042(1+w_r)}{2a_v}=\frac{98,042}{a_v}
- w:en:User:Stockequation/sandbox 710 b_o \approx \frac{490,000}{a_v}
- w:en:Talk:Half-life/Archive 1 177 h=5,730
- w:en:Talk:Half-life/Archive 1 277 h=5,730
- w:en:Talk:Half-life/Archive 1 780 11,460 =5730 * 2\
- w:en:User:Slaghoople/sandbox 141 \frac{$\text{5,120} + \text{1,024} \cdot E_1}{\text{1,024}} = $5 + E_1 \,.
- w:en:Wikipedia:Reference desk/Archives/Mathematics/2012 November 14 41 3m \in \{0,2012,2013,2014\} \ \mathrm{mod}\ 2015
- w:en:Wikipedia:Reference desk/Archives/Mathematics/2012 November 14 41 m \in \{0,671,1343,2014\}
- w:en:Wikipedia:Reference desk/Archives/Mathematics/2012 November 14 139 m \in \{0,671,1343,2014\}
- w:en:Creep and shrinkage of concrete 75 E = 57,000 \mbox{psi}
- w:en:Talk:Birthday problem/Archive 2 399 \scriptstyle 1,000,000\sqrt{N}
- w:en:User:Captain Kundalini/sandbox 576 \begin{smallmatrix} \left ( \frac{1}{3 \cdot 332,946} \right )^{\frac{1}{3}} = 0.01 \end{smallmatrix}
- w:en:9,223,372,036,854,775,807 18 \overset{ix}{MMMMMM}\quad\overset{ccxxiii}{MMMMM}\quad\overset{ccclxxii}{MMMM}\quad
- w:en:9,223,372,036,854,775,807 19 \overset{xxxvi}{MMM}\quad\overset{dcccliv}{MM}\quad\overset{dcclxxv}{M}\quad\overset{}{DCCCVII}
- w:en:User talk:Benjamin Mako Hill/EBP 31 eleventy \; billion = eleventy \times billion = 110 \times 1,000,000,000 = 110,000,000,000
- w:en:User talk:Benjamin Mako Hill/EBP 52 eleventy \; billion = eleventy \times billion = 110 \times 1,000,000,000 = 110,000,000,000
- w:en:User talk:Benjamin Mako Hill/EBP 55 100 + 10,000,000,000 = 10,000,000,100
- w:en:User talk:Benjamin Mako Hill/EBP 55 100 \; AND \; 10,000,000,000 = 0
- w:en:Wikipedia:Reference desk/Archives/Mathematics/2013 February 9 47 {500 + 2,200,000,000 \over 2}
- w:en:Grain yield monitor 76 Yield=\dfrac{\dot{m}*\dfrac{tonne}{1,000 kg}*\dfrac{3600 s}{hr}}{w*v*\dfrac{1000 m}{km}*\dfrac{ha}{10,000 m^2}}
- w:en:Talk:E (mathematical constant)/Archive 6 45 \frac{1}{1}, \frac{3}{1}, \frac{19}{7}, \frac{193}{71}, \frac{2,721}{1,001}, \frac{49,171}{18,089}, \frac{1,084,483}{398,959}, \frac{28,245,729}{10,391,023}, \ldots.
- w:en:User:Script3r/sandbox 186 \textstyle [2040,1784,33]_2
- w:en:User:Script3r/sandbox 186 \textstyle [255,223,33]
- w:en:Burst error-correcting code 201 [2040,1784,33]_2
- w:en:Burst error-correcting code 201 [255,223,33]
- w:en:Computer Arimaa 37 \dbinom{16}{8} \cdot\dbinom{8}{2} \cdot\dbinom{6}{2} \cdot\dbinom{4}{2} \cdot\dbinom{2}{1} \cdot\dbinom{1}{1} = 64,864,800
- w:en:Computer Arimaa 45 64,864,800^2 \approx 4.2 \cdot 10^{15}
- w:en:Polymer electrolyte membrane electrolysis 120 V^0_{\textrm{rev}}=\frac{\Delta G^0}{n\cdot F}=\frac{237 \ \textrm{kJ/mol}}{2 \times 96,485 \ \textrm{C/mol}}=1.23 V
- w:en:Polymer electrolyte membrane electrolysis 129 V^0_{\textrm{th}}=\frac{\Delta H^0}{n\cdot F}=\frac{285.9 \ \textrm{kJ/mol}}{2 \times 96,485 \ \textrm{C/mol}}=1.48 V
- w:en:User:AbiLtoC/Stellar aberration (Derivation with Lorentz transformation) 34 \scriptstyle \tan \delta'=y_1'/x_1'=3/7,50555\;\rightarrow\;\delta' = 21,79^\circ
- w:en:User:AbiLtoC/Stellar aberration (Derivation with Lorentz transformation) 34 \scriptstyle x_1'=\gamma \cdot (x_1-\beta \cdot c\,t_1)=1,1547\cdot (4 Lj - 0,5\cdot(-5 Lj))=7,50555 Lj; \quad y_1'=y_1=3 Lj
- w:en:User:AbiLtoC/Stellar aberration (Derivation with Lorentz transformation) 36 \scriptstyle \tan (\delta'/2) = \tan (\delta /2) \cdot \sqrt {(1-0,5)/(1+0,5)} = \tan (36,87^\circ/2) \cdot \sqrt{1/3} = 0,19245\;\rightarrow\;\delta'/2= 10,89^\circ\;\rightarrow\;\delta'=21,79^\circ
- w:en:User:AbiLtoC/Stellar aberration (Derivation with Lorentz transformation) 118 \frac{v_e}{c} = 0,00009935
- w:en:User:AbiLtoC/Stellar aberration (Derivation with Lorentz transformation) 128 \scriptstyle v = \frac{2\pi \cdot 280000 \cdot 9,461\cdot10^{15}\,m}{230\cdot 10^{6} \cdot 365,25 \cdot 24 \cdot 3600} \approx\, 230\,km/s
- w:en:Stellar aberration (derivation from Lorentz transformation) 35 \scriptstyle \tan \delta'=y_1'/x_1'=3/7,50555\;\rightarrow\;\delta' = 21,79^\circ
- w:en:Stellar aberration (derivation from Lorentz transformation) 35 \scriptstyle x_1'=\gamma \cdot (x_1-\beta \cdot c\,t_1)=1,1547\cdot (4 Lj - 0,5\cdot(-5 Lj))=7,50555 Lj; \quad y_1'=y_1=3 Lj
- w:en:Stellar aberration (derivation from Lorentz transformation) 37 \scriptstyle \tan (\delta'/2) = \tan (\delta /2) \cdot \sqrt {(1-0,5)/(1+0,5)} = \tan (36,87^\circ/2) \cdot \sqrt{1/3} = 0,19245\;
- w:en:Stellar aberration (derivation from Lorentz transformation) 155 \frac{v_e}{c} = 0,00009935
- w:en:Stellar aberration (derivation from Lorentz transformation) 167 \scriptstyle v = \frac{2\pi \cdot 280000 \cdot 9,461\cdot10^{15}\,m}{230\cdot 10^{6} \cdot 365,25 \cdot 24 \cdot 3600} \approx\, 230\,km/s
- w:en:User:AbiLtoCen/sandbox 34 \scriptstyle \tan \delta'=y_1'/x_1'=3/7,50555\;\rightarrow\;\delta' = 21,79^\circ
- w:en:User:AbiLtoCen/sandbox 34 \scriptstyle x_1'=\gamma \cdot (x_1-\beta \cdot c\,t_1)=1,1547\cdot (4 Lj - 0,5\cdot(-5 Lj))=7,50555 Lj; \quad y_1'=y_1=3 Lj
- w:en:User:AbiLtoCen/sandbox 36 \scriptstyle \tan (\delta'/2) = \tan (\delta /2) \cdot \sqrt {(1-0,5)/(1+0,5)} = \tan (36,87^\circ/2) \cdot \sqrt{1/3} = 0,19245\;
- w:en:User:AbiLtoCen/sandbox 160 \frac{v_e}{c} = 0,00009935
- w:en:User:AbiLtoCen/sandbox 170 \scriptstyle v = \frac{2\pi \cdot 280000 \cdot 9,461\cdot10^{15}\,m}{230\cdot 10^{6} \cdot 365,25 \cdot 24 \cdot 3600} \approx\, 230\,km/s
- w:en:User:Jjbernardiscool 552 1,1,2,3,5,8,13,21,34,55,89,144,233,377,601,978,1579,2557.
- w:en:User:Jjbernardiscool 555 0.125,0.25,0.5,1,2,4,8,16,32,64,128,256,512,1024,2048,4069,8192,16384,32768,65536.
- w:en:User:Jjbernardiscool 558 0.00001,0.0001,0.001,0.01,0.1,1,10,100,1000,10000,100000.
- w:en:User:Jjbernardiscool 560 1,3,7,15,31,63,127,255,511,1023,2047,4095,8191
- w:en:Talk:Little Boy/Archive 1 435 \sqrt(1,900^2 + d^2) / 1,125
- w:en:UY Scuti 105 \begin{align} 2\cdot R_* & = \frac{(1554\cdot 5.48\cdot 10^{-3})\ \text{UA}}{0,0046491\ \text{UA}/R_{\bigodot}} \\ & \approx 1832\cdot R_{\bigodot}\end{align}
- w:en:Talk:UY Scuti 79 66,120,000,000 / 149,800,000
- w:en:Westerlund 1-26 53 \sqrt{(5772/3700)^4 * 1,100,000} = 2552.38\ R\odot
- w:en:User talk:Samuel Fux 2415 0,1,2,5,12,29,70,169,...,x_{n}
- w:en:User:Sasfir/sandbox 126 3\uparrow\uparrow\uparrow2 = 3\uparrow\uparrow3 = 3^{3^3} = 3^{27}=7,x25,597,484,987
- w:en:User:Sasfir/sandbox 138 \begin{matrix} 3\uparrow\uparrow\uparrow3 = 3\uparrow\uparrow3\uparrow\uparrow3 = 3\uparrow\uparrow(3\uparrow3\uparrow3) = & \underbrace{3_{}\uparrow 3\uparrow\dots\uparrow 3} \\ & 3\uparrow3\uparrow3\mbox{ multiplied copies of }3 \end{matrix} \begin{matrix} = & \underbrace{3_{}\uparrow 3\uparrow\dots\uparrow 3} \\ & \mbox{7,625,597,484,987 multiplied copies of 3} \end{matrix}={3^\underbrace{3^{3^{3^{\cdot^{\cdot^{\cdot^{\cdot^{3}}}}}}}}_{7,625,597,484,987}}
- w:en:User:Sasfir/sandbox 345 10^{10^{10^{10,000,000,000}}}
- w:en:User:Sasfir/sandbox 345 10^{10,000,000,000}
- w:en:User:Sasfir/sandbox 345 10^{10^{10,000,000,000}}
- w:en:Wikipedia:Reference desk/Archives/Mathematics/2013 December 6 74 \gcd(45,486) = 9
- w:en:User:DavidCary/Transwiki 368 (15,)\leftrightarrow(10,0)\leftrightarrow(3,01),\leftrightarrow(1,011),\leftrightarrow(0,0110)
- w:en:Fuss–Catalan number 53 A_m(1,4) = 1,4,10,20,35,56,84,120,165,220,\ldots
- w:en:Fuss–Catalan number 54 A_m(1,5) = 1,5,15,35,70,126,210,330,495,715,\ldots
- w:en:Fuss–Catalan number 55 A_m(1,6) = 1,6,21,56,126,252,462,792,1287,2002,\ldots
- w:en:Hartley (unit) 20 10^3 = 1,000 \lesssim 1,024 = 2^{10}
- w:en:User:Legoeric/sandbox 1369 \definecolor{myorange}{RGB}{255,165,100}\color{myorange}e^{i \pi}\color{Black} + 1 = 0
- w:en:User:Gert.hamacher/sandbox 124 0,t = 0,0111...
- w:en:User:Gert.hamacher/sandbox 135 \begin{align}0,11100... &= \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{0}{16} + ... = \frac{7}{8}\\0,01010... &= \frac{1}{4} + \frac{1}{16} + \frac{0}{32} + ... = \frac{5}{16}\end{align}
- w:en:User:Gert.hamacher/sandbox 143 \begin{align}n = 0,111... &= \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + ... = \sum\limits_{i=1}^{\infty}\left( \frac{1}{2}\right)^i= 1 \text{ !!!}\end{align}
- w:en:User:Gert.hamacher/sandbox 155 \begin{align}n &= 0,111...\\2 \cdot 0,111... &= 1,111... = 2 \cdot n\\4 \cdot 0,111... &= 11,111... = 4 \cdot n\\4 n - 2 n &= 11,111... - 1,11... = 10,000... = 2\\\Downarrow \\n &= 1\end{align}
- w:en:User:Gert.hamacher/sandbox 156 0,111... = 1,00 ...
- w:en:User:Gert.hamacher/sandbox 164 \begin{align}0,0111... &= \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + ... = 1 - \frac{1}{2} = \frac{1}{2} = 0,100...\\0,1011... &= \frac{1}{2} + \frac{1}{8} + \frac{1}{16} + ... = 1 - \frac{1}{4} = \frac{1}{2} + \frac{1}{4} = 0,1100...\end{align}
- w:en:User:Gert.hamacher/sandbox 165 0,0111... = 0,100 ...
- w:en:User:Gert.hamacher/sandbox 165 0,1011... = 0,1100...
- w:en:User:Gert.hamacher/sandbox 172 1 = 0,111..
- w:en:User:Wyklety/sandbox 134 \text{reversePV01}_{i,t} = \frac{\text{requiredPV01}_{i,t} }{\text{DF}_{i,t}} \times 10,000 \times \frac{12}{i}
- w:en:Descendant tree (group theory) 624 \langle 729,395\rangle
- w:en:Descendant tree (group theory) 650 \mathcal{T}^2(\langle 2187,319\rangle)
- w:en:Descendant tree (group theory) 653 \langle 2187,319\rangle
- w:en:Descendant tree (group theory) 696 \mathcal{T}^3(\langle 64,140\rangle)
- w:en:Descendant tree (group theory) 699 \mathcal{T}^3(\langle 64,147\rangle)
- w:en:Descendant tree (group theory) 709 \mathcal{T}^3(\langle 64,174\rangle)
- w:en:User:Danielkscarmo/sandbox 47 I_{G,max}= 87,478
- w:en:Artin transfer (group theory) 1300 \langle 2187,302\rangle
- w:en:Artin transfer (group theory) 1302 \langle 2187,306\rangle
- w:en:Artin transfer (group theory) 1304 \langle 2187,303\rangle
- w:en:Artin transfer (group theory) 1312 \langle 2187,303\rangle-\#1;1
- w:en:Artin transfer (group theory) 1346 Q\in\lbrace\langle 2187,302\rangle,\langle 2187,306\rangle\rbrace
- w:en:Artin transfer (group theory) 1348 \langle 2187,303\rangle-\#1;1\in\mathcal{G}(3,2)
- w:en:Artin transfer (group theory) 1527 \langle 15625,631\rangle
- w:en:Artin transfer (group theory) 1588 \mathcal{T}^3(\langle 64,181\rangle)
- w:en:HV 2112 60 \sqrt{(5772/3450)^4 * 107,000} = 915.6\ R\odot
- w:en:User:Quaeria/sandbox 283 P = 1 - \left(\frac{47 - outs}{47} \times \frac{46 - outs}{46}\right) = \frac{93outs-outs^2}{2,162}.
- w:en:User:Quaeria/sandbox 441 P = \frac{x}{47} \times \frac{x-1}{46}= \frac{x^2-x}{2,162}.
- w:en:P-group generation algorithm 296 \langle 729,122\rangle
- w:en:16,807 34 X_{k+1} = 16807 \cdot X_k~~\bmod~~2147483647
- w:en:User:Double sharp/Extended periodic table 594 \,^{238}_{92}\mathrm{U} + \,^{nat}_{28}\mathrm{Ni} \to \,^{296,298,299,300,302}\mathrm{Ubn} ^{*} \to \ \mathit{fission}.
- w:en:User:Double sharp/Extended periodic table 614 \,^{nat}_{68}\mathrm{Er} + \,^{136}_{54}\mathrm{Xe} \to \,^{298,300,302,303,304,306}\mathrm{Ubb} ^{*} \to \ \mbox{no atoms}.
- w:en:User:Double sharp/Extended periodic table 622 \,^{238}_{92}\mathrm{U} + \,^{nat}_{32}\mathrm{Ge} \to \,^{308,310,311,312,314}\mathrm{Ubq} ^{*} \to \ fission.
- w:en:User:Al'Beroya/Cosmological General Relativity 1094 = 299,792,458~meters/sec
- w:en:Wikipedia:Reference desk/Archives/Mathematics/2014 October 22 39 |V| = n = 11^7 = 19,487,171
- w:en:Wikipedia:Reference desk/Archives/Mathematics/2014 November 22 57 p \approx 2^2/(2*216,546,345) \approx 9.2\times 10^{-9}
- w:en:User:Bqxiao 115 \mu_H=-1.46, \sigma_H=0.30, f_H=1/(1+aexp[-(|Z|/b)^c]),(a,b,c)=(70,240pc,0.62)
- w:en:User:Cirrus246/sandbox 108 b\, \Omega^2 c\, C_l = 1,379.771
- w:en:User:Cirrus246/sandbox 120 Re = {7,199,059 \over b\, C_l\, \Omega}
- w:en:List of physics mnemonics 128 \begin{array}{l}{}\\\ce{^{238}_{92}U->[\alpha][4.468 \times 10^9 \ \ce y] {^{234}_{90}Th} ->[\beta^-][24.1 \ \ce d] {^{234\!m}_{91}Pa}}\begin{Bmatrix} \ce{->[0.16\%][1.17 \ \ce{min}] {^{234}_{91}Pa} ->[\beta^-][6.7 \ \ce h]} \\ \ce{->[99.84\%\ \beta^-][1.17 \ \ce{min}]}\end{Bmatrix}\ce{^{234}_{92}U ->[\alpha][2.445 \times 10^5 \ \ce y] {^{230}_{90}Th} ->[\alpha][7.7 \times 10^4 \ \ce y] {^{226}_{88}Ra} ->[\alpha][1600 \ \ce y] {^{222}_{86}Rn}}\\\ce{^{222}_{86}Rn ->[\alpha][3.8235 \ \ce d] {^{218}_{84}Po} ->[\alpha][3.05 \ \ce{min}] {^{214}_{82}Pb} ->[\beta^-][26.8 \ \ce{min}] {^{214}_{83}Bi} ->[\beta^-][19.9 \ \ce{min}] {^{214}_{84}Po} ->[\alpha][164.3 \ \mu\ce{s}] {^{210}_{82}Pb} ->[\beta^-][22.26 \ \ce y] {^{210}_{83}Bi} ->[\beta^-][5,013 \ \ce d] {^{210}_{84}Po} ->[\alpha][138.38 \ \ce d] {^{206}_{82}Pb}}\end{array}
- w:en:User:Trenteans123/sandbox 1171 2,8,18,32,50,72,98,128,162:
- w:en:User:DangerisGo/sandbox 49 d=(299,792,458)*(0.338128135 - 0.265978421 + 134nS)
- w:en:User:DangerisGo/sandbox 52 d=(299,792,458)*(0.072149848)
- w:en:User:DangerisGo/sandbox 54 d=21,629,980 m
- w:en:User:DangerisGo/sandbox 55 d=21,629.9 km
- w:en:List of finite-dimensional Nichols algebras 142 5,184
- w:en:List of finite-dimensional Nichols algebras 143 1,280
- w:en:List of finite-dimensional Nichols algebras 144 326,592
- w:en:List of finite-dimensional Nichols algebras 197 2,304
- w:en:List of finite-dimensional Nichols algebras 198 10,368
- w:en:List of finite-dimensional Nichols algebras 199 2,239,488
- w:en:List of finite-dimensional Nichols algebras 239 262,144 \;= 2^{18}
- w:en:List of finite-dimensional Nichols algebras 270 80,621,568
- w:en:List of finite-dimensional Nichols algebras 300 1,671,768,834,048
- w:en:List of finite-dimensional Nichols algebras 396 2^{36}=68,719,476,736
- w:en:User:SimplyGuppy/sandbox 81 5 * 100,000 * 9 = 4,500,000
- w:en:User:Mgkay/Material handling 49 $45,432\left (\frac{1-1.017^{-5}}{0.017} \right )=$45,432(4.75)=$216,019
- w:en:Atmospheric lidar 224 \lambda_i=\{355,532,1064\}
- w:en:Annuity 101 \text{PV}\left( \frac{0.12}{12},5\times 12,\$100\right) = \$100 \times a_{\overline{60}|0.01}= \$4,495.50
- w:en:Annuity 197 \text{FV}_{\text{due}}(\frac{0.09}{12},7\times 12,\$100) = \$100 \times \ddot{s}_{\overline{84}|0.0075}= \$11,730.01.
- w:en:User:KamaljitchakrabortyM4074291/PAGEROMANthree 177 \definecolor{orange}{RGB}{255,165,0}\pagecolor{orange}e^{i \pi} + 1 = 0\,
- w:en:User:KamaljitchakrabortyM4074291/PAGEROMANthree 184 \definecolor{orange}{RGB}{255,165,0}\pagecolor{orange}e^{i \pi} + 1 = 0\,
- w:en:User talk:V255 Canis Majoris 74 \sqrt{(5772/3250)^4 * 270,000} = 1638.96\ R\odot
- w:en:User:Math4543/sandbox 127 b_o \approx \frac{490,000}{a_v}
- w:en:Arp 7 70 5.9-83.7 Mpc*sin(57.1 arcsec) = 5,300 - 75,000 ly
- w:en:Wikipedia:Reference desk/Archives/Mathematics/2015 December 8 59 u_n=lcm(71,5,11,13,29,911,141961,190392490709135)=190392490709135=F_{u_{p^1}}
- w:en:Wikipedia:Reference desk/Archives/Mathematics/2015 December 8 60 u_m=lcm(71^2,5,11,13,29,911,141961,190392490709135)=13517866840348585=F_{pu_{p^1}}
- w:en:Sudoku Codes 82 6,670,903,752,021,072,936,960
- w:en:User:Hammer5000/sandbox 71 \frac{1,359,000\ \mathrm{N}}{(1,800\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=76.99
- w:en:User:Hammer5000/sandbox 105 \frac{64,800\ \mathrm{N}}{(165\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=40.05
- w:en:User:Hammer5000/sandbox 122 \frac{180,000\ \mathrm{N}}{(280\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=65.55
- w:en:User:Hammer5000/sandbox 139 \frac{3,826,555\ \mathrm{N}}{(5,480\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=71.2
- w:en:User:Hammer5000/sandbox 156 \frac{1,922,103\ \mathrm{N}}{(2,200\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=89.09
- w:en:User:Hammer5000/sandbox 174 \frac{294,300\ \mathrm{N}}{(480\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=57.7
- w:en:User:Hammer5000/sandbox 294 \frac{756,000\ \mathrm{N}}{(467\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=165.07
- w:en:User:Hammer5000/sandbox 346 \frac{7,256,921\ \mathrm{N}}{(9,300\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=79.57
- w:en:User:Hammer5000/sandbox 364 \frac{839,449\ \mathrm{N}}{(1,090\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=78.53
- w:en:User:Hammer5000/sandbox 382 \frac{792,377\ \mathrm{N}}{(1,075\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=75.16
- w:en:User:Hammer5000/sandbox 400 \frac{778,648\ \mathrm{N}}{(1,100\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=72.18
- w:en:User:Hammer5000/sandbox 418 \frac{818,855\ \mathrm{N}}{(1,100\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=75.91
- w:en:User:Hammer5000/sandbox 435 \frac{103,000\ \mathrm{N}}{(245\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=42.87
- w:en:User:Hammer5000/sandbox 452 \frac{121,500\ \mathrm{N}}{(242\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=51.19
- w:en:User:Hammer5000/sandbox 469 \frac{137,000\ \mathrm{N}}{(269\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=51.93
- w:en:User:Hammer5000/sandbox 503 \frac{1,098,000\ \mathrm{N}}{(1,800\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=62.2
- w:en:User:Hammer5000/sandbox 555 \frac{3,560,000\ \mathrm{N}}{(6,747\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=53.80
- w:en:User:Hammer5000/sandbox 590 \frac{6,770,000\ \mathrm{N}}{(8,391\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=82.27
- w:en:User:Hammer5000/sandbox 607 \frac{1,860,000\ \mathrm{N}}{(3,526\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=53.79
- w:en:User:Hammer5000/sandbox 676 \frac{1,310,000\ \mathrm{N}}{(2,430\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=54.97
- w:en:User:Hammer5000/sandbox 884 \frac{73,550\ \mathrm{N}}{(445\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=16.85
- w:en:User:Hammer5000/sandbox 953 \frac{4,158,020\ \mathrm{N}}{(3,600\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=117.77
- w:en:User:Hammer5000/sandbox 971 \frac{1,671,053\ \mathrm{N}}{(1,070\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=159.25
- w:en:User:Hammer5000/sandbox 1006 \frac{1,922,103\ \mathrm{N}}{(1,900\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=103.15
- w:en:User:Hammer5000/sandbox 1040 \frac{30,000\ \mathrm{N}}{(111\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=27.6
- w:en:User:Hammer5000/sandbox 1057 \frac{55,400\ \mathrm{N}}{(138\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=40.9
- w:en:V915 Scorpii 95 \sqrt{(5772/5100)^4 * 350,000} = 757.79\ R\odot
- w:en:Heptagonal triangle 308 C(-n) = 3,-4,24,-88,416,-1824,8256,-36992,166400,-747520, 3359744,...
- w:en:Stochastic chains with memory of variable length 48 \tau = \{1,10,100,\cdots\} \cup \{0^\infty\}.
- w:en:XX Persei 54 \sqrt{(5772/3700)^4 * 85,000} = 709.51\ R\odot
- w:en:User:AboutFace 22/sandbox2 320 \frac{1}{128}(6435x^8 - 12,012x^6 + 6930x^4 - 1260x^2 + 35)
- w:en:User:AboutFace 22/sandbox2 332 \frac{3,465}{8}xs^3(39x^4 - 26x^2 + 3)
- w:en:User:AboutFace 22/sandbox2 336 \frac{10,395}{8}s^4(65x^4 - 26x^2 + 1)
- w:en:User:AboutFace 22/sandbox2 340 \frac{135,135}{2}xs^5(5x^2 - 1)
- w:en:User:AboutFace 22/sandbox2 344 \frac{135,135}{2}s^6(15x^2 - 1)
- w:en:User:AboutFace 22/sandbox2 348 2,027,025xs^7
- w:en:User:AboutFace 22/sandbox2 352 2,027,025s^8
- w:en:User:AboutFace 22/sandbox2 372 \frac{3,465}{8}xs^4(13x^2 - 3)
- w:en:User:AboutFace 22/sandbox2 376 \frac{10,395}{2}s^5(13x^2 - 1)
- w:en:User:AboutFace 22/sandbox2 380 135,135xs^6
- w:en:User:AboutFace 22/sandbox2 384 135,135s^7
- w:en:Fibonacci word fractal 41 \scriptstyle{3\frac{\log\varphi}{\log(1+\sqrt 2)}= 1,6379}
- w:en:Fibonacci word fractal 43 \scriptstyle{\frac{\log 3}{{\log(1+\sqrt 2})}= 1,2465}
- w:en:U Lacertae 54 \sqrt{(5772/3535)^4 * 147,000} = 1022\ R\odot
- w:en:User:Dareggon/sandbox 53 E=mc^{2} \not\equiv \aleph \infty \looparrowright \circledast \begin{pmatrix} 3,1415 & 6,2830 \\ 1,3 & v \end{pmatrix}
- w:en:Robertson–Webb rotating-knife procedure 23 \alpha\in[0,180^\circ]
- w:en:User talk:Georges T. 109 \frac{-\ \frac{0.0018\ arcsec}{day}}{36,525\ day}=\frac{-\ 0.0018\ arcsec}{36,525\ day^2}
- w:en:User talk:Georges T. 111 \frac{0.0018\ secSI}{36,525\ cycle^2}
- w:en:User talk:Georges T. 264 \frac{9,192,631,875}{9,192,631,770}
- w:en:User talk:Georges T. 264 \frac{9,192,631,875}{9,192,631,770}
- w:en:User talk:Georges T. 266 \frac{9,192,631,770}{299,792,458}
- w:en:User:Darth Tacker/TWA/Earth 581 \left ( \frac{1}{3 \cdot 332,946} \right )^{\frac{1}{3}} = 0.01
- w:en:User:Huji/2FA 19 1,000,000 / 200 = 5,000
- w:en:User:Huji/2FA 19 5,000 / (60 * 24) \approx 3.47
- w:en:User:Huji/2FA 23 \frac{100}{1,000,000}
- w:en:User:Huji/2FA 23 1- \frac{100}{1,000,000}
- w:en:User:Huji/2FA 25 24 (hours) \times 60 (minutes in each hour) \times 2 (30-second periods in each minute) = 2,880
- w:en:User:Huji/2FA 25 p = ( 1 - \frac{100}{1,000,000})^{2880 \times t} = (\frac{9,999}{10,000})^{2880 \times t}
- w:en:User:Huji/2FA 25 ( 1 - \frac{100}{1,000,000})^{t/30}
- w:en:Wikipedia:Reference desk/Archives/Science/2016 December 31 152 \tfrac{600 Wh}{1,125\cdot 10^{24}}=\tfrac{1,35\cdot 10^{25}eV}{1,125\cdot 10^{24}} =
- w:en:User:Michael Hardy/Envelope model 119 n \approx 20,000
- w:en:User:Jmleonrojas/sandbox 311 \begin{align}FE + IW + CW &= \left(\leqslant 10\right) + IW + CW \\ &= \left(\leqslant 10\right) + \left(\left(\leqslant 3\right) + \left(\leqslant 0,75\right)\right) + CW \\ &= \left(\leqslant 10\right) + \left(\left(\leqslant 3\right) + \left(\leqslant 0,75\right)\right) + \left(\left(\leqslant \overline{0,5}\right) + \left(\leqslant \overline{0,125}\right) + \left(\leqslant \overline{0,125}\right)\right)\end{align}
- w:en:Wikipedia:Reference desk/Archives/Mathematics/2017 April 10 38 $1,000,000 \sum_{i = 1}^n \frac{1}{1 + I(i)}
- w:en:Wikipedia:Reference desk/Archives/Mathematics/2017 April 10 43 \sum_{i=0}^n $1,000,000\times \frac{1}{(1+r)^i}.
- w:en:User:Doug Bell/Probability derivations for making low hands in Omaha Hold 'em 51 \begin{matrix} {48 \choose 5} = 1,712,304 \end{matrix}
- w:en:User:Doug Bell/Probability derivations for making low hands in Omaha Hold 'em 51 \begin{matrix} {48 \choose 3} = 17,296 \end{matrix}
- w:en:User:Doug Bell/Probability derivations for making low hands in Omaha Hold 'em 51 \begin{matrix} {48 \choose 4} = 194,580 \end{matrix}
- w:en:Wikipedia:Reference desk/Archives/Mathematics/2017 May 10 52 f(2,123)=4140
- w:en:Wikipedia:Reference desk/Archives/Mathematics/2017 May 10 52 f(1,123)=42
- w:en:COGIX 40 COGIX_{gas} = p_{el} - 1,053 \cdot p_{gas} - 0,47 \frac{t_{CO2e}}{MWh} \cdot p_{CO_2}
- w:en:COGIX 46 COGIX_{coal} = p_{el} - 2,857 \cdot p_{coal} + 1,857 \cdot p_{gas} - 0,97 \frac{t_{CO2e}}{MWh} \cdot p_{CO_2}
- w:en:Hare–Clark electoral system 60 \mbox{2,500.25} = \left({{\rm \mbox{10,000 +1}} \over {\rm \mbox{3}}+1}\right)
- w:en:Hare–Clark electoral system 92 \mbox{0.17} = \left({{\rm \mbox{499}} \over {\rm \mbox{3,000}}}\right)
- w:en:Hare–Clark electoral system 110 \mbox{170} = 0.17 * 1,000
- w:en:Queuing Rule of Thumb 50 s>\frac{Nr}{T}\Longrightarrow T>\frac{Nr}{s}\Longrightarrow T>\frac{10,000\times36}{1}\Longrightarrow T>360,000
- w:en:Queuing Rule of Thumb 50 \left\lceil\frac{360,000}{28,800}\right\rceil=13
- w:en:Wikipedia:Reference desk/Archives/Mathematics/2017 August 13 40 220/635,013,559,600,
- w:en:Wikipedia:Reference desk/Archives/Mathematics/2017 August 13 40 \binom{52}{13} = 635,013,559,600
- w:en:Wikipedia talk:School and university projects/Discrete and numerical mathematics/Learning plan 148 \begin{align}FE + IW + CW &= \left(\leqslant 10\right) + IW + CW \\ &= \left(\leqslant 10\right) + \left(\left(\leqslant 3\right) + \left(\leqslant 0,75\right)\right) + CW \\ &= \left(\leqslant 10\right) + \left(\left(\leqslant 3\right) + \left(\leqslant 0,75\right)\right) + \left(\left(\leqslant \overline{0,5}\right) + \left(\leqslant \overline{0,125}\right) + \left(\leqslant \overline{0,125}\right)\right)\end{align}
- w:en:User:Azacz/sandbox 49 Re \approx 8,4 \sdot 10^{4},e/D \approx 1,4 \sdot 10^{-2} \rightarrow f \approx 0,043
- w:en:User:Azacz/sandbox 61 u_{x} = \sqrt{R_{n}} \sdot s_{j} \sdot g = 0.0506 m/s, v/u_{x} = 13,62 \rightarrow f \approx 0,043
- w:en:Wikipedia talk:School and university projects/Discrete and numerical mathematics/Learning plan/Academic year 2016-2017 46 \begin{align}IW + CW + FE &= IW + CW + \left(\leqslant 5,5\right) \\ &= IW + \left(\overline{0,5} + \overline{0,125} + \overline{0,125}\right) + \left(\leqslant 5,5\right) \\ &= \left(\left(\leqslant 3\right) + \left(\leqslant 0,75\right)\right) + \left(\overline{0,5} + \overline{0,125} + \overline{0,125}\right) + \left(\leqslant 5,5\right) \\ &\leqslant 10\end{align}
- w:en:Wikipedia talk:School and university projects/Discrete and numerical mathematics/Learning plan/Academic year 2016-2017 64 \begin{align}FE + IW + CW &= \left(\leqslant 10\right) + IW + CW \\ &= \left(\leqslant 10\right) + \left(\left(\leqslant 3\right) + \left(\leqslant 0,75\right)\right) + CW \\ &= \left(\leqslant 10\right) + \left(\left(\leqslant 3\right) + \left(\leqslant 0,75\right)\right) + \left(\overline{0,5} + \overline{0,125} + \overline{0,125}\right)\end{align}
- w:en:Wikipedia talk:School and university projects/Discrete and numerical mathematics/Learning plan/Academic year 2016-2017 90 \left\{\begin{align}IW &= 0 \\FE + CW &= \left(\leqslant 10\right) + CW \\ &= \left(\leqslant 10\right) + \left(\overline{0,5} + \overline{0,125} + \overline{0,125}\right)\end{align}\right .
- w:en:User:Doug Bell/Poker probability (Texas hold 'em) 35 {52 \choose 2} = 1,326
- w:en:User:Doug Bell/Poker probability (Texas hold 'em) 131 {52 \choose 2}{50 \choose 2} \div 2 = 812,175
- w:en:User:Doug Bell/Poker probability (Texas hold 'em) 139 {48 \choose 5} = 1,712,304
- w:en:User:Doug Bell/Poker probability (Texas hold 'em) 183 {50 \choose 2}{48 \choose 2} = 1,381,800
- w:en:User:Doug Bell/Poker probability (Texas hold 'em) 187 H = {50 \choose 2}{48 \choose 2} \div 2! = 690,900
- w:en:User:Doug Bell/Poker probability (Texas hold 'em) 191 H = {50 \choose 2}{48 \choose 2}{46 \choose 2} \div 3! = 238,360,500
- w:en:User:Doug Bell/Poker probability (Texas hold 'em) 249 P = \left(\frac{84 - 6r}{1225}\right) \times n - P_{ma}= \frac{n(84-6r)-1,225P_{ma}}{1,225}.
- w:en:User:Doug Bell/Poker probability (Texas hold 'em) 375 {50 \choose 3} = 19,600
- w:en:User:Doug Bell/Poker probability (Texas hold 'em) 379 {50 \choose 4} = 230,300
- w:en:User:Doug Bell/Poker probability (Texas hold 'em) 383 {50 \choose 5} = 2,118,760
- w:en:User:Doug Bell/Poker probability (Texas hold 'em) 499 P = 1 - \left(\frac{47 - outs}{47} \times \frac{46 - outs}{46}\right) = \frac{93outs-outs^2}{2,162}.
- w:en:User:Doug Bell/Poker probability (Texas hold 'em) 670 P = \frac{x}{47} \times \frac{x-1}{46}= \frac{x^2-x}{2,162}.
- w:en:User:Doug Bell/Poker probability (Omaha) 26 {52 \choose 4} = 270,725
- w:en:User:Doug Bell/Poker probability (Omaha) 575 {52 \choose 3} = 22,100
- w:en:User:Doug Bell/Poker probability (Omaha) 579 {52 \choose 4} = 270,725
- w:en:User:Doug Bell/Poker probability (Omaha) 583 {52 \choose 5} = 2,598,960
- w:en:User:Doug Bell/Poker probability (Omaha) 587 {48 \choose 3} = 17,296
- w:en:User:Doug Bell/Poker probability (Omaha) 591 {48 \choose 4} = 194,580
- w:en:User:Doug Bell/Poker probability (Omaha) 595 {48 \choose 5} = 1,712,304
- w:en:User:Doug Bell/Poker probability (Omaha) 617 \begin{matrix}{52 \choose 3} = 22,100\end{matrix}
- w:en:User:Doug Bell/Poker probability (Omaha) 633 \begin{matrix}{52 \choose 4} = 270,725\end{matrix}
- w:en:User:Doug Bell/Poker probability (Omaha) 663 \begin{matrix}{52 \choose 5} = 2,598,960\end{matrix}
- w:en:User:Doug Bell/Poker probability (Omaha) 1221 \begin{matrix} {49 \choose 2} = 1,176 \end{matrix}
- w:en:User:Doug Bell/Poker probability (Omaha) 1223 {52 \choose 3}{3 \choose 3}{49 \choose 2} = 25,989,600
- w:en:User:Doug Bell/Poker probability (Omaha) 1225 \begin{matrix} {48 \choose 2} = 1,128 \end{matrix}
- w:en:User:Doug Bell/Poker probability (Omaha) 1227 {52 \choose 4}{4 \choose 3}{48 \choose 2} = 1,221,511,200
- w:en:User:Doug Bell/Poker probability (Omaha) 1229 \begin{matrix} {47 \choose 2} = 1,081 \end{matrix}
- w:en:User:Doug Bell/Poker probability (Omaha) 1231 {52 \choose 5}{5 \choose 3}{47 \choose 2} = 28,094,757,600
- w:en:User:Doug Bell/Poker probability (Omaha) 1281 432 \times {4 \choose 1} + 64 \times {4 \choose 1}{39 \choose 1} = 11,712
- w:en:User:Doug Bell/Poker probability (Omaha) 1285 1,208 \times {4 \choose 1} + 432 \times {4 \choose 1}{39 \choose 1} + 64 \times {4 \choose 1}{39 \choose 2} = 261,920
- w:en:User:Doug Bell/Poker probability (Omaha) 1293 {13 \choose 1}{4 \choose 3} + {13 \choose 1}{4 \choose 2}{12 \choose 1}{4 \choose 1} = 3,796
- w:en:User:Doug Bell/Poker probability (Omaha) 1295 \begin{matrix} 64 \times {4 \choose 1}{3 \choose 1}{3 \choose 1} = 2,304\end{matrix}
- w:en:User:Doug Bell/Poker probability (Omaha) 1300 {13 \choose 1}{4 \choose 3}{12 \choose 1}{4 \choose 1} + {13 \choose 2}{4 \choose 2}^2 + \left [ {13 \choose 2}{4 \choose 2}{12 \choose 2}{4 \choose 1}^2 - 2,304 \right ] = 85,368
- w:en:User:Doug Bell/Poker probability (Omaha) 1302 \begin{matrix} 64 \times {4 \choose 1}{3 \choose 1}{3 \choose 2} = 2,304 \end{matrix}
- w:en:User:Doug Bell/Poker probability (Omaha) 1302 \begin{matrix} 64 \times {4 \choose 1}{3 \choose 2}{3 \choose 1}^2 = 6,912 \end{matrix}
- w:en:User:Doug Bell/Poker probability (Omaha) 1303 \begin{matrix} 432 \times {4 \choose 1}{3 \choose 1} = 20,736 \end{matrix}
- w:en:User:Doug Bell/Poker probability (Omaha) 1304 \begin{matrix} 64 \times {4 \choose 1}{3 \choose 1}{3 \choose 1}{10 \choose 1}{3 \choose 1} = 69,120 \end{matrix}
- w:en:User:Doug Bell/Poker probability (Omaha) 1305 \begin{matrix} 64 \times {4 \choose 1}{10 \choose 1}{3 \choose 2} = 7,680 \end{matrix}
- w:en:User:Doug Bell/Poker probability (Omaha) 1311 3,744\,
- w:en:User:Doug Bell/Poker probability (Omaha) 1313 + {13 \choose 1}{4 \choose 3}{12 \choose 2}{4 \choose 1}^2 - 2,304
- w:en:User:Doug Bell/Poker probability (Omaha) 1314 52,608\,
- w:en:User:Doug Bell/Poker probability (Omaha) 1316 + {13 \choose 2}{4 \choose 2}^2{11 \choose 2}{4 \choose 1} - 6,912
- w:en:User:Doug Bell/Poker probability (Omaha) 1317 116,640\,
- w:en:User:Doug Bell/Poker probability (Omaha) 1319 + {13 \choose 1}{4 \choose 2}{12 \choose 3}{4 \choose 1}^3 - 97,536
- w:en:User:Doug Bell/Poker probability (Omaha) 1320 1,000,704\,
- w:en:User:Doug Bell/Poker probability (Omaha) 1322 1,173,696\,
- w:en:User:Doug Bell/Poker probability (Omaha) 1337 \begin{matrix}{13 \choose 5} - 1,208 = 79\end{matrix}
- w:en:User:Doug Bell/Poker probability (Omaha) 1343 283 \times {4 \choose 1} + 222 \times {4 \choose 1}{10 \choose 1}{3 \choose 1} = 27,772
- w:en:User:Doug Bell/Poker probability (Omaha) 1350 79 \times {4 \choose 1} + 283 \times {4 \choose 1}{9 \choose 1}{3 \choose 1} + 222 \times {4 \choose 1}{10 \choose 2}{3 \choose 1}^2 = 390,520
- w:en:User:Doug Bell/Poker probability (Omaha) 1358 64 \times 60 = 3,840\,
- w:en:User:Doug Bell/Poker probability (Omaha) 1362 432 \times 204 = 88,128\,
- w:en:User:Doug Bell/Poker probability (Omaha) 1362 1,208 \times 600 = 724,800\,
- w:en:User:Doug Bell/Poker probability (Omaha) 1370 79 \times 600 = 47,400\,
- w:en:User:Doug Bell/Poker probability (Omaha) 1370 222 \times 60 = 13,320\,
- w:en:User:Doug Bell/Poker probability (Omaha) 1370 283 \times 204 = 57,732\,
- w:en:User:Doug Bell/Poker probability (Omaha) 2169 P_f = \frac{C}Vorlage:48 \choose 3 = \frac{C}{17,296}.
- w:en:User:Mathwriters10 843 \left ( \frac{1}{3 \cdot 332,946} \right )^{\frac{1}{3}} = 0.01
- w:en:User:Mathwriter 843 \left ( \frac{1}{3 \cdot 332,946} \right )^{\frac{1}{3}} = 0.01
- w:en:User:A2,147,483,647 40 Q = \frac{RQD}{Jn} * \frac{Jr}{Ja} * \frac{Jw}{SRF}
- w:en:User:Zanygenius/TWA/Earth 701 \left ( \frac{1}{3 \cdot 332,946} \right )^{\frac{1}{3}} = 0.01
- w:en:User:Zanygenius/TWA/Earth/2 703 \left ( \frac{1}{3 \cdot 332,946} \right )^{\frac{1}{3}} = 0.01
- w:en:User:Jackschwartz 1/sandbox 18 [2014,2018]
- w:en:User:Jackschwartz 1/sandbox 20 (2014,2018)
- w:en:Draft:Jellyfish Networking 54 = 1,225
- w:en:Unseen species problem 88 U^\text{words}(t\rightarrow\infty)\approx 35,000
- w:en:Unseen species problem 88 U^\text{words}\approx 11,460
- w:en:User:Google7722/TWA/Earth 703 \left ( \frac{1}{3 \cdot 332,946} \right )^{\frac{1}{3}} = 0.01
- w:en:Wikipedia:Reference desk/Archives/Mathematics/2018 August 23 51 f(8) = \{3,20,21,128\}
- w:en:Crypto-PAn 31 x_{[0,128)}
- w:en:Crypto-PAn 31 E_k(x_{[0,32)}) E_k(x_{[32,64)}) E_k(x_{[64,96)}) E_k(x_{[96,128)})
- w:en:HD 143183 86 \sqrt{(5772/3560)^4 * 316,000} = 1477.73\ R\odot
- w:en:HD 143183 86 \sqrt{(5772/3200)^4 * 316,000} = 1828.93\ R\odot
- w:en:List of geniuses (Catharine Cox Miles) 28 16\sqrt{2}\operatorname{erfc}^{-1}\left(\frac{2}{14,400,000}\right)+100=184
- w:en:List of geniuses (Catharine Cox Miles) 42 15\sqrt{2}\operatorname{erfc}^{-1}\left(\frac{2}{14,400,000}\right)+100=179
- w:en:User:Alexander Victorius Budianto/sandbox 78 (15,112)
- w:en:User:Alexander Victorius Budianto/sandbox 79 (17,144)
- w:en:User:Alexander Victorius Budianto/sandbox 80 (19,180)
- w:en:User:Alexander Victorius Budianto/sandbox 81 (21,220)
- w:en:User:Alexander Victorius Budianto/sandbox 90 (32,126)
- w:en:User:Alexander Victorius Budianto/sandbox 91 (36,160)
- w:en:User:Alexander Victorius Budianto/sandbox 92 (40,198)
- w:en:User:Alexander Victorius Budianto/sandbox 93 (44,240)
- w:en:User:Alexander Victorius Budianto/sandbox 101 (45,108)
- w:en:User:Alexander Victorius Budianto/sandbox 102 (51,140)
- w:en:User:Alexander Victorius Budianto/sandbox 103 (57,176)
- w:en:User:Alexander Victorius Budianto/sandbox 104 (63,216)
- w:en:User:Alexander Victorius Budianto/sandbox 105 (69,260)
- w:en:User:Alexander Victorius Budianto/sandbox 113 (64,120)
- w:en:User:Alexander Victorius Budianto/sandbox 114 (72,154)
- w:en:User:Alexander Victorius Budianto/sandbox 115 (80,192)
- w:en:User:Alexander Victorius Budianto/sandbox 116 (88,234)
- w:en:User:Alexander Victorius Budianto/sandbox 117 (96,280)
- w:en:User:Alexander Victorius Budianto/sandbox 124 (75,100)
- w:en:User:Alexander Victorius Budianto/sandbox 125 (85,132)
- w:en:User:Alexander Victorius Budianto/sandbox 126 (95,168)
- w:en:User:Alexander Victorius Budianto/sandbox 127 (105,208)
- w:en:User:Alexander Victorius Budianto/sandbox 128 (115,252)
- w:en:User:Alexander Victorius Budianto/sandbox 129 (125,300)
- w:en:Bird's array notation 22 \{2,5,968,8,4^{100}\}
- w:en:Bird's array notation 67 10^{3,638,334,640,024}
- w:en:Bird's array notation 67 3^{7,625,597,484,987}
- w:en:Draft:Zeraoulia function 141 [3,100]
- w:en:Wikipedia talk:School and university projects/Discrete and numerical mathematics/Learning plan/Academic year 2017-2018 130 \begin{align}FE + IW + CW &= \left(\leqslant 10\right) + IW + CW \\ &= \left(\leqslant 10\right) + \left(\left(\leqslant 3\right) + \left(\leqslant 0,75\right)\right) + CW \\ &= \left(\leqslant 10\right) + \left(\left(\leqslant 3\right) + \left(\leqslant 0,75\right)\right) + \left(\left(\leqslant \overline{0,5}\right) + \left(\leqslant \overline{0,125}\right) + \left(\leqslant \overline{0,125}\right)\right)\end{align}
enwikibooks
[Bearbeiten | Quelltext bearbeiten]- b:en:Trigonometry/Radians 71 \frac{2\pi}{1,000,000}\approx 0.00000628
- b:en:GCSE ICT/ICT and Banks 36 Workers \ Needed = \frac {5,000,000} {500} = \frac {50,000} {5} = 10,000
- b:en:Physics Study Guide/Optics 24 c=299,792,458\frac{m}{s}
- b:en:User talk:Nelson castaneda 44 P=120,000 Y R=8%
- b:en:User talk:Nelson castaneda 47 \Rightarrow\I=120,000(8/1000)=9600
- b:en:User talk:Nelson castaneda 52 V(t)=p-tI=120,000-9600t
- b:en:User talk:Nelson castaneda 54 V(t)=120,000-9600t
- b:en:User talk:Nelson castaneda 74 23/25 de 120,000
- b:en:User talk:Nelson castaneda 76 23/25 de 120,000=120,000*(23/25)
- b:en:User talk:Nelson castaneda 79 =120,000(23/25)^2
- b:en:Introduction to Theoretical Physics/Mathematical Foundations/Arithmetic, Physics, and Mathematics 86 1,000,000 = 10^6 = 1 \times 10^6
- b:en:Introduction to Theoretical Physics/Mathematical Foundations/Arithmetic, Physics, and Mathematics 87 2,500,000 = 2.5 \times 10^6
- b:en:Introduction to Theoretical Physics/Mathematical Foundations/Arithmetic, Physics, and Mathematics 93 4,430 \mbox{ meters} = 4.43 \times 10^3 \mbox{ meters} = 4.43 \mbox{ kilometers}
- b:en:Introduction to Theoretical Physics/Mathematical Foundations/Arithmetic, Physics, and Mathematics 94 4,430 \mbox{ m} = 4.43 \times 10^3 \mbox{ m} = 4.43 \mbox{ km}
- b:en:Jet Propulsion/Mechanics 102 R = (600m/s) (3000s) (10) \ln(2) = 12,477km
- b:en:Jet Propulsion/Performance 132 R = (600m/s) (3000s) (10) \ln(100%/50%) = 12,477km
- b:en:User:MathMan64~enwikibooks/Arithmetic/Previous 53 7,576 + 5,345
- b:en:User:MathMan64~enwikibooks/Arithmetic/Previous 54 2,345 + 3,245
- b:en:User:MathMan64~enwikibooks/Arithmetic/Previous 55 8,952 + 9,423
- b:en:User:MathMan64~enwikibooks/Arithmetic/Previous 56 2,783 + 2,389
- b:en:User:MathMan64~enwikibooks/Arithmetic/Previous 57 189,583 + 1,574,822
- b:en:User:MathMan64~enwikibooks/Arithmetic/Previous 63 348.904 + 23,498.2
- b:en:User:MathMan64~enwikibooks/Arithmetic/Previous 64 1.673 + 48,210.38
- b:en:User:MathMan64~enwikibooks/Arithmetic/Previous 66 128.52 + 2,070.24
- b:en:User:MathMan64~enwikibooks/Arithmetic/Previous 94 7,576 - 5,345
- b:en:User:MathMan64~enwikibooks/Arithmetic/Previous 95 2,345 - 3,245
- b:en:User:MathMan64~enwikibooks/Arithmetic/Previous 96 8,952 - 9,423
- b:en:User:MathMan64~enwikibooks/Arithmetic/Previous 97 2,783 - 2,389
- b:en:User:MathMan64~enwikibooks/Arithmetic/Previous 98 1,574,822 - 189,583
- b:en:User:MathMan64~enwikibooks/Arithmetic/Previous 105 348.904 - 23,498.2
- b:en:User:MathMan64~enwikibooks/Arithmetic/Previous 107 2,070.24 - 128.52
- b:en:Cellular Automata/Examples of Plankton and Fish Dynamics 134 t=\{0,100,150,200,300,400,1000\}
- b:en:X86 Assembly/Other Instructions 151 2^{32} cycles * (1 second / 600,000,000 cycles) = 7.16 seconds
- b:en:X86 Assembly/Other Instructions 155 2^{64} cycles * ((1 second / 600,000,000 cycles) / ( 86400 seconds\ in\ a\ day\ *\ 365\ days\ in\ a\ year) ) = 974.9 years
- b:en:High School Physics/Si units 39 1/299,792,458
- b:en:Statistics/Numerical Methods/Quantile Regression 242 \hat{\beta}=0,021
- b:en:Statistics/Numerical Methods/Quantile Regression 244 \hat{\beta}_{0,7}= -0,021
- b:en:Statistics/Numerical Methods/Quantile Regression 244 \hat{\beta}_{0,9}= -0,062
- b:en:Statistics/Numerical Methods/Quantile Regression 244 \hat{\beta}_{0,1}= 0,087
- b:en:Statistics/Numerical Methods/Quantile Regression 246 \hat{\delta}_{0,1}= 29,606
- b:en:Statistics/Numerical Methods/Quantile Regression 246 \hat{\delta}_{0,9}=51,353
- b:en:Statistics/Numerical Methods/Quantile Regression 246 \hat{\delta}_{0,3}=45,281
- b:en:Statistics/Numerical Methods/Quantile Regression 246 \hat{\delta}_{0,5}=53,252
- b:en:Statistics/Numerical Methods/Quantile Regression 246 \hat{\delta}_{0,7}=50,999
- b:en:Statistics/Numerical Methods/Quantile Regression 246 \hat{\delta}=38,099
- b:en:Statistics/Numerical Methods/Quantile Regression 248 \hat{\gamma}_{0,1}=-0,022
- b:en:Statistics/Numerical Methods/Quantile Regression 248 \hat{\gamma}_{0,9}=0,004
- b:en:Statistics/Numerical Methods/Quantile Regression 248 \hat{\gamma}=0,001
- b:en:Statistics/Numerical Methods/Quantile Regression 250 \hat{\lambda}_{0,1}=-0,443
- b:en:Statistics/Numerical Methods/Quantile Regression 250 \hat{\lambda}_{0,9}=-1,257
- b:en:Statistics/Numerical Methods/Quantile Regression 250 \hat{\lambda}=-0,953
- b:en:Half-Life Computation 156 p = \frac{1}{2^{\left({\frac{11,460}{5,730}}\right)}}
- b:en:Half-Life Computation 163 11,460 =5730 * 2\text{ years}
- b:en:LaTeX/Internationalization 461 123~456,123~456\cdot 10^{-17}
- b:en:Probability/The Counting Principle 74 10!=10\cdot9\cdot8\cdot7\cdot6\cdot5\cdot4\cdot3\cdot2\cdot1=3,628,800
- b:en:Arithmetic/Reading Decimal Numerals 25 2,697,787.84
- b:en:Arithmetic/Reading Decimal Numerals 27 2,009
- b:en:Arithmetic/Reading Decimal Numerals 29 1,987
- b:en:Yet Another Haskell Tutorial/Language basics 1389 (1,100)
- b:en:Adventist Youth Honors Answer Book/Health and Science/Physics 123 1,000,000,000
- b:en:Adventist Youth Honors Answer Book/Health and Science/Physics 125 602,000,000,000,000,000,000,000
- b:en:Adventist Youth Honors Answer Book/Health and Science/Physics 127 299,790,000
- b:en:Calculus/Polar Introduction 22 (-3,240^\circ)
- b:en:Calculus/Polar Introduction 26 [0,360^\circ)
- b:en:Financial Derivatives/Basic Derivatives Contracts 102 MtM = 5,000 * (418 3/4 - 418) = $37.50
- b:en:Entropy for Beginners 65 g=10^{4,870000,000000,000000,000000}
- b:en:Entropy for Beginners 80 10^{8,500000,000000,000000}.
- b:en:AP Chemistry/Electrochemistry 88 \frac{3\text{ hr}}{1} \times \frac{60\text{ mins}}{1\text{ hr}} \times \frac{60\text{ s}}{1\text{ min}} \times \frac{2\text{ C}}{1\text{ s}} \times \frac{1\text{ mol e}^-}{96,500\text{ C}} \times \frac{1\text{ mol Hg}}{2\text{ mol e}^-} \times \frac{200.59\text{ g}}{1\text{ mol Hg}} \approx 22.4\text{ g}
- b:en:Principles of Finance/Section 1/Chapter 3/Applications of Time Value of Money/Perpetuities 39 \frac{$5,000}{.08-.05} = $166,666.67
- b:en:Poker/Omaha/Probability derivations for making low hands in Omaha hold 'em 48 \begin{matrix} {48 \choose 5} = 1,712,304 \end{matrix}
- b:en:Poker/Omaha/Probability derivations for making low hands in Omaha hold 'em 48 \begin{matrix} {48 \choose 3} = 17,296 \end{matrix}
- b:en:Poker/Omaha/Probability derivations for making low hands in Omaha hold 'em 48 \begin{matrix} {48 \choose 4} = 194,580 \end{matrix}
- b:en:Arithmetic/Addition and Subtraction 111 7,576 + 5,345=
- b:en:Arithmetic/Addition and Subtraction 115 2,345 + 3,245=
- b:en:Arithmetic/Addition and Subtraction 119 8,952 + 9,423=
- b:en:Arithmetic/Addition and Subtraction 123 2,783 + 2,389=
- b:en:Arithmetic/Addition and Subtraction 127 189,583 + 1,574,822=
- b:en:Arithmetic/Addition and Subtraction 151 348.904 + 23,498.2=
- b:en:Arithmetic/Addition and Subtraction 155 1.673 + 48,210.38=
- b:en:Arithmetic/Addition and Subtraction 163 128.52 + 2,070.24=
- b:en:Arithmetic/Addition and Subtraction 209 3,636 - 511=
- b:en:Arithmetic/Addition and Subtraction 213 7,576 - 5,345=
- b:en:Arithmetic/Addition and Subtraction 217 2,345 - 3,245=
- b:en:Arithmetic/Addition and Subtraction 221 8,952 - 9,423=
- b:en:Arithmetic/Addition and Subtraction 225 2,783 - 2,389=
- b:en:Arithmetic/Addition and Subtraction 229 1,574,822 - 189,583=
- b:en:Arithmetic/Addition and Subtraction 257 348.904 - 23,498.2=
- b:en:Arithmetic/Addition and Subtraction 265 2,070.24 - 128.52=
- b:en:Applicable Mathematics/Matrices 553 = ({\color{red}51} + {\color{red}420} + {\color{red}1,368}) - ({\color{blue}4,522} + {\color{blue}45} + {\color{blue}144}) = -2872
- b:en:Linear Algebra/Topic: Input-Output Analysis 65 2,664
- b:en:Linear Algebra/Topic: Input-Output Analysis 69 17,389
- b:en:Linear Algebra/Topic: Input-Output Analysis 70 21,268
- b:en:Linear Algebra/Topic: Input-Output Analysis 75 17,589
- b:en:Linear Algebra/Topic: Input-Output Analysis 77 21,243
- b:en:Linear Algebra/Topic: Input-Output Analysis 110 17,589
- b:en:Linear Algebra/Topic: Input-Output Analysis 110 21,243
- b:en:Linear Algebra/Topic: Input-Output Analysis 115 25,448
- b:en:Linear Algebra/Topic: Input-Output Analysis 176 17,589
- b:en:Linear Algebra/Topic: Input-Output Analysis 177 17,489
- b:en:Linear Algebra/Topic: Input-Output Analysis 178 21,243
- b:en:Linear Algebra/Topic: Input-Output Analysis 234 17,589
- b:en:Linear Algebra/Topic: Input-Output Analysis 234 21,243
- b:en:Linear Algebra/Topic: Input-Output Analysis 237 21,500
- b:en:Linear Algebra/Topic: Speed of Calculating Determinants 31 10,000
- b:en:Linear Algebra/Topic: Speed of Calculating Determinants 32 10,000
- b:en:Linear Algebra/Topic: Speed of Calculating Determinants 32 100,000
- b:en:Linear Algebra/Topic: Speed of Calculating Determinants 69 10!=3,628,800
- b:en:Linear Algebra/Topic: Stable Populations 71 p=10,000
- b:en:Linear Algebra/Topic: Stable Populations 71 r=100,000
- b:en:Linear Algebra/Topic: Linear Recurrences 484 T(64)=18,446,744,073,709,551,615
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Adding whole numbers with carrying 66 7,576 + 5,345
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Adding whole numbers with carrying 67 2,345 + 3,245
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Adding whole numbers with carrying 68 8,952 + 9,423
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Adding whole numbers with carrying 69 2,783 + 2,389
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Adding whole numbers with carrying 70 189,583 + 1,574,822
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Adding whole numbers with carrying 76 348.904 + 23,498.2
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Adding whole numbers with carrying 77 1.673 + 48,210.38
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Adding whole numbers with carrying 79 128.52 + 2,070.24
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Adding whole numbers with carrying 94 12,921
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Adding whole numbers with carrying 95 5,590
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Adding whole numbers with carrying 96 18,375
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Adding whole numbers with carrying 97 5,172
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Adding whole numbers with carrying 98 1,764,405
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Adding whole numbers with carrying 104 23,847.104
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Adding whole numbers with carrying 105 48,212.053
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Adding whole numbers with carrying 107 2,198.76
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Adding whole numbers with carrying 132 7,576 - 5,345
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Adding whole numbers with carrying 133 2,345 - 3,245
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Adding whole numbers with carrying 134 8,952 - 9,423
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Adding whole numbers with carrying 135 2,783 - 2,389
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Adding whole numbers with carrying 136 1,574,822 - 189,583
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Adding whole numbers with carrying 143 348.904 - 23,498.2
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Adding whole numbers with carrying 145 2,070.24 - 128.52
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Adding whole numbers with carrying 160 2,231
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Adding whole numbers with carrying 164 1,385,239
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Adding whole numbers with carrying 171 -23,149.296
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Adding whole numbers with carrying 173 1,941.72
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Subtracting whole numbers with borrowing 66 7,576 + 5,345
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Subtracting whole numbers with borrowing 67 2,345 + 3,245
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Subtracting whole numbers with borrowing 68 8,952 + 9,423
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Subtracting whole numbers with borrowing 69 2,783 + 2,389
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Subtracting whole numbers with borrowing 70 189,583 + 1,574,822
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Subtracting whole numbers with borrowing 76 348.904 + 23,498.2
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Subtracting whole numbers with borrowing 77 1.673 + 48,210.38
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Subtracting whole numbers with borrowing 79 128.52 + 2,070.24
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Subtracting whole numbers with borrowing 94 12,921
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Subtracting whole numbers with borrowing 95 5,590
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Subtracting whole numbers with borrowing 96 18,375
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Subtracting whole numbers with borrowing 97 5,172
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Subtracting whole numbers with borrowing 98 1,764,405
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Subtracting whole numbers with borrowing 104 23,847.104
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Subtracting whole numbers with borrowing 105 48,212.053
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Subtracting whole numbers with borrowing 107 2,198.76
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Subtracting whole numbers with borrowing 132 7,576 - 5,345
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Subtracting whole numbers with borrowing 133 2,345 - 3,245
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Subtracting whole numbers with borrowing 134 8,952 - 9,423
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Subtracting whole numbers with borrowing 135 2,783 - 2,389
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Subtracting whole numbers with borrowing 136 1,574,822 - 189,583
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Subtracting whole numbers with borrowing 143 348.904 - 23,498.2
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Subtracting whole numbers with borrowing 145 2,070.24 - 128.52
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Subtracting whole numbers with borrowing 160 2,231
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Subtracting whole numbers with borrowing 164 1,385,239
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Subtracting whole numbers with borrowing 171 -23,149.296
- b:en:Prealgebra for Two-Year Colleges/Appendix (procedures)/Subtracting whole numbers with borrowing 173 1,941.72
- b:en:Principles of Finance/Section 1/Chapter 4/Bonds/Valuation 40 80\left[\frac{1}{.05}-\frac{1}{.05\left(1.05\right)^7}\right] + \frac{1000}{(1.05)^7} = $1,173.59
- b:en:Principles of Finance/Section 1/Chapter 4/Bonds/Valuation 89 40\left[\frac{1}{.024695}-\frac{1}{.024695\left(1.024695\right)^{14}}\right] + \frac{1000}{(1.024695)^{14}} = $1,179.31
- b:en:Principles of Finance/Section 1/Chapter 6/Corp/WACC 35 WACC = .07(1 - .35)\frac{1,000,000}{3,000,000} + .0975\frac{2,000,000}{3,000,000} = 8%
- b:en:Principles of Finance/Section 1/Chapter 6/Corp/Val 26 \sum_{t=1}^{10}\frac{170,000}{(1.07)^t} = 1,194,009
- b:en:Principles of Finance/Section 1/Chapter 6/Corp/Val 30 \frac{50,000}{(1.07)^{10}}=25,417
- b:en:Principles of Finance/Section 1/Chapter 6/Corp/Val 36 \frac{100,000}{(1.07)^5} = $71,299
- b:en:Principles of Finance/Section 1/Chapter 6/Corp/Val 42 NPV = 1,219,426 - 1,071,299 = $148,127
- b:en:Principles of Finance/Section 1/Chapter 6/Corp/Val 61 \frac{(100,000*.35)}{1.07} + \frac{(100,000*.35)}{1.07^2} + \frac{(100,000*.35)}{1.07^3} + ... +\frac{(100,000*.35)}{1.07^{10}} = $245,825
- b:en:Principles of Finance/Section 1/Chapter 6/Corp/Val 97 EAC_A = \frac{84,927}{3.99} = $21,284
- b:en:Principles of Finance/Section 1/Chapter 6/Corp/Val 98 EAC_B = \frac{107,270}{5.2} = $20,628
- b:en:Principles of Finance/Section 1/Chapter 6/Corp/Val 123 0 = -100,000 + \frac{15,000}{1+r} + \frac{50,000}{(1+r)^2} + \frac{70,000}{(1+r)^3}
- b:en:GCSE Science/Kinetic Energy 44 \begin{matrix} \frac{1}{2} \end{matrix} \cdot 80 \cdot 18^2 = 12,960 \ \mathrm{joules}
- b:en:Fundamentals of Transportation/Evaluation/Solution 26 P = \frac{F}{{\left( {1 + i} \right)^n }} = \frac{$5,000,000}{{\left( {1 + 0.03} \right)^{10} }} = $3,720,469.57\,\!
- b:en:Fundamentals of Transportation/Evaluation/Solution 34 P = A\left[ {\frac{{\left( {1 + i} \right)^n - 1}}{{i\left( {1 + i} \right)^n }}} \right] = $470,000\left[ {\frac{{\left( {1 + 0.03} \right)^{10} - 1}}{{0.03\left( {1 + 0.03} \right)^{10} }}} \right] = $4,009,195.33\,\!
- b:en:Communication Systems/Satellite Systems 93 r_{s}=\sqrt[3]{\left( \frac{r_{e}T_{s}}{2\pi } \right)^{2}g}=\sqrt[{}]{\left( \frac{6378\ km\times 86400\ \sec }{2\pi } \right)^{2}9.8065\ m/\sec ^{2}}=42,254.22\ km
- b:en:Introduction to Mathematical Physics/N body problem and matter description/Origin of matter 47 t=400,000
- b:en:Introduction to Mathematical Physics/N body problem and matter description/Origin of matter 47 T=3,000
- b:en:Introduction to Mathematical Physics/N body problem and matter description/Origin of matter 48 T=3,000
- b:en:Introduction to Mathematical Physics/N body problem and matter description/Origin of matter 48 t=400,000
- b:en:Transportation Economics/Pricing 195 profit = 250,000
- b:en:Transportation Economics/Pricing 195 500,000 > 375,000
- b:en:Transportation Economics/Pricing 250 \pi_{ij}=\pi_{jk}=111,111
- b:en:Transportation Economics/Pricing 316 \pi=115,600
- b:en:Transportation Economics/Pricing 316 consumer surplus = 57,800
- b:en:Cryptography/Mathematical Background 88 F_4 = 2^{2^4} + 1= 65,537 \
- b:en:Cryptography/Mathematical Background 89 F_5 = 2^{2^5} + 1= 4,294,967,297 \
- b:en:Cryptography/Mathematical Background 91 F_5 = 641 \cdot 6,700,417
- b:en:Cryptography/Mathematical Background 255 d = 403,937 \
- b:en:Cryptography/Mathematical Background 255 w = -6,441 \
- b:en:Cryptography/Mathematical Background 255 (65,537)(403,937) + (-6,441)(3,217 - 1)(1,279 - 1) = 1 \
- b:en:Cryptography/Mathematical Background 265 (p - 1)(p - 1) = 4,110,048 \
- b:en:Cryptography/Mathematical Background 265 e = 2^{16} + 1 = 65,537 \
- b:en:A-level Physics (Advancing Physics)/Radar and Triangulation/Worked Solutions 45 d_1 = \frac{c\Delta t_1}{2} = \frac{3.0 \times 10^{8} \times (45.51213 - 45.31213)}{2} = 30,000\mbox{ km}
- b:en:A-level Physics (Advancing Physics)/Radar and Triangulation/Worked Solutions 47 d_2 = \frac{c\Delta t_2}{2} = \frac{3.0 \times 10^{8} \times (46.52785 - 46.32742)}{2} = 30,064.5\mbox{ km}
- b:en:A-level Physics (Advancing Physics)/Radar and Triangulation/Worked Solutions 51 \Delta d = d_2 - d_1 = 30,064.5 - 30,000 = 64.5\mbox{ km}
- b:en:A-level Physics (Advancing Physics)/Gravitational Potential Energy/Worked Solutions 35 \sqrt{-2GM_1 \left [\frac{1}{D}-\frac{1}{2d} \right]} = v = 25,800ms^{-1}
- b:en:User:Brutulf/QM 16 6,626 \cdot 10^-{34}{} \rm{Js}
- b:en:User:Brutulf/QM 49 \lambda = \frac{h}{mu} = \frac{6,626 \cdot 10^-34 \rm{Js}}{9,11 \cdot 10^-31 \rm{kg} \cdot 10^6 \rm{m/s}} = 7,27 \cdot 10^-10 \rm{m}
- b:en:Mathematics Worksheet/Order of operations/Whole Numbers 25 (582 + 1,726) \times (1,728 - 729) =
- b:en:Mathematics Worksheet/Order of operations/Whole Numbers 29 1,275 \times 38 + 9,720 \div 12 =
- b:en:Mathematics Worksheet/Order of operations/Whole Numbers 33 73,281+82,381-56,271=
- b:en:Mathematics Worksheet/Order of operations/Whole Numbers 37 5,628+762\times82-8,128=
- b:en:Mathematics Worksheet/Order of operations/Whole Numbers 41 [(37+64)\times82]\times(5,324-3,375)=
- b:en:Mathematics Worksheet/Order of operations/Whole Numbers 49 7,654\times65-(10,827+1,273)=
- b:en:Mathematics Worksheet/Order of operations/Whole Numbers 53 17,271+56,791\div21+6,281=
- b:en:Mathematics Worksheet/Order of operations/Whole Numbers 65 3,437+6,382\div2=
- b:en:Mathematics Worksheet/Order of operations/Whole Numbers 73 4,210\div10+7,280\times7=
- b:en:Mathematics Worksheet/Order of operations/Whole Numbers 77 (3,375+6,353)\div4+[464+37\times63]=
- b:en:Mathematics Worksheet/Order of operations/Whole Numbers 81 [(729+5,324)\times42]+684\times43=
- b:en:Mathematics Worksheet/Order of operations/Whole Numbers 85 1,353\div(91-58)\times756=
- b:en:Mathematics Worksheet/Order of operations/Whole Numbers 89 (23,251-20,357)\times[657+43\times86]=
- b:en:Mathematics Worksheet/Order of operations/Whole Numbers 93 543+653\times364-5,636+16,461\div3=
- b:en:Mathematics Worksheet/Order of operations/Whole Numbers 97 203,453+453,432-4,245\times74=
- b:en:Mathematics Worksheet/Order of operations/Whole Numbers 101 165,463-[(365+1,253)\times(1,253-365)]=
- b:en:Mathematics Worksheet/Order of operations/Whole Numbers 113 [53+42\times(125\div25)+6,667]+4,686=
- b:en:Mathematics Worksheet/Order of operations/Whole Numbers 117 (1,283+742)+[46\times64+75\times139]=
- b:en:Mathematics Worksheet/Order of operations/Whole Numbers 121 [(5,483+3,247)\times(7,557\div3)]+14,535=
- b:en:Mathematics Worksheet/Order of operations/Whole Numbers 125 78,273-652\times37=
- b:en:Mathematics Worksheet/Order of operations/Whole Numbers 129 [657\times(54+65)-1,248]-3,829=
- b:en:Mathematics Worksheet/Order of operations/Whole Numbers 133 [(5,438-2,357)\times(7,659\div9)]-[(8,000\div20\times76)+673]=
- b:en:Linear Algebra/Sets, Functions, Relations 243 (1,100)
- b:en:Mathematics Worksheet/Order of operations/Fractions 77 34.2\times24.25+7,462.5=
- b:en:Mathematics Worksheet/Order of operations/Fractions 85 44.62-1,425\%+47.6\div0.7=
- b:en:Data Coding Theory/Huffman Coding 246 \{000,001,01,10,11\}
- b:en:Mathematics Worksheet/Addition and Subtraction of Decimal Numbers 105 (453.86+792.38)-(1,012.8+54.38)=
- b:en:Mathematics Worksheet/Addition and Subtraction of Decimal Numbers 113 894.35+542.572-1,136.09=
- b:en:Mathematics Worksheet/Addition and Subtraction of Decimal Numbers 125 2,326.356-1,246.35=
- b:en:Mathematics Worksheet/Multiplication and Division of Integers 149 (-1,053)\div39=
- b:en:Mathematics Worksheet/Multiplication and Division of Decimal Numbers 173 8,827.2\times812.827=
- b:en:Principles of Finance/Section 1/Chapter 2/Time Value of Money/PV and NPV 72 \frac{-100,000}{(1+0.10)^0}
- b:en:Principles of Finance/Section 1/Chapter 2/Time Value of Money/PV and NPV 74 \frac{30,000 - 5,000}{(1+0.10)^1}
- b:en:Principles of Finance/Section 1/Chapter 2/Time Value of Money/PV and NPV 76 \frac{30,000 - 5,000}{(1+0.10)^2}
- b:en:Principles of Finance/Section 1/Chapter 2/Time Value of Money/PV and NPV 78 \frac{30,000 - 5,000}{(1+0.10)^3}
- b:en:Principles of Finance/Section 1/Chapter 2/Time Value of Money/PV and NPV 80 \frac{30,000 - 5,000}{(1+0.10)^4}
- b:en:Principles of Finance/Section 1/Chapter 2/Time Value of Money/PV and NPV 82 \frac{30,000 - 5,000}{(1+0.10)^5}
- b:en:Principles of Finance/Section 1/Chapter 2/Time Value of Money/PV and NPV 84 \frac{30,000 - 5,000}{(1+0.10)^6}
- b:en:Trigonometry/The Pythagorean Theorem 187 \begin{matrix}\overline{AO}^2+\overline{OB}^2 &=& \\274^2+206^2 &=& \\75,076+42,436 &=& 117,512\end{matrix}
- b:en:Trigonometry/The Pythagorean Theorem 192 \overline{AB}^2=117,512
- b:en:Trigonometry/The Pythagorean Theorem 194 \overline{AB}=\sqrt{117,512}
- b:en:Trigonometry/The Pythagorean Theorem 202 \displaystyle\begin{matrix}\overline{AB}^2+\overline{BC}^2 &=& \\\sqrt{117,512}^2+206^2 &=& \\117,512+42,436 &=& 159,948\end{matrix}
- b:en:Trigonometry/The Pythagorean Theorem 207 \overline{AC}^2=159,948
- b:en:Trigonometry/The Pythagorean Theorem 209 \overline{AC}=\sqrt{159,948}
- b:en:Linear Algebra/Topic: Input-Output Analysis/Solutions 47 17,589
- b:en:Linear Algebra/Topic: Input-Output Analysis/Solutions 47 21,243
- b:en:Linear Algebra/Topic: Input-Output Analysis/Solutions 50 21,500
- b:en:Linear Algebra/Basis/Solutions 445 \langle 35-12x+x^2,420-109x+x^3 \rangle
- b:en:Linear Algebra/Dimension/Solutions 238 \langle 35-12x+x^2,420-109x+x^3 \rangle
- b:en:Linear Algebra/Topic: Crystals/Solutions 20 300,000,000
- b:en:Linear Algebra/Topic: Linear Recurrences/Solutions 142 T(64)=18,446,744,073,709,551,615
- b:en:Algebra/Exponents 134 1,574,000,000,000,000
- b:en:Meteorology/Dynamics/Kinematics 28 \frac{40 \times 10^6 \mbox{ m}}{2\pi}\approx 6,366,197 \mbox{ m}
- b:en:Fractals/Apollonian fractals 285 (68,65,68,516,513,516) \,
- b:en:Fractals/Apollonian fractals 288 (953,1481,1484,945,1476,1476,953,1484,1481,281,137,140,273,132,132,68,137,140) \,
- b:en:Trigonometry/Power Series for e to the x 83 g(x)=\frac{\sin\bigl(\frac{1}{x}\bigr)}{10,000}
- b:en:Wikijunior:The Book of Estimation/Absolute error 35 \begin{align} \text{The absolute error of the estimation}& = (123,456-123000) \\ &=406 \end{align}
- b:en:Algebra/Arithmetic/Exponent Problems 33 1,213 - 9^3=
- b:en:High School Trigonometry/Applications of Right Triangle Trigonometry 243 \frac{d}{240,002.5}
- b:en:High School Trigonometry/Applications of Right Triangle Trigonometry 245 240,002.5 \tan (89.85^\circ) = 91,673,992.71\ \text{miles}
- b:en:Basic Physics of Digital Radiography/The Applications 363 HU = 1,000. \frac{\mu_m - \mu_{\text{water}}}{\mu_{\text{water}}}
- b:en:Financial Math FM/Time Value of Money 22 {\operatorname $500 \over\operatorname $10,000} = 5%
- b:en:Financial Math FM/Time Value of Money 35 \ I = 10,000(.05 \cdot 2)
- b:en:Financial Math FM/Time Value of Money 36 \ I = $1,000
- b:en:Financial Math FM/Time Value of Money 37 \ $10,000 + $1,000 = $11,000
- b:en:Financial Math FM/Time Value of Money 48 \ A(t) = 10,000 (1+.05)^2
- b:en:Financial Math FM/Time Value of Money 99 PV = 5,000v + 10,000v^3
- b:en:Financial Math FM/Time Value of Money 136 PV = (1-d)^n \cdot 9,000
- b:en:Financial Math FM/Time Value of Money 137 PV = (1-.08)^10 \cdot 9,000
- b:en:Financial Math FM/Time Value of Money 138 PV = 3,909.5
- b:en:Financial Math FM/Time Value of Money 158 i_n = \frac{1,102.5-1000}{1000}=0.01025
- b:en:Financial Math FM/Time Value of Money 173 7,500(1+\frac{0.08}{4})^{6 \cdot 4} = 12,063.28
- b:en:Financial Math FM/Time Value of Money 191 10,000 \cdot e^{.03*7.25} = 12,429.65
- b:en:Financial Math FM/Bonds 50 \ {P} = 5,000(.04)a_{\overline{40|}.03} + 5,000 v^{40}
- b:en:Financial Math FM/Bonds 51 \ {P} = (200)\frac{1-{1.03}^{-40}}{0.03} + 5,000 ({1.03}^{-40})
- b:en:Financial Math FM/Bonds 52 \ {P} = 6,155.74
- b:en:User:MHickman/Measures and Methods for Transit Demand 124 \begin{array}{rcl} \frac{\Delta D}{D} & = & e_{D,X} \cdot \frac{\Delta X}{X} \\ \\ \frac{\Delta D}{110,000{\rm{ \ unlinked \ trips}}} & = & - 0.35 \cdot \frac{\$ 1.50 - \$ 1.25}{\$ 1.25} \\ \\ \Delta D & = & \underline { \ -7700 {\rm{ \ unlinked \ trips}}} \\ \end{array}
- b:en:Fluid Mechanics/Fluid Properties 77 Re = \frac{\rho V L}{\mu} = \frac{ 1.225 (1) (1)}{1.8E10^{-5}} = 68,055
- b:en:Fundamentals of Transportation/Transit Demand 124 \begin{array}{rcl} \frac{\Delta D}{D} & = & e_{D,X} \cdot \frac{\Delta X}{X} \\ \\ \frac{\Delta D}{110,000{\rm{ \ unlinked \ trips}}} & = & - 0.35 \cdot \frac{\$ 1.50 - \$ 1.25}{\$ 1.25} \\ \\ \Delta D & = & \underline { \ -7700 {\rm{ \ unlinked \ trips}}} \\ \end{array}
- b:en:High School Chemistry/The Wave Particle Duality 138 \lambda = \frac{h}{m \times v} = \frac{(6.63 \times 10^{-34}\,\text{J}\cdot\text{s})}{(1,310\,\text{kg})(77.0\,\text{m/s})}
- b:en:High School Chemistry/The Wave Particle Duality 140 \lambda = \frac{6.63 \times 10^{-34}\,\text{J}\cdot\text{s}}{100,870\,\text{kg}\cdot\text{m/s}} = 6.57 \times 10^{-39} \frac{\text{J}\cdot\text{s}}{\text{kg}\cdot\text{m/s}}
- b:en:Engineering Statics/Introduction 238 ^1/_{299,792,458}
- b:en:Fractals/Iterations in the complex plane/siegel 759 t = [3,2,1000,1,...] = [0; 3,2,1000,1 \dots] = \cfrac{1}{3 + \cfrac{1}{2 + \cfrac{1}{1000 + \cfrac{1}{1 + \ddots}}}}
- b:en:A-level Computing 2009/AQA/Problem Solving, Programming, Data Representation and Practical Exercise/Fundamentals of Programming/One-Dimensional Arrays 218 0,1,1,2,3,5,8,13,21,34,55,89,144, ...
- b:en:A-level Computing 2009/AQA/Computer Components, The Stored Program Concept and the Internet/Structure of the Internet/IP addresses 24 2^{32} = 4,294,967,296
- b:en:A-level Computing 2009/AQA/Computer Components, The Stored Program Concept and the Internet/Structure of the Internet/IP addresses 53 340,282,366,920,938,463,463,374,607,431,768,211,456
- b:en:User:TDang/Econ452/rough lecture notes 899 R = 2 \frac{1}{2}Q_{I}^2 + p\left(Q_{I} + Q_{II}\right) = 5625 + 25 \cdot 225 = 11,250
- b:en:User:TDang/Econ452/rough lecture notes 909 CS_{II} = \frac{1}{2}(200)(100) = 10,000
- b:en:User:TDang/Econ452/rough lecture notes 947 R = 2 \frac{1}{2}Q_{I}^2 + p\left(Q_{I} + Q_{II}\right) = 2500 + 50(50 + 150) = 2500 + 10000 = 12,500
- b:en:User:TDang/Econ452/rough lecture notes 958 CS_{II} = \frac{1}{2}(200)(200) = 20,000
- b:en:User:TDang/Econ452/rough lecture notes 1419 1,000,001^{st}
- b:en:OPT Design 106 l_m=0,196[m]
- b:en:OPT Design 118 L=0,041\mu_r[H]
- b:en:Assembly Language and Computer Organization/Introduction and Overview 186 \begin{array}{|c|r|l|} \hline \textrm{Exponent} & \textrm{Number} & \textrm{Place Name} \\ \hline 10^0 & 1 & \textrm{Ones}\\ 10^1 & 10 & \textrm{Tens}\\ 10^2 & 100 & \textrm{Hundreds}\\ 10^3 & 1,000 & \textrm {Thousands}\\ 10^4 & 10,000 & \textrm{Ten Thousands}\\ 10^5 & 100,000 & \textrm{Hundred Thousands}\\ \hline\end{array}
- b:en:Parallel Spectral Numerical Methods/Introduction to Parallel Programming 347 x,y\in [0,100]\times[0,100]
- b:en:Circuit Theory/Phasors/Examples/Example 10 154 \mathbb{S} = \mathbb{V}\mathbb{I}^* = \frac{M_vM_i}{2}\angle(\phi_v - \phi_i) = \frac{120 \sqrt{2} * 599}{2}\angle(3.30-2.09)= 10,164\angle 1.21=3,586 + 9,510j
- b:en:Circuit Theory/Phasors/Examples/Example 10 163 10,164
- b:en:Circuit Theory/Phasors/Examples/Example 10 167 3,590
- b:en:Circuit Theory/Phasors/Examples/Example 10 169 9,510
- b:en:IB Mathematics/HL/Algebra/Sequences and Series 95 2,10,50,250,\ldots
- b:en:Tube Amp Design 218 Ava=(-)\frac{Ra*\mu}{Ra+rp+(\mu+1)Rk}=(-)0,896
- b:en:Tube Amp Design 220 Avk=\frac{Rk*\mu}{Ra+rp+(\mu+1)Rk}=0,896
- b:en:User:AbiLtoCen/Sandbox 33 \scriptstyle \tan \delta'=y_1'/x_1'=3/7,50555\;\rightarrow\;\delta' = 21,79^\circ
- b:en:User:AbiLtoCen/Sandbox 33 \scriptstyle x_1'=\gamma \cdot (x_1-\beta \cdot c\,t_1)=1,1547\cdot (4 Lj - 0,5\cdot(-5 Lj))=7,50555 Lj; \quad y_1'=y_1=3 Lj
- b:en:User:AbiLtoCen/Sandbox 35 \scriptstyle \tan (\delta'/2) = \tan (\delta /2) \cdot \sqrt {(1-0,5)/(1+0,5)} = \tan (36,87^\circ/2) \cdot \sqrt{1/3} = 0,19245\;
- b:en:User:AbiLtoCen/Sandbox 164 \frac{v_e}{c} = 0,00009935
- b:en:User:AbiLtoCen/Sandbox 174 \scriptstyle v = \frac{2\pi \cdot 280000 \cdot 9,461\cdot10^{15}\,m}{230\cdot 10^{6} \cdot 365,25 \cdot 24 \cdot 3600} \approx\, 230\,km/s
- b:en:A Guide to the GRE/Arrangements 32 C(n,k)=C(27,3)={\frac{27!}{24!3!}}={\frac{27!}{6(24!)}}={\frac{27 \cdot 26 \cdot 25}{6}}=2,925
- b:en:FCC Technician Class Exam Study Guide - 2014-2018/Subelement T1 Group B 21 300,000,000
- b:en:Foundations of Computer Science/Information Representation 420 = 4,278,550,948
- b:en:Foundations of Computer Science/Information Representation 662 2^{20} = 1,048,576
- b:en:Transportation Deployment Casebook/2014/US Passenger Aviation 104 S(t) = 690,000,000/\left(1+e^ {-0.13388 ( t - 1984 )}\right)
- b:en:User:Legoeric/sandbox 1347 \definecolor{myorange}{RGB}{255,165,100}\color{myorange}e^{i \pi}\color{Black} + 1 = 0
- b:en:A-level Computing/AQA/Computer Components, The Stored Program Concept and the Internet/Structure of the Internet/IP addresses 24 2^{32} = 4,294,967,296
- b:en:A-level Computing/AQA/Computer Components, The Stored Program Concept and the Internet/Structure of the Internet/IP addresses 53 340,282,366,920,938,463,463,374,607,431,768,211,456
- b:en:A-level Computing/AQA/Problem Solving, Programming, Data Representation and Practical Exercise/Fundamentals of Programming/One-Dimensional Arrays 218 0,1,1,2,3,5,8,13,21,34,55,89,144, ...
- b:en:Analytic Number Theory/The Chebychev ψ and ϑ functions 16 x \ge 3,594,641
- b:en:Analytic Number Theory/The Chebychev ψ and ϑ functions 27 x \ge 3,594,641
enwikiquote
[Bearbeiten | Quelltext bearbeiten]- q:en:Thin-shell structure 138 p = 9,672,000 \frac{t^{2.19}}{l d}
- q:en:Thin-shell structure 142 S = 428,394 \frac{t}{D} - 7,111,550 (\frac{t}{D})^2
enwikisource
[Bearbeiten | Quelltext bearbeiten]- s:en:Page:LA2-NSRW-5-0158.jpg 24 \mathrm{\overline{V}=5000, \qquad \overline{XIV}=14,000}
- s:en:Page:A Treatise on Electricity and Magnetism - Volume 1.djvu/34 69 10,000,000
- s:en:Page:A Treatise on Electricity and Magnetism - Volume 1.djvu/44 28 932,000,000
- s:en:Page:Squaring the circle.djvu 41 140,000
- s:en:Page:Popular Science Monthly Volume 45.djvu/629 18 161 \times 1,000,000,000 \div 33,000 =
- s:en:Page:Popular Science Monthly Volume 69.djvu/51 22 0.3 \times 10^{-10} (= 0.000,000,000,03)
- s:en:Page:Popular Science Monthly Volume 61.djvu/173 21 \tfrac {0.00186}{36 + p} \left ( 1 - \tfrac {3t}{400} + \tfrac {t^2}{10,000} \right )
- s:en:Page:Popular Science Monthly Volume 63.djvu/375 16 n = \frac {5,000,000} \sqrt {C{(mfds.)} \times L{(cms.)}}
- s:en:Page:Popular Science Monthly Volume 63.djvu/542 15 41,500 \times 23.43 + 21,645
- s:en:Page:Popular Science Monthly Volume 67.djvu/670 16 y^{2} - 410,280,423,278,424 x^{2} = 1
- s:en:Page:Popular Science Monthly Volume 79.djvu/257 16 \scriptstyle{\frac{V^2}{r}=\frac{\left(\frac{2\pi r}{t}\right)^2}{r}=\frac{4\pi^2r}{t^2}=\frac{4\times9.86\times240,000\times5280}{(27.3\times86,400)^2}=.0089~\text{feet}/\overline{\text{sec}^2.}}
- s:en:Page:Popular Science Monthly Volume 80.djvu/443 22 \scriptstyle 1,698 \times 10^{7}
- s:en:Page:Popular Science Monthly Volume 82.djvu/303 28 r_{o} : (r_{*} = 1 : 30,000,000,
- s:en:Page:Popular Science Monthly Volume 82.djvu/306 20 \frac {(4.0 + 2.8)}{2} \times 876,000 \times 1000 = 3.0 \times (10)^{9}
- s:en:Page:Philosophical magazine 23 series 4.djvu/37 46 \frac{1}{2}E=155,370,000,000
- s:en:Page:Philosophical magazine 23 series 4.djvu/37 50 E=310,740,000,000
- s:en:Page:Philosophical magazine 23 series 4.djvu/38 37 \left.\begin{array}{ll}V & =E,\\ & =310,740,000,000\ \mathrm{millimetres\ per\ second},\\ & =193,088\ \mathrm{miles\ per\ second}.\end{array}\right\}
- s:en:Page:Philosophical magazine 23 series 4.djvu/38 43 \begin{array}{ll}V & =314,858,000,000\ \mathrm{millimetres},\\ & =195,647\ \mathrm{miles\ per\ second}.\end{array}
- s:en:Page:Newton's Principia (1846).djvu/320 16 \scriptstyle 0,0010847V^{\frac{3}{2}}
- s:en:Page:Newton's Principia (1846).djvu/320 16 \scriptstyle 0,0007593V^{\frac{3}{2}}
- s:en:Page:Newton's Principia (1846).djvu/322 40 \scriptstyle 0,000208V^{\frac{3}{2}}
- s:en:Page:Observations on Man 1834.djvu/245 16 \tfrac{1}{10,000,000,000}
- s:en:Page:Lorentz Grav1900.djvu/15 20 \begin{array}{ll}\Delta a= & 0\\\\\Delta e= & 0,018\ \delta^{2}+1,38\ \delta\delta'\\\\\Delta\varphi =& 0,95 \ \delta^2 + 0,28 \ \delta \delta' \\\\\Delta \theta = & 7,60\ \delta^{2}-4,26\ \delta\delta'\\\\\Delta\varpi=- & 0,09\ \delta^{2}+1,95\ \delta\delta'\\\\\Delta\varkappa'=- & 6,82\ \delta^{2}-1,93\ \delta\delta'\end{array}
- s:en:Page:BraceRefraction1904.djvu/8 20 \frac{16}{60}\div5\times0.2\times\frac{\lambda}{180}=\frac{\lambda}{17,000}=6\times10^{-5}\lambda
- s:en:Page:Elektrische und Optische Erscheinungen (Lorentz) 102.jpg 20 \epsilon=0,434
- s:en:Page:BumsteadContraction.djvu/14 17 \scriptstyle{\frac{1}{200,000}}
- s:en:Page:EB1911 - Volume 08.djvu/62 51 \textstyle D = \frac{W(1 + \alpha t) \times 7,980,000}{(p + p_1 - s)[m\{1 + \beta(t - t_0)\} - m_1\{1 + \gamma(t - t_0)\}](1 + \gamma t)},
- s:en:Page:EB1911 - Volume 08.djvu/63 17 \textstyle\frac{W(1 + \alpha t) \times 587,780}{(p - s)V}
- s:en:Page:EB1911 - Volume 08.djvu/124 30 \tfrac{70,000 \times 5 \text{ cwt.}}{20}
- s:en:Page:EB1911 - Volume 08.djvu/124 33 \tfrac{1,960,000 \times 90}{100}
- s:en:Page:EB1911 - Volume 08.djvu/124 38 \tfrac{1,184,349,600 \text{ watt-hours}}{30}
- s:en:Page:EB1911 - Volume 08.djvu/124 39 \tfrac{39,478,320}{70,000 \text{ population}}
- s:en:Page:FizeauFresnel1859.pdf/12 22 \frac{\Delta}{\lambda}=0,4597
- s:en:Page:FizeauFresnel1859.pdf/15 20 \frac{\Delta}{\lambda}=0,2022;
- s:en:Page:FizeauFresnel1859.pdf/18 32 \frac{\Delta}{\lambda}=0,4103.
- s:en:Page:FizeauFresnel1859.pdf/19 18 \Delta=4L\frac{u}{v}\left(m^{2}-1\right)=0,0000001367
- s:en:Page:FizeauFresnel1859.pdf/19 20 \frac{\Delta}{\lambda}=0,0002325.
- s:en:Page:EB1911 - Volume 08.djvu/809 24 \tfrac{T2\pi N}{33,000}
- s:en:Page:EB1911 - Volume 08.djvu/809 37 \tfrac{(W - p)R \times 2\pi N}{33,000}
- s:en:Page:Prinzipien der Dynamik des Elektrons.djvu/4 24 \frac{|e|}{c\mu_{0}}=1,865\cdot10^{7}.
- s:en:Page:Prinzipien der Dynamik des Elektrons.djvu/4 28 a=\frac{4}{5}\cdot\frac{|e|}{c}\cdot 1,865\cdot10^{7}.
- s:en:Translation:On the Theory of the Experiment of Trouton and Noble 156 q=0,866c
- s:en:Page:Messungen an Becquerelstrahlen.djvu/6 25 \tfrac{\epsilon}{m_{0}}=1,705\times10^{7}
- s:en:Eight Lectures on Theoretical Physics/II 343 \begin{align}&{\color{White}.(00)}\qquad&&\Delta Q = 27,857 - 48.5 T \ \text{gr}.\ \text{cal}.\end{align}
- s:en:Eight Lectures on Theoretical Physics/II 349 \begin{align}&{\color{White}.(00)}\qquad&&\frac{\partial \log c_{1}}{\partial T} = \frac{1}{2\cdot1.985} \left(\frac{27,857}{T^{2}} - \frac{48.5}{T}\right),\end{align}
- s:en:Eight Lectures on Theoretical Physics/II 686 \begin{align}&{\color{White}.(00)}\qquad&&\Delta Q = -1.98 \cdot 273^{2} \cdot 0.04494 = -6,600\ \text{cal}.,\end{align}
- s:en:Eight Lectures on Theoretical Physics/II 687 6,600~\text{cal}.
- s:en:Eight Lectures on Theoretical Physics/II 689 6,700
- s:en:Eight Lectures on Theoretical Physics/III 398 1,000
- s:en:Eight Lectures on Theoretical Physics/IV 199 \begin{align}&{\color{White}.(00)}\qquad&&\frac{10!}{3!\; 4!\; 0!\; 1!\; 0!\; 2!\;} = 12,600.\end{align}
- s:en:Page:EB1911 - Volume 22.djvu/860 22 \mbox{I.H.P.} = \frac{0.06 \times 778 \times \mbox{E}c}{1,980,000.} = 648.
- s:en:Page:Popular Science Monthly Volume 77.djvu/459 21 = 463,000
- s:en:Page:Popular Science Monthly Volume 77.djvu/459 21 = 1,270
- s:en:Page:VaricakRel1910b.djvu/7 26 \frac{v}{c}=0,0001
- s:en:Page:VaricakRel1912.djvu/21 26 \tfrac{v}{c}=0,0001
- s:en:Page:Scientific Memoirs, Vol. 3 (1843).djvu/705 18 \scriptstyle{n=100,000}
- s:en:Page:A History of Mathematics (1893).djvu/179 14 \scriptstyle{=100,000}
- s:en:Page:Indian mathematics, Kaye (1915).djvu/46 24 \begin{align}&\scriptstyle{khyughri=(2+30).10^4+4.10^6=4320000}\\&\begin{align}\scriptstyle{cayagiyi\dot{n}u\acute{s}ulchli=6}&\scriptstyle{+30+3.10^2+30.10^2+5.10^4+70.10^4}\\&\scriptstyle{(50+7).10^8=57,753,336}\end{align}\end{align}
- s:en:Page:Indian mathematics, Kaye (1915).djvu/77 19 \scriptstyle{\sqrt{1,000}}
- s:en:Page:A History of Mathematics (1893).djvu/233 14 \scriptstyle{R=60.4 r,~T=2,360,628}
- s:en:Page:A short history of astronomy(1898).djvu/383 15 = \frac{360^\circ}{1,466''} = 900
- s:en:Page:A short history of astronomy(1898).djvu/383 15 n = 109,257
- s:en:Page:A short history of astronomy(1898).djvu/383 15 n' = 43,996
- s:en:Page:A short history of astronomy(1898).djvu/383 15 5n' - 2n = 1,466
- s:en:Page:Eddington A. Space Time and Gravitation. 1920.djvu/125 16 r = 697,000
- s:en:Page:Principles of scientific management.djvu/113 41 P=45,000 D^{\frac{14}{15}} F^{\frac{3}{4}}
- s:en:Page:The British pharmacopœia.djvu/528 95 \frac{9000\times1000}{930}=9,677
- s:en:Page:Paper and Its Uses.djvu/152 140 1,000
- s:en:Page:Paper and Its Uses.djvu/152 145 1,064
- s:en:Page:Paper and Its Uses.djvu/152 150 1,080
- s:en:Page:Paper and Its Uses.djvu/152 155 1,200
- s:en:Page:Paper and Its Uses.djvu/152 160 1,320
- s:en:Page:Paper and Its Uses.djvu/152 165 1,575
- s:en:Page:Paper and Its Uses.djvu/152 170 2,000
- s:en:Page:Paper and Its Uses.djvu/152 175 2,128
- s:en:Page:Die Kaufmannschen Messungen.djvu/3 23 (x_{1}-x_{1})\cdot\left\{ \int_{x_{0}}^{x_{1}}\mathfrak{E}_{1}dx-\frac{1}{x_{1}-x_{0}}\int_{x_{0}}^{x_{1}}dx\int_{x_{0}}^{x}\mathfrak{E}_{1}dx\right\} =1,565
- s:en:Page:Die Kaufmannschen Messungen.djvu/3 27 \frac{1}{2}(x_{2}-x_{1})\cdot\left(\frac{x_{1}}{2}+\xi'\right)=1,565
- s:en:Page:Die Kaufmannschen Messungen.djvu/3 35 \mathfrak{E}_{m}=\mathfrak{E}_{1}\cdot\frac{25\cdot10^{10}}{0,1242}=\mathfrak{E}\cdot3\cdot10^{10}
- s:en:Page:Die Kaufmannschen Messungen.djvu/4 51 \varrho\sin\varphi'=\xi'=0,593
- s:en:Page:Die Kaufmannschen Messungen.djvu/4 59 \bar{y}=\frac{25\cdot10^{10}}{0,1242}\cdot\frac{\varrho(\varphi_{2}-\varphi_{1})}{q\mathfrak{H}}
- s:en:Page:Die Kaufmannschen Messungen.djvu/5 15 \frac{\epsilon}{\mu_{0}}=1,878\cdot10^{7}
- s:en:Page:Die Kaufmannschen Messungen.djvu/5 41 \frac{E}{cM}=0,1884
- s:en:Page:Die Kaufmannschen Messungen.djvu/6 15 \beta=0,1884\cdot\frac{0,1350}{0,0246}=1,034
- s:en:Page:Die elektromagnetische Masse des Elektrons.djvu/1 35 \psi(\beta)=3,141
- s:en:Page:Die elektromagnetische Masse des Elektrons.djvu/3 31 \epsilon/\mu =1,865\cdot10^7.\,
- s:en:Page:Die elektromagnetische Masse des Elektrons.djvu/3 33 2,785\cdot10^{10}
- s:en:Page:Über die Konstitution des Elektrons.djvu/8 39 \frac{1}{\mu}=1,865\cdot10^{7}
- s:en:Page:Über die Konstitution des Elektrons (1906).djvu/47 27 E/Mc=0,1884.\,
- s:en:Page:Über die Konstitution des Elektrons (1906).djvu/48 19 \begin{array}{ll}A=\frac{c}{M}\frac{\mu_{0}}{\epsilon}=\frac{3\cdot10^{10}}{557,1\cdot1,878\cdot10^{7}} & =2,867\\\\A=\frac{c}{M}\frac{\mu_{0}}{\epsilon}=\frac{3\cdot10^{10}}{557,1\cdot1,878\cdot10^{7}}=2,867B=\frac{\epsilon}{\mu_{0}}\frac{E}{c^{2}}=\frac{1,878\cdot10^{7}\cdot315\cdot10^{10}}{9\cdot10^{20}} & =0,0658\\\\C=0,1884\\\\D=\frac{cC}{M}\frac{\mu}{\epsilon}=\frac{E}{M^{2}}\frac{\mu_{0}}{\epsilon} & =0,539.\end{array}
- s:en:Page:A History Of Mathematical Notations Vol I (1928).djvu/170 21 \sqrt{32+\sqrt{1,020}}
- s:en:Page:Great Neapolitan Earthquake of 1857 Vol 2.djvu/372 18 = 27,337
- s:en:Page:Encyclopædia Britannica, Ninth Edition, v. 23.djvu/23 19 10,800 - \log x
enwikiversity
[Bearbeiten | Quelltext bearbeiten]- v:en:User:Pi314 27 x/0,707=z
- v:en:Introduction to Robotics/Robotics and BoeBots/Quiz/Teachers 22 x = \frac{10^6}{2} = 5 \times 10^{5} = 500,000
- v:en:Introduction to Robotics/Printouts/Sound Waves 31 D = \frac{100Ct}{2}\times\frac{2}{1,000,000} = \frac{Ct}{10,000} = 0.03448t
- v:en:Function (mathematics) 110 \mathcal{R} \equiv \{4,12,147\}
- v:en:Primary mathematics/Fractions 110 \tfrac{1,000,000}{1,000,000}=1
- v:en:Design for the Environment/Residential Wall Insulation 599 \begin{matrix} \left(\frac{$7,809,201,700}{77,300,000tonnes}\right)=$101.03/tonne \end{matrix}
- v:en:DFE2008 Residential Micro Cogeneration 229 8,760hr/yr * \tfrac {33,300,000MWh/yr}{59,568,000MWh/yr} = 4900hr/year
- v:en:User:Eas4200c.f08.aeris.mcrae 271 \ M_{y}=-125,000 N*cm
- v:en:User:Eas4200c.f08.aeris.mcrae 273 \ M_{x}=50,000 N*cm
- v:en:User:Uf.team.aero/HW2 352 I_{y}^{(1)} = \frac {(\pi)R_{1}^4} {4} = \frac {(\pi)(10 cm)^4} {4} = 7,854 cm^4
- v:en:User:Uf.team.aero/HW2 370 I_{y}^{(2)} = \frac {2R_{1}^3t} {3} + 2[\frac {(\pi)R_{2}^4} {4} + (\pi)R_{2}^2(R_{1}^2 + 2R_{1}R_{2} + R_{2}^2)] = 87,469 cm^4
- v:en:User:Eas4200c.f08.gator.edwards/Additional Questions 110 I_{y,1}=\frac{1}{12}bh^{3}+\frac{1}{4}\pi R_{1}^{4}+(\pi R_{1}^{2})(R_{0}+R_{1})^{2}=\frac{1}{12}\cdot 1\cdot (2\cdot 10)^{3}+\frac{1}{4}\cdot \pi \cdot 6.84^{4}+(\pi \cdot 6.84^{2})(10+6.84)^{2}= 44,068 cm^{4}
- v:en:User:Eas4200c.f08.aero.lee/HW2 351 I_{y}^{(1)} = \frac {(\pi)R_{1}^4} {4} = \frac {(\pi)(10 cm)^4} {4} = 7,854 cm^4
- v:en:User:Eas4200c.f08.aero.lee/HW2 369 I_{y}^{(2)} = \frac {2R_{1}^3t} {3} + 2[\frac {(\pi)R_{2}^4} {4} + (\pi)R_{2}^2(R_{1}^2 + 2R_{1}R_{2} + R_{2}^2)] = 87,469 cm^4
- v:en:User:Eas4200c.f08.aeris.krammer/HW5 308 \ M_{y}=-125,000 N*cm
- v:en:User:Eas4200c.f08.aeris.krammer/HW5 310 \ M_{x}=50,000 N*cm
- v:en:Talk:Gravity 136 h=\sqrt[3]{\frac{(6,67428 \times 10^{-11} \ \mbox{m}^3 \ \mbox{kg}^{-1} \ \mbox{s}^{-2}) (7,3477 \times 10^{22}kg) \mathbf{\left(\frac{59 \cdot 60^2 \text{s}+30\cdot 60 \text{s}}{30}\right)}^2}{(2\pi)^2}} -1 737,10 \times 10^{3}m
- v:en:User:Eas4200c.f08.aeris.krammer/HW7 1487 \sigma_{xy} = \frac{5 623.7 (N/m)} {0.002 (m)} = 2,811,850 (Pa)
- v:en:Binary Stars and Extrasolar Planets 214 \Delta \lambda = {\frac{650nm*27,000m/s}{3x10^8 m/s}}
- v:en:Physics/Essays/Fedosin/Stoney scale 97 R_{e} = \frac{ q_m }{e} = \frac{h}{e^2} = 25,812.807449 \
- v:en:Physics/Essays/Fedosin/Magnetic monopole 80 \beta_g = \frac{(h/m_e)^2}{2ch\mu_g} \approx 1,428\cdot 10^{44} \
- v:en:User:Egm6341.s10.team3.sa 1264 \displaystyle fracsum(1,120)\; and\; fracsum(-1,36)
- v:en:User:Egm6341.s10.team3.sa/HW6 1533 \displaystyle fracsum(1,120)\; and\; fracsum(-1,36)
- v:en:User:Egm6341.s2010.Team1/HW6 33 n<16,755
- v:en:User:Egm6341.s2010.Team1/HW6 54 \left | I_{16,384}-I_{8,192} \right | < 10^{-10}
- v:en:User:Egm6341.s2010.Team1/HW6 54 n=16,384
- v:en:User:EGM6341.s10.Team1.Kumanchik/HW6 30 n<16,755
- v:en:User:EGM6341.s10.Team1.Kumanchik/HW6 51 \left | I_{16,384}-I_{8,192} \right | < 10^{-10}
- v:en:User:EGM6341.s10.Team1.Kumanchik/HW6 51 n=16,384
- v:en:Fluid Mechanics for MAP Chapter 6. Internal Flows 433 \frac{D}{a} = \frac{25}{0,005}
- v:en:User talk:Egm6936.f09/Kolmogorov scales 650 \displaystyle 342,000
- v:en:User talk:Egm6936.f09/Kolmogorov scales 650 \displaystyle 1,300
- v:en:User:Egm6341.s11.team3.russo 1581 J_1 = \int_{t=0}^{t_f} y(t)dt = 16,838 m s
- v:en:Fluid Mechanics for MAP/Analytical solutions of internal and external flows 401 \frac{D}{a} = \frac{25}{0,005}
- v:en:User:EML4500.f08.JAMAMA/NM 801 J_1 = \int_{t=0}^{t_f} y(t)dt = 16,838 m s
- v:en:User:Egm6321.f10.team2.oztekin/New 651 \displaystyle \mathbf{\Gamma ^{-1}}= 1.0e0.005\times \left[ \begin{matrix} \begin{matrix} \begin{matrix} \begin{matrix} 0,0002 \\ -0,003 \\\end{matrix} \\ 0,0105 \\ -0,014 \\ 0,0063 \\\end{matrix} & \begin{matrix} \begin{matrix} -0,003 \\ 0,0480 \\\end{matrix} \\ -0,189 \\ 0,2688 \\ -0,126 \\\end{matrix} \\\end{matrix} & \begin{matrix} \begin{matrix} 0,0105 \\ -0,189 \\\end{matrix} \\ 0,7938 \\ -1,176 \\ 0,5670 \\\end{matrix} & \begin{matrix} \begin{matrix} -0,014 \\ 0,2688 \\\end{matrix} \\ -1,176 \\ 1,792 \\ -0,882 \\\end{matrix} & \begin{matrix} \begin{matrix} 0,0063 \\ -0,126 \\\end{matrix} \\ 0,5670 \\ -0,8820 \\ 0,4410 \\\end{matrix} \\\end{matrix} \right]
- v:en:Microfluid Mechanics/Flow Phenomena in Microflows 72 \ L^3 n > 10,000
- v:en:User:Egm6341.s11.team3/sub6 236 \Rightarrow c_7 = \frac{31}{15,120} \
- v:en:User:Egm6341.s11.team3/sub6 250 c_1 = -1, c_3 = \frac{1}{6}, c_5 = -\frac{7}{360}, c_7 = \frac{31}{15,120} \
- v:en:User:Egm6341.s11.team3/sub6 321 d_3 = \frac{p_6(1)}{2^6} = \frac{ -1\frac{1^6}{6!} +\frac{1}{6} \frac{1^4}{4!}- \frac{7}{360}\frac{1^2}{2!}+ \frac{31}{15,120}}{2^6} = - \frac{1}{30,240}
- v:en:User:Egm6341.s11.team3/sub7 778 J_1 = \int_{t=0}^{t_f} y(t)dt = 16,838 m s
- v:en:User:Egm6341.s11.team3/sub7a 779 J_1 = \int_{t=0}^{t_f} y(t)dt = 16,838 m s
- v:en:User:Egm6936.f09/Weibull distribution 114 \displaystyle 342,000
- v:en:User:Egm6936.f09/Weibull distribution 114 \displaystyle 1,300
- v:en:Draft:Astrophysics keynote lecture 221 R_{\odot} (equatorial) = 696,342 km
- v:en:Draft:Astrophysics keynote lecture 223 R_J (equatorial) = 71,492 km
- v:en:Draft:Astrophysics keynote lecture 225 R_S (equatorial) = 60,268 km
- v:en:Draft:Astrophysics keynote lecture 227 R_U (equatorial) = 25,559 km
- v:en:Draft:Astrophysics keynote lecture 229 R_N (equatorial) = 24,764 km
- v:en:Mathematics/Astronomy 437 R_{\odot} (equatorial) = 696,342 km
- v:en:Mathematics/Astronomy 439 R_J (equatorial) = 71,492 km
- v:en:Mathematics/Astronomy 441 R_S (equatorial) = 60,268 km
- v:en:Mathematics/Astronomy 443 R_U (equatorial) = 25,559 km
- v:en:Mathematics/Astronomy 445 R_N (equatorial) = 24,764 km
- v:en:Stars/Sun/Solar binary 1023 1G(Gauss) = \frac{1T(Tesla)}{10,000} = \frac{1Ns}{10^4 C 10^{-3} km} = \frac{1kg 10^{-3} km s^{-2} s}{10^4 C 10^{-3} km},
- v:en:Radiation astronomy/Mathematics 652 1G(Gauss) = \frac{1T(Tesla)}{10,000} = \frac{1Ns}{10^4 C 10^{-3} km}.
- v:en:User:Radinadd/FEA Homework 2 71 K = (50,000) \ \begin{bmatrix} 1.650 & -.375 & - & - & - & - & - & - \\ -.375 & 0.217 & - & - & - & - & - & -\\ - & - & - & - & - & - & - & -\\ - & - & - & - & - & - & - & - \\- & - & - & - & - & - & - & -\\- & - & - & - & - & - & - & -\\- & - & - & - & - & - & - & -\\- & - & - & - & - & - & - & -\\\end{bmatrix}
- v:en:User:Radinadd/FEA Homework 2 83 (50,000) \ \begin{bmatrix} 1.650 & -.375 & - & - & - & - & - & - \\ -.375 & 0.217 & - & - & - & - & - & -\\ - & - & - & - & - & - & - & -\\ - & - & - & - & - & - & - & - \\- & - & - & - & - & - & - & -\\- & - & - & - & - & - & - & -\\- & - & - & - & - & - & - & -\\- & - & - & - & - & - & - & -\\\end{bmatrix}
- v:en:User:Radinadd/FEA Homework 2 116 (50,000) \ \begin{bmatrix}1.650 & -.375 \\ -.375 & 0.217 \end{bmatrix}
- v:en:User:Radinadd/FEA Homework 2 202 (4,000) \ \begin{bmatrix}656.3 & 1137 \\ 1137 & 1969 \end{bmatrix}
- v:en:Numerical Analysis/Iterative Refinement 369 \begin{bmatrix} 1&2\\10,001&2\end{bmatrix}
- v:en:Numerical Analysis/Iterative Refinement 370 \begin{bmatrix} 1&2\\10,001&20,002\end{bmatrix}
- v:en:Numerical Analysis/Iterative Refinement 371 \begin{bmatrix} 1&20,002\\10,001&2\end{bmatrix}
- v:en:User:Eml4507.s13.team3.buckles 17 \sigma_y=37,000\; psi
- v:en:User:Eml4507.s13.team3.buckles 17 F=60,000\;lb
- v:en:User:Egm3520.s13/Report table/R1 683 \displaystyle L = \frac{5,200psi}{400psi\times 6inch} = 2.167inch
- v:en:User:Egm3520.s13/Report table/R1 805 \displaystyle P = \frac{\sigma A}{cos^2(\theta)}=\frac{12ksi \times 9.22inch^2}{cos^2(25^{\circ})} = 136,690lbs
- v:en:User:Egm3520.s13/Report table/R1 819 \displaystyle P = \frac{\tau A}{cos^2(\theta)}=\frac{7.2ksi \times 9.22inch^2}{cos^2(25^{\circ})} = 173,310 lbs
- v:en:User:Egm3520.s13/Report table/R1 835 \displaystyle P_{max}=134,690 lbs
- v:en:Mechanics of materials/Problem set 2 274 \displaystyle \delta=\frac{L}{(250)^2\, E^2} (2(R_B)^2\, -\, 3000\, R_B\, +\, 1,117,000)\, +\, \frac{L}{(400)^2\, E^2} (2(R_B)^2\, -\, 1200\, R_B\, +\, 360,000)\, =\, 0
- v:en:Mechanics of materials/Problem set 2 290 \displaystyle 0\, =\, (\frac{2}{250^2}+\frac{2}{400^2})(R_B)^2 - (\frac{3000}{250^2}+\frac{1200}{400^2})R_B + (\frac{1,117,000}{250^2}+\frac{360,000}{400^2})
- v:en:User:Brylie/Bicycling Incentives and Carbon Reduction 58 Ton = 2,000
- v:en:University of Florida/Egm3520/s13.team5.r2 274 \displaystyle \delta=\frac{L}{(250)^2\, E^2} (2(R_B)^2\, -\, 3000\, R_B\, +\, 1,117,000)\, +\, \frac{L}{(400)^2\, E^2} (2(R_B)^2\, -\, 1200\, R_B\, +\, 360,000)\, =\, 0
- v:en:University of Florida/Egm3520/s13.team5.r2 290 \displaystyle 0\, =\, (\frac{2}{250^2}+\frac{2}{400^2})(R_B)^2 - (\frac{3000}{250^2}+\frac{1200}{400^2})R_B + (\frac{1,117,000}{250^2}+\frac{360,000}{400^2})
- v:en:University of Florida/Eml4507/Team7 Report3 529 E = 100 GPa, F = 10,000N,
- v:en:User:Eml4507.s13.team2/Report3 64 F = 20,000 \ N
- v:en:User:Eml4507.s13.team2/Report3 961 F_{x13}=F_{x14}=10,000 \ N
- v:en:User:Eml4507.s13.team2/Report3 962 F_{y13}=F_{y14}=10,000 \ N
- v:en:User:Eml4507.s13.team2/Report3 963 F_{x13}=10,000 \ and \ F_{x14}=-10,000 \ N
- v:en:User:Eml4507.s13.team2.cc/R3 64 F = 20,000 \ N
- v:en:User:Eml4507.s13.team2.cc/R3 382 F_{x13}=F_{x14}=10,000 \ N
- v:en:User:Eml4507.s13.team2.cc/R3 383 F_{y13}=F_{y14}=10,000 \ N
- v:en:User:Eml4507.s13.team2.cc/R3 384 F_{x13}=10,000 \ and \ F_{x14}=-10,000 \ N
- v:en:User:EML4507.s13.team4ever.Bonner/Bonnerreport3p4 41 F = 10,000 N
- v:en:University of Florida/Eml4507/s13.team4ever.R3 459 F = 10,000 N
- v:en:User:Eml4507.s13.team2/Report4 462 \rho = 5,000 \ kg/m^3
- v:en:University of Florida/Egm3520/s13.team5.r4 62 \displaystyle \tau _{allowed}= 10.5\, ksi=10,500 \, \frac{lb}{in^2}
- v:en:University of Florida/Egm3520/s13.team1.r4 35 \tau = 10.5 ksi = 10,500 psi
- v:en:University of Florida/Egm3520/s13.team1.r4 46 c = \sqrt[3]{\frac{2T_F}{\pi \tau}} = \sqrt[3]{\frac{2(3200 lb*in)}{\pi (10,500 psi)}} = 0.5789
- v:en:University of Florida/Egm3520/s13.team1.r4 55 c = \sqrt[3]{\frac{2T_F}{\pi \tau}} = \sqrt[3]{\frac{2(1200 lb*in)}{\pi (10,500 psi)}} = 0.4175 in
- v:en:User:Eml4507.s13.team2/Report5 793 \rho = 5,000 \ kg/m^3
- v:en:University of Florida/Egm3520/Mom-s13-team4-R5 278 I = \frac{1}{3}[20mm*23.41^{3}mm+ 40mm*16.59^{3}mm-(40mm-20mm)(16.59mm-15mm)^{3}] = 146,383mm^{4}
- v:en:University of Florida/Egm3520/Mom-s13-team4-R5 288 M = \frac{146,383*10^{-12}m^{4}*30*10^{6}Pa}{.02341m} = 187.59 N*m
- v:en:User:Eml4507.s13.team2/Report6 160 \rho = 5,000 \ kg/m^3
- v:en:User:Eml4507.s13.team2/Report6 330 F = 20,000 \ N
- v:en:User:Eml4507.s13.team3.steiner/Team Negative Damping (3): Report 6 1627 \sigma_y=37,000\; psi
- v:en:User:Eml4507.s13.team3.steiner/Team Negative Damping (3): Report 6 1627 F=60,000\;lb
- v:en:User:Eml4507.s13.team2.cc/R6 64 F = 20,000 \ N
- v:en:Distance to the Moon 50 image size = 1186 m \frac{593 m}{907,000 m \times 2} = 593 m \times \frac{593 m}{distance m}.
- v:en:Electric orbits 139 1G(Gauss) = \frac{1T(Tesla)}{10,000} = \frac{1Ns}{10^4 C 10^{-3} km}.
- v:en:Electric orbits 196 1G(Gauss) = \frac{1T(Tesla)}{10,000} = \frac{1Ns}{10^4 C 10^{-3} km} = \frac{1kg 10^{-3} km s^{-2} s}{10^4 C 10^{-3} km},
- v:en:Radiation astromathematics problems 31 R_{\odot} (equatorial) = 696,342 km
- v:en:Radiation astromathematics problems 33 R_J (equatorial) = 71,492 km
- v:en:Radiation astromathematics problems 35 R_S (equatorial) = 60,268 km
- v:en:Radiation astromathematics problems 37 R_U (equatorial) = 25,559 km
- v:en:Radiation astromathematics problems 39 R_N (equatorial) = 24,764 km
- v:en:Problems/Astronomy 615 R_{\odot} (equatorial) = 696,342 km
- v:en:Problems/Astronomy 617 R_J (equatorial) = 71,492 km
- v:en:Problems/Astronomy 619 R_S (equatorial) = 60,268 km
- v:en:Problems/Astronomy 621 R_U (equatorial) = 25,559 km
- v:en:Problems/Astronomy 623 R_N (equatorial) = 24,764 km
- v:en:Radiation astronomy/Laboratories 313 1G(Gauss) = \frac{1T(Tesla)}{10,000} = \frac{1Ns}{10^4 C 10^{-3} km}.
- v:en:Radiation astronomy/Laboratories 370 1G(Gauss) = \frac{1T(Tesla)}{10,000} = \frac{1Ns}{10^4 C 10^{-3} km} = \frac{1kg 10^{-3} km s^{-2} s}{10^4 C 10^{-3} km},
- v:en:Information theory 67 3,000,000,000
- v:en:Classic energy problem in open-channel flow 558 S_{ss}=LWy_{ss,us}=2000.0 ft.\cdot 1 ft.\cdot 6.68 ft.= 13,353 ft^3
- v:en:User:13hartc/Astronomy lab book 24 1,392,000/12756 = 109.1
- v:en:Physics/Essays/Martin Gibson/Dimensional Analysis of the Fine Structure Constant 117 (tav){\omega _0^2} = \frac{\hbar }{c}\omega _n^2 = {m_n}c\omega _n^{} = 716,766.8351{\rm{ N}}
- v:en:PlanetPhysics/Plasma 22 12,000,000,000!
- v:en:PlanetPhysics/Quantum Topological Order 62 arXiv:hep--th/0507118,2007
- v:en:PlanetPhysics/Apparent Incompatability of the Law of Propagation of Light 21 c= 300,000
- v:en:PlanetPhysics/Equation of State for a Monatomic Gas 95 \frac{ 10! }{ 3! \, 4! \, 0! \, 1! \, 0! \, 2!} = 12,600
- v:en:PlanetPhysics/Example of Mechanical Power 22 Work = Wh = (200 \, pounds)(20 \, feet) = 4,000 \, foot-pounds
- v:en:PlanetPhysics/Basic Examples of Calculating Work in Physics 24 W = \frac{112 [lb]}{1} \cdot \frac{1 [slug]}{32.17 [lb]} \cdot \frac{14.59 [kg]}{1 [slug]} \times \frac{100 [ft]}{1}\frac{1 [m]}{3.281[ft]} \cdot 9.806 [m/s^2] = 15,180 [joules]
- v:en:PlanetPhysics/Basic Examples of Calculating Work in Physics 28 W = 112 [lb] \times 100 [ft] = 11,200 [ft-lb]
- v:en:PlanetPhysics/2DFT Imaging 19 900,000 M_w
- v:en:PlanetPhysics/Two Dimensional Fourier Transforms 28 900,000 M_w
- v:en:Fluid Mechanics for Mechanical Engineers/Internal Flows 371 \frac{D}{a} = \frac{25}{0,005}
- v:en:Mathematical Properties 74 9,827
- v:en:Mathematical Properties 74 9,827
- v:en:Speak Math Now!/Week 1: Introduction To Algebra 149 628,396.72
- v:en:Speak Math Now!/Week 1: Introduction To Algebra 153 628,396.72
- v:en:Speak Math Now!/Week 1: Introduction To Algebra 161 628,396.725,247
- v:en:Speak Math Now!/Week 1: Introduction To Algebra 163 628,396.725,247
- v:en:Electric constant 24 \varepsilon_0 \, \overset{\underset{\mathrm{def}}{}}{=} \, \frac{10^7}{4 \pi\ c^2 } \equiv \frac{1}{\mu_0 c^2} \approx 8,854187817620 \times 10^{-12}
- v:en:Ellipse 737 369x^2 - 384xy + 481y^2 - 3,515,625 = 0,
- v:en:Ellipse 744 c^2 = 400;\ b^2 = a^2-c^2 = 625-400=225;\ F=-a^2b^2 = -(625)(225) = -140,625.
- v:en:Ellipse 750 K = \frac{4F}{B^2-4AC} = \frac{4( - 3,515,625 )}{ (-384)^2 - 4(369)(481) } = \frac{ - 14,062,500 }{-562,500} = 25.
- v:en:Ellipse 753 \frac{ 3,515,625 }{ 140,625 } = 25 = K.
- v:en:Ellipse 759 A = 9,225;\ B = -9,600;\ C = 12,025;\ F = -87,890,625.
- v:en:Ellipse 762 9,225x^2 - 9,600xy + 12,025y^2 - 87,890,625 = 0
- v:en:Ellipse 765 K = \frac{4F}{B^2 - 4AC} = \frac{-351,562,500}{(-9600)^2 - 4(9225)(12025)} = \frac{351562500}{351562500} = 1.
- v:en:Ellipse 774 A = a^2 - p^2 = 15,625 - 6,400 = 9,225.
- v:en:Ellipse 776 B = -2pq = -2(80)(60) = -9,600.
- v:en:Ellipse 778 C = a^2 - q^2 = 15,625- 3,600 = 12,025.
- v:en:Ellipse 780 c^2 = p^2+q^2 = 80^2 + 60^2 = 100^2;\ b^2 = a^2-c^2 = 15,625 - 10,000 = 5,625;
- v:en:Ellipse 782 F = -a^2b^2 = - 15,625(5,625) = -87,890,625
- v:en:Ellipse 788 5,904x^2 - 6,144xy + 7,696y^2 - 140,625 = 0,
- v:en:Ellipse 791 K = \frac{1}{256} = 0.003,906,25
- v:en:Ellipse 794 23.0625x^2 - 24xy + 30.0625y^2 - 549.316,406,25 = 0
- v:en:Praon 55 ~ \omega = 1,54946 \cdot 10^{16}
- v:en:Low-Cost Technology 38 I_2=1,000
- v:en:Low-Cost Technology 40 I_3=10,000,000
- v:en:Low-Cost Technology 40 R_3=30,000
- v:en:Low-Cost Technology 42 I_3=10,000,000
- v:en:Low-Cost Technology 42 R_3=30,000
- v:en:Supersymmetry/String Theory based Artificial Intelligence 59 42 qubit = 32 \times 2^{12} gb = 131,072 gb
- v:en:WikiJournal Preprints/Can each number be specified by a finite text? 386 \{(1,1),(2,2),(3,6),(4,24),(5,120),\dots\}.
enwiktionary
[Bearbeiten | Quelltext bearbeiten]- wikt:en:-illion 26 1,000,000^n
eowiki
[Bearbeiten | Quelltext bearbeiten]- w:eo:Lumo 168 c_0 = \frac{1}{\sqrt{\epsilon_0 \, \mu_0}} = 299.792,458 km/s
- w:eo:Universala gaskonstanto 18 R = 8,314472(15)\,\frac{J}{K . mol} = 8,314472(15)\,\frac{Pa\, . m^3}{K . mol}
- w:eo:Elektromagnetismo 20 c_0=2,99792458 \times 10^8 \, [m/s] \ .
- w:eo:Entropio 44 N_A = 6,022 \cdot 10^{23}
- w:eo:Elektra konstanto 20 \varepsilon_0 = 8,854\ 187\ 817 \times 10^{-12}
- w:eo:Koriolisforto 40 |\vec{\Omega_T}| = \frac{2 \pi}{T_{sidera}} = 7,2921.10^{-5} rad.s^{-1} \ \ .
- w:eo:Lumeno 21 12,566 \, \mathrm{lm}
- w:eo:Eŭklida distanco 36 0,41 dx + 0,941246 dy
- w:eo:Nombregoj 107 10^{\,\!10^{10^{10^{10^{4,829*10^{183230}}}}}}
- w:eo:Nombregoj 132 10\uparrow\uparrow 65,533
- w:eo:Nombregoj 132 10\uparrow\uparrow 65,534
- w:eo:Dureco 61 \mbox{HR}=k-\frac{H-h}{0,002}
- w:eo:Dureco 82 A \approx \frac{d^2}{1,854}
- w:eo:Dureco 82 H_V\approx \frac{1,854 F}{d^2}
- w:eo:Konstanto de Planck 21 h = 6,626 068 96(33) \cdot 10^{-34}
- w:eo:Konstanto de Planck 21 \approx 4,1410^{-15}
- w:eo:Konstanto de Planck 24 \hbar = 1,054 571 628(53) \cdot 10^{-34}
- w:eo:Konstanto de Planck 24 = 6,582 118 99(16)\cdot 10^{-16}
- w:eo:Konstanto de Boltzmann 17 k = \frac{R_0}{N_A} = 1,3806488(13) \cdot 10^{-23} \, \, \mathrm J \cdot \mathrm K^{-1}
- w:eo:Dudekedro 51 r_u = \frac{a}{2} \sqrt{\varphi \sqrt{5}} = \frac{a}{4} \sqrt{10 +2\sqrt{5}} \approx 0,9510565163 \cdot a
- w:eo:Dudekedro 54 r_i = \frac{\varphi^2 a}{2 \sqrt{3}} = \frac{a}{12} \sqrt{3} \left(3+ \sqrt{5} \right) \approx 0,7557613141\cdot a
- w:eo:Dudekedro 57 r_m = \frac{a \varphi}{2} = \frac{1}{4} \left(1+\sqrt{5}\right) a \approx 0,80901699\cdot a
- w:eo:Dudekedro 61 A = 5\sqrt{3}a^2 \approx 8,66025404a^2
- w:eo:Dudekedro 64 V = \frac{5}{12} (3+\sqrt5)a^3 \approx 2,18169499a^3
- w:eo:Dudek-dekduedro 48 A = (5\sqrt{3}+3\sqrt{25+10\sqrt{5}}) ~ a^2 \approx 29,3059828 ~ a^2
- w:eo:Dudek-dekduedro 49 V = \frac{1}{6} (45+17\sqrt{5}) ~ a^3 \approx 13,8355259 ~ a^3
- w:eo:Adiabata procezo 28 \kappa = 5/3 = 1,666
- w:eo:Konstanto de Rydberg 28 R_\infty = \frac{m_e e^4}{(4 \pi \epsilon_0)^2 \hbar^3 4 \pi c} = 1,097 373 156 8539(55) \cdot 10^7 \,\mathrm{m}^{-1}
- w:eo:Konstanto de Rydberg 33 R_H = 1,09677 \cdot 10^7\ \mathrm{m}^{-1}
- w:eo:Konstanto de Stefan-Boltzmann 23 {2\pi ^{5}k^{4}_{B}\over 15h^{3}c^{2}}= 5,670 400 (40) \times 10^{-8}\frac{W}{m^{2}K^{4}}
- w:eo:Ekvacio de Clausius-Clapeyron 38 p_0 = 6,11213~hPa
- w:eo:Registro (orgeno) 312 (\sqrt[12]{2})^7:1 \approx 1,4983:1
- w:eo:Registro (orgeno) 314 (\sqrt[12]{2})^4:1 \approx 1,2599:1
- w:eo:Konstanto de Avogadro 17 N_A = (6,022 \, 141 \, 79\pm 0,000 \, 000 \, 30)\,\times\,10^{23} \mbox{ mol}^{-1} \,
- w:eo:0,999... 17 0,(9)
- w:eo:0,999... 17 0,\bar{9}
- w:eo:0,999... 17 0,\dot{9}
- w:eo:0,999... 50 \begin{align}0,333\dots &{} = \frac{1}{3} \\3 \times 0,333\dots &{} = 3 \times \frac{1}{3} = \frac{3 \times 1}{3} \\ 0,999\dots &{} = 1\end{align}
- w:eo:0,999... 62 \begin{align}0,111\dots & {} = \frac{1}{9} \\9 \times 0,111\dots & {} = 9 \times \frac{1}{9} = \frac{9 \times 1}{9} \\ 0,999\dots & {} = 1\end{align}
- w:eo:0,999... 70 1 = \frac{9}{9} = 9 \times \frac{1}{9} = 9 \times 0,111\ldots = 0,999\dots
- w:eo:0,999... 89 \begin{align}c &= 0,999\ldots \\10 c &= 9,999\ldots \\10 c - c &= 9,999\ldots - 0,999\ldots \\9 c &= 9 \\c &= 1 \\0,999\ldots &= 1\end{align}
- w:eo:0,999... 96 b_0.b_1b_2b_3b_4b_5\dots
- w:eo:0,999... 106 b_0 . b_1 b_2 b_3 b_4 \ldots = b_0 + b_1({\tfrac{1}{10}}) + b_2({\tfrac{1}{10}})^2 + b_3({\tfrac{1}{10}})^3 + b_4({\tfrac{1}{10}})^4 + \cdots .
- w:eo:0,999... 109 |r| < 1
- w:eo:0,999... 109 ar+ar^2+ar^3+\cdots = \frac{ar}{1-r}.
- w:eo:0,999... 111 r=\textstyle\frac{1}{10}
- w:eo:0,999... 112 0.999\ldots = 9(\tfrac{1}{10}) + 9({\tfrac{1}{10}})^2 + 9({\tfrac{1}{10}})^3 + \cdots = \frac{9({\tfrac{1}{10}})}{1-{\tfrac{1}{10}}} = 1.\,
- w:eo:0,999... 119 0.999\ldots = \lim_{n\to\infty}0.\underbrace{ 99\ldots9 }_{n} = \lim_{n\to\infty}\sum_{k = 1}^n\frac{9}{10^k} = \lim_{n\to\infty}\left(1-\frac{1}{10^n}\right) = 1-\lim_{n\to\infty}\frac{1}{10^n} = 1.\,
- w:eo:0,999... 151 \begin{align}1-(\tfrac{1}{10})^n\end{align}
- w:eo:0,999... 152 \begin{align}\tfrac{a}{b}<1\end{align}
- w:eo:0,999... 152 \begin{align}\tfrac{a}{b}<1-(\tfrac{1}{10})^b\end{align}
- w:eo:0,999... 164 \left(1 - 0, 1 - {9 \over 10}, 1 - {99 \over 100}, \dots\right)= \left(1, {1 \over 10}, {1 \over 100}, \dots \right)
- w:eo:0,999... 167 \lim_{n\rightarrow\infty}\frac{1}{10^n} = 0.
- w:eo:Resono 34 r_H \approx 0,057 \cdot \sqrt \frac{V}{T_{60}}
- w:eo:Ora triangulo (geometrio) 18 \varphi = {1 + \sqrt{5} \over 2} \approx 1,61803\dots
- w:eo:Notacio de Knuth 82 7,625,597,484,987 \times \frac{\log 3}{\log 2}
- w:eo:Notacio de Knuth 127 3\uparrow\uparrow\uparrow2 = 3\uparrow\uparrow3 = 3^{3^3} = 3^{27}=7,625,597,484,987
- w:eo:Notacio de Knuth 139 \begin{matrix} 3\uparrow\uparrow\uparrow3 = 3\uparrow\uparrow3\uparrow\uparrow3 = 3\uparrow\uparrow(3\uparrow3\uparrow3) = & \underbrace{3_{}\uparrow 3\uparrow\dots\uparrow 3} \\ & 3\uparrow3\uparrow3\mbox{ kopioj de }3 \end{matrix} \begin{matrix} = & \underbrace{3_{}\uparrow 3\uparrow\dots\uparrow 3} \\ & \mbox{7,625,597,484,987 kopioj de 3} \end{matrix}
- w:eo:Notacio de Knuth 185 2^{2^{2^{65536}}}\approx 10^{10^{6.0 \times 10^{19,728}}}
- w:eo:Notacio de Knuth 185 2^{65536}\approx 2.0 \times 10^{19,729}
- w:eo:Notacio de Knuth 185 2^{2^{65536}}\approx 10^{6.0 \times 10^{19,728}}
- w:eo:Notacio de Knuth 223 3^{7,625,597,484,987}
- w:eo:Notacio de Knuth 236 \begin{matrix} \underbrace{3_{}^{3^{{}^{.\,^{.\,^{.\,^3}}}}}}\\ 7,625,597,484,987\mbox{ kopioj de }3 \end{matrix}
- w:eo:Notacio de Knuth 260 10^{10^{10^{10,000,000,000}}}
- w:eo:Notacio de Knuth 260 10^{10,000,000,000}
- w:eo:Notacio de Knuth 260 10^{10^{10,000,000,000}}
- w:eo:Γ-funkcio 130 \Gamma(-5/2) = -\frac {8\sqrt{\pi}} {15} \approx -0,9453087204829
- w:eo:Γ-funkcio 131 \Gamma(-3/2) = \frac {4\sqrt{\pi}} {3} \approx 2,3632718012074
- w:eo:Γ-funkcio 132 \Gamma(-1/2) = -2\sqrt{\pi} \approx -3,5449077018110
- w:eo:Γ-funkcio 133 \Gamma(1/2) = \sqrt{\pi} \approx 1,7724538509055
- w:eo:Γ-funkcio 134 \Gamma(3/2) = \frac {\sqrt{\pi}} {2} \approx 0,8862269254528
- w:eo:Γ-funkcio 135 \Gamma(5/2) = \frac {3 \sqrt{\pi}} {4} \approx 1,3293403881791
- w:eo:Γ-funkcio 136 \Gamma(7/2) = \frac {15\sqrt{\pi}} {8} \approx 3,3233509704478
- w:eo:Supereksponento 165 \exp_{10}^3(1,09902)
- w:eo:Supereksponento 169 \exp_{10}^2(2,18788)
- w:eo:Supereksponento 170 \exp_{10}^3(2,18726)
- w:eo:Supereksponento 174 \exp_{10}^2(3,33931)
- w:eo:Supereksponento 175 \exp_{10}^3(3,33928)
- w:eo:Supereksponento 179 \exp_{10}^2(4,55997)
- w:eo:Supereksponento 180 \exp_{10}^3(4,55997)
- w:eo:Supereksponento 184 \exp_{10}^2(5,84259)
- w:eo:Supereksponento 185 \exp_{10}^3(5,84259)
- w:eo:Supereksponento 189 \exp_{10}^2(7,18045)
- w:eo:Supereksponento 190 \exp_{10}^3(7,18045)
- w:eo:Supereksponento 194 \exp_{10}^2(8,56784)
- w:eo:Supereksponento 195 \exp_{10}^3(8,56784)
- w:eo:Supereksponento 395 x \approx 2,376
- w:eo:Papiruso de Rhind 35 \pi \approx 8^2/4,5^2 \approx 3,16049
- w:eo:Dekunulatero 23 \simeq 9,36564 t^2
- w:eo:Dudeklatero 23 A = 5t^2 \cot \frac{\pi}{20} \simeq 31,5688 t^2
- w:eo:Tera radiuso 35 f\approx 1/298,257
- w:eo:Apartaj valoroj de Γ funkcio 46 \approx 1,7724538509055160273
- w:eo:Apartaj valoroj de Γ funkcio 50 \approx 0,8862269254527580137
- w:eo:Apartaj valoroj de Γ funkcio 54 \approx 1,3293403881791370205
- w:eo:Apartaj valoroj de Γ funkcio 58 \approx 3,3233509704478425512
- w:eo:Apartaj valoroj de Γ funkcio 68 \approx -3,5449077018110320546
- w:eo:Apartaj valoroj de Γ funkcio 72 \approx 2,3632718012073547031
- w:eo:Apartaj valoroj de Γ funkcio 125 x_\mathrm{min} \approx 1,461632144968362341262
- w:eo:Apartaj valoroj de Γ funkcio 129 \Gamma(x_\mathrm{min}) \approx 0,885603194410888
- w:eo:Primo-kalkulanta funkcio 315 \pi(x) < 1,25506 \frac{x}{\log x}
- w:eo:Elektra impedanco de Planck 47 Z_P = \frac{1}{4 \pi \epsilon_0 c} = \frac{\mu_0 c}{4 \pi} = \frac{4 \pi 10^{-7} \cdot 299792458}{4 \pi} \Omega = 29,9792458 \; \Omega \ .
- w:eo:Elektra ŝargo de Planck 36 \frac {1}{\sqrt{\alpha}} \approx 11,7062376144(22)
- w:eo:Elektra ŝargo de Planck 38 e = q_P\sqrt{\alpha} \approx 0,085424543131(16) q_P
- w:eo:Konstanto de maldika strukturo 34 7,297352569(5) \times 10^{-3}\ =\ \frac{1}{137,035999084(51)}
- w:eo:Konstanto de maldika strukturo 38 (7,297352569 \pm 0,000000005) \times 10^{-3}\ =\ \frac{1}{137,035999084 \pm 0,000000051}
- w:eo:Konstanto de maldika strukturo 71 \frac{1}{\alpha} = 137,035999084(51)
- w:eo:Konstanto de maldika strukturo 77 \alpha = \frac{e^2}{\hbar c \ 4 \pi \epsilon_0} = 7,2973525376(50) \times 10^{-3} = \frac{1}{137,035999679(94)}
- w:eo:Konstanto de maldika strukturo 124 \alpha = \frac{\cos \left(\pi/137 \right)}{137} \ \frac{\tan \left(\pi/(137 \cdot 29) \right)}{\pi/(137 \cdot 29)} \approx \frac{1}{137,0359997867}
- w:eo:Fulmlumilo 34 \sqrt{36^2 + 36^2} = 50,911\ldots
- w:eo:Imaginara unuo 182 \cos(i) = \cosh(1) = \frac{e + 1/e}{2} = \frac{e^2 + 1}{2e} = 1,54308063481524...
- w:eo:Imaginara unuo 186 \sin(i) = \sinh(1) \, i = \frac{e - 1/e}{ 2} \, i = \frac{e^2 - 1}{2e} \, i = 1,17520119364379... i
- w:eo:Imaginara unuo 190 \tan(i) = -i \frac{e^{-1}-e}{e^{-1}+e} = 0,761594155955762... i
- w:eo:Algoritmo de Strassen 214 O((7+o(1))^n) = O(N^{\log_{2}7+o(1)}) \approx O(N^{2,807})
- w:eo:QR-faktorigo 335 G_1 = \begin{bmatrix}1 & 0 & 0 \\0 & \cos(\theta) & \sin(\theta) \\0 & -\sin(\theta) & \cos(\theta)\end{bmatrix} \approx \begin{bmatrix}1 & 0 & 0 \\0 & 0,83205 & -0,55470 \\0 & 0,55470 & 0,83205\end{bmatrix}
- w:eo:QR-faktorigo 343 G_1A \approx \begin{bmatrix}12 & -51 & 4 \\7,21110 & 125,6396 & -33,83671 \\0 & 112,6041 & -71,83368\end{bmatrix}
- w:eo:Kerno (matrico) 59 \begin{bmatrix}-0,0625z \\ -1,625z \\ z \end{bmatrix}
- w:eo:Algoritmo de Karacuba 15 3 n^{\log_23}\approx 3 n^{1,585}
- w:eo:Pakada problemo 38 \frac{\pi}{\sqrt{12}} \approx 0,9069
- w:eo:Pakada problemo 38 \frac{\pi}{4} \approx 0,7854
- w:eo:Peter Debye 56 \approx 3,33564 \cdot 10^{-30}
- w:eo:Transponado (muziko) 79 f(x) = 100 \cdot 0,9439^x \,
- w:eo:Fortranĉa frekvenco 27 \sqrt{1/2} \ \approx \ 0,707
- w:eo:Fortranĉa frekvenco 48 \omega_{c} = c \frac{\chi_{01}}{r} \approx c \frac{2,4048}{r}
- w:eo:Elektronegativeco 23 \Delta\chi_{AB} = 0,102 \cdot (E_{AB} - \sqrt{E_{AA}*E_{BB}})^{1/2}
- w:eo:Korelacio 130 \rho_{xy} = 0,816 \
- w:eo:Korelacio 130 y =7,5 + 0,816 \frac{\sqrt{3,75}}{\sqrt{10}} (x - 9) \simeq 3+ 0,5 x \, .
- w:eo:Pozicia frakcio 25 -1,239
- w:eo:Pozicia frakcio 26 3,1415926535897\ldots
- w:eo:Ondolongo de Komptono 21 \lambda_e = 2,426\,310\,2389 \cdot 10^{-12} \ \mathrm{m} \ .
- w:eo:Supra indico 20 6,022 \, 141\times10^{23}\mbox{ mol}^{-1}
- w:eo:Malvarmo 36 T_{R}=13,12+0,6215\;T_{A}+(0,3965\;T_{A}-11,37)\times V^{0,16}
eowikibooks
[Bearbeiten | Quelltext bearbeiten]- b:eo:Termodinamiko/Leciono 6 1064 \kappa = 1,035+0,1x \,
- b:eo:Termodinamiko/Leciono 9 117 \lambda_m T = konst = 0,2885.10^{-2}\quad m^0K \,
- b:eo:Termodinamiko/Leciono 9 121 E_0 = \int_{\lambda = 0}^{\lambda=\infty}E_{0\lambda}.d\lambda \frac{6,494.c_1}{c_2^4} T^4 \,
- b:eo:Fiziko - baza kurso/Ĝeneralaj fundamentoj 463 {t_2}=\frac{s_2}{v_2} = \frac{12km}{32\frac{km}{h}} = 0,375h = 22,5min
eswiki
[Bearbeiten | Quelltext bearbeiten]- w:es:Alfabeto griego 281 \pi = 3,14159265
- w:es:Bomba hidráulica 89 {(P_{I}-P_{A})_{aire} \over (P_{I}-P_{A})_{agua}} = {\rho_{aire} \over \rho_{agua}} = {1,29 \over 1000} =0,00129
- w:es:Circunferencia 41 \pi=3,14159\dots
- w:es:Coma flotante 194 -\color{red}1\color{black},011101100 \times 2^{4} = -\color{red}1\color{black}0111,01100
- w:es:Coma flotante 196 \color{red}1\color{black},111001101 \times 2^{-4} = 0,000\color{red}1\color{black}111001101
- w:es:Densidad 140 R = 0,082 \ \frac{\text{atm} \cdot \text{L}}{\text{mol} \cdot \text{K}}
- w:es:Número racional 119 \begin{array}{rcl}\cfrac 1 7&=&0,142857142857\dots\\&=&0,\overline{142857}\end{array}
- w:es:Número racional 121 \begin{array}{rcl}\cfrac 1 {60}&=&0,01666\dots\\&=&0,01\overline{6}\end{array}
- w:es:Número irracional 46 \ 0,193650278443757
- w:es:Número irracional 47 \ 0,101001000100001
- w:es:Número real 153 \pi=3,1415926535897932384626\dots
- w:es:Número real 161 0,00000\dots
- w:es:Número real 163 \mathbb{R}^+\cup\mathbb{R}^-\cup\{0,00000\dots\}
- w:es:Péndulo 72 \phi_0 = 0,999\pi
- w:es:Sistema binario 235 \begin{align} & \overset{5}{\mathop{1}}\,\overset{4}{\mathop{1}}\,\overset{3}{\mathop{0}}\,\overset{2}{\mathop{1}}\,\overset{1}{\mathop{0}}\,\overset{0}{\mathop{1}}\,,\overset{-1}{\mathop{1}}\,\overset{-2}{\mathop{0}}\,\overset{-3}{\mathop{1}}\,=1\cdot 2^{5}+1\cdot 2^{4}+0\cdot 2^{3}+1\cdot 2^{2}+0\cdot 2^{1}+1\cdot 2^{0}+1\cdot 2^{-1}+0\cdot 2^{-2}+1\cdot 2^{-3}= \\ & =32+16+0+4+0+1+\frac{1}{2^{1}}+\frac{0}{2^{2}}+\frac{1}{2^{3}}=32+16+0+4+0+1+0,5+0+0,125=53,625 \\ \end{align}
- w:es:Unidad astronómica 73 T = 365,2563835 \mbox{ días} \,\!
- w:es:Sistema astronómico de unidades 24 M_{\odot}=1,98892\times10^{30}\hbox{ kg}
- w:es:Sistema astronómico de unidades 41 M_J=1,8986\times10^{27}\hbox{ kg}
- w:es:Química 179 6,022045\cdot10^{23}
- w:es:Química 181 6,022045\cdot10^{23}
- w:es:Química 182 6,022045\cdot10^{23}
- w:es:Núcleo atómico 63 \rho(r) = \frac{\rho_0}{1+\exp \left( \frac{r-R_n}{0,228 a} \right) }
- w:es:Número e 27 e\ \approx 2,71828 18284 59045 23536 ...
- w:es:Número e 443 e \approx 2,7182818284 \; 5904523536 \; 0287471352 \; 6624977572 \; 4709369995 \; 9574966967 \; 6277240766 \; 3035354 759 \; 4571382178 \; 5251664274 \;
- w:es:Culombio 23 6,241 509\times10^{18}
- w:es:Culombio 49 1 \ \mathrm{C} = 0,0002777 \ \mathrm{A} \cdot \mathrm{h} = 0,2777 \ \mathrm{mA} \cdot \mathrm{h}
- w:es:Ecuaciones de Maxwell 205 2,99792458 \times 10^{8}
- w:es:Ecuaciones de Maxwell 211 8,854 \times 10^{-12}
- w:es:Número áureo 21 \varphi = \frac{1 + \sqrt{5}}{2} \approx 1,6180339887498948...
- w:es:Número áureo 108 \textstyle \varphi \approx 1,618033988749894848204586834365638117720309...
- w:es:Número áureo 186 \textstyle \frac{21}{13}= 1,61538461...
- w:es:Número trascendente 64 {\sum_{k=1}^\infty} 10^{-k!}=0,110001000000000000000001000\ldots
- w:es:Número trascendente 84 \sum_{k=1}^\infty 10^{-k!} = 0,110001000000000000000001000....
- w:es:Sonido 66 \beta= 0,606\ \mbox{m/(s}^\circ\mbox{C)}
- w:es:Estequiometría 339 \begin{array}{rcl}12,0107\;gramos\;de\;C & = & 1\;mol\;de\;\acute{a}tomos\; de\; C \\ 1 \; mol \; de \; \acute{a}tomos\; de \; carbono & \equiv & 1 \; mol \; de \;mol\acute{e}culas\; de\; ox \acute{\imath} geno \\1 \;mol\; de\; mol\acute{e}culas\; de\; ox \acute{\imath} geno & = & 31,9988\;gramos\;de\;ox \acute{\imath} geno \\ \end{array}
- w:es:Estequiometría 342 1\; mol\; de\; mol\acute{e}culas\; de\; ox \acute{\imath} geno = 2 \cdot 15,9994 \; gramos \; de \; ox \acute{\imath} geno
- w:es:Estequiometría 347 x =100 \; g \; de \ C \cdot \frac{1\;mol\; de\; C}{12,0107\;g\;de\;C} \cdot \frac{1\; mol\; de\; O_2 }{1 \;mol \;de \; C} \cdot \frac{31,9988 \;g\; de\; O_2}{1\; mol\; de\; O_2}
- w:es:Estequiometría 367 \begin{array}{rcl} 1 \; mol \; de \; \acute{a}tomos\; de \; carbono & \longrightarrow & 1 \; mol \; de \;mol\acute{e}culas\; de\; oxigeno \\1 \;mol\; de\; mol\acute{e}culas\; de\; oxigeno & \longrightarrow & 2\; mol\; de\; \acute{a}tomos\; de\; ox\acute{i}geno \\ entonces:& & \\ 1 \; mol \; de \; \acute{a}tomos\; de \; carbono & \longrightarrow & 2\; mol\; de\; \acute{a}tomos\; de\; ox\acute{i}geno \\ 12,0107 \; gramos \; de \; carbono & \longrightarrow & 2 \cdot 15,9994 \; gramos \; de \; oxigeno \\ 100 \; gramos \; de \; carbono & \longrightarrow & x \; gramos \; de \; ox\acute{i}geno \end{array}
- w:es:Estequiometría 370 x = \mathrm{\frac{2 \cdot 15,9994 \; gramos \; de \; oxigeno \cdot 100 \; gramos \; de \; carbono}{12,0107 \; gramos \; de \; carbono}}
- w:es:Volumen molar 18 6,022 \cdot 10^{23}
- w:es:Números primos gemelos 27 B_2 = \left(\frac{1}{3} + \frac{1}{5}\right)+ \left(\frac{1}{5} + \frac{1}{7}\right)+ \left(\frac{1}{11} + \frac{1}{13}\right)+ \left(\frac{1}{17} + \frac{1}{19}\right)+ \left(\frac{1}{29} + \frac{1}{31}\right) + \cdots \approx 1,902160583104
- w:es:Números primos gemelos 42 \prod_{\textstyle{p\;{\rm primo}\atop p \ge 3}} \left(1 - \frac{1}{(p-1)^2}\right) = 0,66016118\ldots
- w:es:Horizonte 54 d = \sqrt{2 R h + h^2} \approx \sqrt{2 R h} = \sqrt{2 R} \sqrt{h} \approx 3,572 \sqrt{h}
- w:es:Horizonte 62 3,572 \sqrt{h}
- w:es:Horizonte 71 3,572\,(\sqrt{h_\mathrm{B}} + \sqrt{h_\mathrm{L}}).
- w:es:Número primo de Mersenne 493 e^\gamma = 1,781072417990197\dots
- w:es:Atmósfera terrestre 96 \rho_0=1,225 \cdot \frac{\text{g}}{\text{dm}^3}
- w:es:Media geométrica 72 \sqrt{1,5488}
- w:es:Espectro electromagnético 30 (h \approx 6,626069 \cdot 10^{-34} \ \mbox{J} \cdot \mbox{s} \approx 4,13567 \ \mathrm{\mu} \mbox{eV}/\mbox{GHz})
- w:es:Tiempo sidéreo 45 S=M \cdot 1,00273790935 \,
- w:es:Tiempo sidéreo 53 \Theta_m(0h, Gr)=6 h 38 min 45,836 s+8 640 184,542 s \cdot T+0,0929 s\cdot T^2
- w:es:Tiempo sidéreo 61 \Theta_m(t h, Gr)=\Theta_m(0h, Gr)+t \cdot 1,00273790935 \,
- w:es:Nebulosa de Orión 28 Radio = 1,270 \times \tan{\left ( \frac{66'}{2} \right )} = 12 al
- w:es:Relación de indeterminación de Heisenberg 54 h =\,\, 6,626\ 0693 (11) \times10^{-34}\ \mbox{J}\cdot\mbox{s} \,\, = \,\, 4,135\ 667\ 43(35) \times10^{-15}\ \mbox{eV}\cdot\mbox{s}
- w:es:TeX 196 = {1 \over 1,001 - 1}
- w:es:TeX 197 = {1 \over 0,001}
- w:es:TeX 202 = {1 \over 1,001 - 1}
- w:es:TeX 203 = {1 \over 0,001}
- w:es:Ecuación de Drake 51 N = 10 \times 0.5 \times 2 \times 1 \times 0.01 \times 0.01 \times 10,000
- w:es:Ecuación de Drake 96 N = 10 \times 0.5 \times 2 \times 1 \times 0.01 \times 0.01 \times 10,000
- w:es:Número decimal 66 3,141592 \;
- w:es:Número decimal 87 \begin{array}{lcrcl} \hline \rm d\acute{e}cima & \longmapsto & 10^{-1} & = & 0,1 \\ \rm cent\acute{e}sima & \longmapsto & 100^{-1} & = & 0,01 \\ \rm mil\acute{e}sima & \longmapsto & 1\,000^{-1} & = & 0,001 \\ \rm diezmil\acute{e}sima & \longmapsto & 10\,000^{-1} & = & 0,0001 \\ \rm cienmil\acute{e}sima & \longmapsto & 100\,000^{-1} & = & 0,00001 \\ \rm millon\acute{e}sima & \longmapsto & 1\,000\,000^{-1} & = & 0,000001 \\ \hline \end{array}
- w:es:Número decimal 118 1 = 1,\underline{0}... = 0,\underline{9}... = 0,99999\dots
- w:es:Número decimal 119 \frac{1}{2} = 0,5 = 0,499999\dots
- w:es:Número decimal 170 0,33333... = 0,\overline{3} \; =\frac{1}{3} =\lim_{x\rightarrow +\infty} \left( \sum_{n=1}^{x} \frac{3}{10^n} \right)
- w:es:Número decimal 179 0,16666... = 0,1\overline{6} \;
- w:es:Copo de nieve de Koch 69 d = \frac{\ln 4}{\ln 3} \approx 1,26186\dots
- w:es:Conjetura de los números primos gemelos 35 C_2 = \prod_{p\ge 3} \frac{p(p-2)}{(p-1)^2} \approx 0,66016118158468695739278121100145 ...
- w:es:Luminosidad 27 L_{\bigodot} \approx 3,827 \cdot 10^{26}\ [\text{W}]
- w:es:Luminosidad 37 S_E = 4 \pi {R^2}~[ \text{m}^2 ] \approx 4 \cdot 3,1415 \cdot (1,496 \cdot 10^{11} )^2~{[\text{m}^2]}
- w:es:Luminosidad 39 S_E \approx 2,812 \cdot 10^{23}~{[\text{m}^2]}
- w:es:Luminosidad 44 L_{\bigodot} \approx 1367~\left [ \frac {\text{W}} {\text{m}^2}\right ] \cdot 2,812 \cdot 10^{23}~{[\text{m}^2]}
- w:es:Efecto Doppler 209 f' = 440 \mathrm{Hz} \cdot \bigg( 1 + \frac{42 \mathrm{m/s} }{340 \mathrm{m/s}} \bigg) \rightarrow f' = 494,353 \mathrm{Hz}
- w:es:Magnitud absoluta 56 M_\mathrm{bol} = -2,5 \log_{10} \frac{L_\star}{L_0} = -2,5 \log_{10} L_\star + 71,197425...
- w:es:Triángulo de Sierpinski 47 D_{HB} = \frac{\ln 3}{\ln 2} \approx 1,584962501
- w:es:Discusión:Resistencia eléctrica 47 \alpha=0,004\cdot {^\circ C}^{-1}
- w:es:Discusión:Resistencia eléctrica 49 \alpha=\frac{0,004}{^\circ C}
- w:es:Discusión:Venus (planeta) 89 \frac{243 dt}{224 dt} = \frac{1 dv}{1 av} => 1 av = \frac{224,701 dt * 1 dv}{243,0187 dt} = 0,9246 dv
- w:es:Discusión:Venus (planeta) 98 \frac{360}{-243,0187}-\frac{360}{224,701} = -3,08348
- w:es:Discusión:Venus (planeta) 103 1 av = \frac{224,701 dt * 1 dv}{116,75 dt} = 1,9246 dv
- w:es:Constante de Planck 213 (1,097 10^7 m^{-1})
- w:es:Constante de Planck 243 \ v_p\ = 2,998 \times 10^{8} \ m \cdot s^{-1}
- w:es:Constante de Planck 243 \ m\ = 1,673 \times 10^{-27} kg
- w:es:Constante de Planck 245 \Delta v_p\ = (1 \times 10^{-2})(2,998 \times 10^{8} m \cdot s^{-1}) = 2,998 \times 10^{6} m \cdot s^{-1}
- w:es:Constante de Planck 249 \Delta x\ \geq \frac{6,626 \times 10^{-34}J \cdot s}{(4\pi)(1,673 \times 10^{-27} kg)(2,998 \times 10^{6} \ m \cdot s^{-1})} \geq \frac{6,626}{63,029} \times 10^{-13} m
- w:es:Constante de Planck 292 h =\,\, 6,626\ 069 \ 57(29) \times10^{-34}\ \mbox{J}\cdot\mbox{s} \,\, = \,\, 4,135\ 667\ 51(40) \times10^{-15}\ \mbox{eV}\cdot\mbox{s}
- w:es:Carga eléctrica 62 e = \frac{1C}{6,241 509 \times 10^{18}} = 1,602 176 \times 10^{-19} C
- w:es:Pentágono 32 A = \frac{5a^2}{4}\cot \frac{\pi}{5} = \frac {a^2}{4} \sqrt{25+10\sqrt{5}} \simeq 1,72048 a^2
- w:es:Distribución de Poisson 92 \!P(5;8)= \frac{8^5e^{-8}}{5!}=0,092.
- w:es:Función gamma 254 \begin{array}{lll}\Gamma(-3/2) &= \frac {4\sqrt{\pi}} {3} &\approx 2,363 \\\Gamma(-1/2) &= -2\sqrt{\pi} &\approx -3,545 \\\Gamma(1/2) &= \sqrt{\pi} &\approx 1,772 \\\Gamma(1) &= 0! &= 1 \\\Gamma(3/2) &= \frac {\sqrt{\pi}} {2} &\approx 0,886 \\\Gamma(2) &= 1! &= 1 \\\Gamma(5/2) &= \frac {3 \sqrt{\pi}} {4} &\approx 1,329 \\\Gamma(3) &= 2! &= 2 \\\Gamma(7/2) &= \frac {15\sqrt{\pi}} {8} &\approx 3,323 \\\Gamma(4) &= 3! &= 6 \\\end{array}
- w:es:Separador decimal 204 \pi = 3,1416...
- w:es:Wikipedia discusión:Manual de estilo/Números 190 123456,9432452
- w:es:Glotocronología 35 \alpha = - \ln\left(1-\frac{14}{100}\right) \approx 0,1508 \cdot \mbox{milenio}^{-1}
- w:es:Prefijo binario 109 {{500*10^9} \over 2^{30}} = R = 465,661287 \approx 465
- w:es:Anexo:Constantes matemáticas 462 \scriptstyle \gamma \, \text{= Constante de Euler–Mascheroni = 0,5772156649...}
- w:es:Anexo:Constantes matemáticas 2023 \scriptstyle \gamma \, \text{= Constante de Euler–Mascheroni = 0,5772156649...}
- w:es:Anexo:Constantes matemáticas 2024 \scriptstyle \zeta '(2) \,\text{= Derivada de }\zeta(2) \,= \, - \!\!\sum \limits_{n = 2}^{\infty} \frac{\ln n}{n^2} \,\text{= −0,9375482543...}
- w:es:Anexo:Constantes matemáticas 2770 \arctan \left(\sqrt{2}\right) = \arccos \left(\sqrt{\tfrac13}\right) \approx \textstyle {54,7356} ^{ \circ }
- w:es:Anexo:Constantes matemáticas 2862 \scriptstyle \gamma \, \text{= Constante de Euler–Mascheroni = 0,5772156649...}
- w:es:Anexo:Constantes matemáticas 3468 \lim_{n \to \infty}\frac {x_{n+1}-x_n}{x_{n+2}-x_{n+1}} \qquad \scriptstyle x \in (3,8284;\, 3,8495)
- w:es:Puntos de Lagrange 154 r_2 = \frac{d}{1+\gamma} = 3,7972 \cdot 10^8 m
- w:es:Puntos de Lagrange 155 r_1 = d-r_2 = 4,6719 \cdot 10^6 m
- w:es:Puntos de Lagrange 158 r = \sqrt{r_1^2 + r_1r_2 + r_2^2} = 3,8208 \cdot 10^8 m
- w:es:Diámetro 54 \scriptstyle \sqrt{3}/2\approx\ 1,1577\dots
- w:es:Decibelio 97 \log_{10} 2 = 0,301 B= 3,01\; \mathrm{dB}
- w:es:Límite de Roche 43 d = R\left( 2\;\frac {\rho_M} {\rho_m} \right)^{\frac{1}{3}} \approx 1,260R\left( \frac {\rho_M} {\rho_m} \right)^{\frac{1}{3}}
- w:es:Límite de Roche 55 d \approx 2,423R\left( \frac {\rho_M} {\rho_m} \right)^{\frac{1}{3}}
- w:es:Límite de Roche 105 d \approx 2,423 R\left( \frac {\rho_M} {\rho_m}\right)^{\frac{1}{3}} \left(\frac{(1+\frac{m}{3M})+\frac{c}{3R}(1+\frac{m}{M})}{1-\frac{c}{R}}\right)^{\frac{1}{3}}
- w:es:Biodisponibilidad 47 Da_e = \frac{0,25 . 0,7}{0,77} = 0,2272
- w:es:Yottabyte 44 {1\;YB \over 91,000\;TB} = 10\;989\;010,98
- w:es:Usuario:MRS~eswiki/parte entera 49 = \frac {[ \frac {47604,67} {1000}] } {\frac 1 {1000}} = [47,60467] \times 1000 = 47 \times 1000 = 47000
- w:es:Momento magnético 41 2,792 847 356(23) \mu_N
- w:es:Momento magnético 41 1,410 606 743(33) \times 10^{-26}
- w:es:Momento magnético 43 -1,913 042 72(45) \mu_N
- w:es:Momento magnético 43 -0,966 236 47(23) \times 10^{-26}
- w:es:Momento magnético 45 -1,001 159 652 180 76(27) \mu_B
- w:es:Momento magnético 45 -928,476 430(21) \times 10^{-26}
- w:es:Momento magnético 47 -8,890 596 97(22) \mu_N
- w:es:Momento magnético 47 -4,490 448 07(15) \times 10^{-26}
- w:es:Magnetón de Bohr 67 \mu_\mathrm{B} = 9,274\,009\,15(23)\times 10^{-24}
- w:es:Magnetón de Bohr 72 \mu_\mathrm{B}\, = 9,274\,009\,15(23)\times 10^{-21}
- w:es:Magnetón de Bohr 78 \mu_\mathrm{B}\, = 5,788\,381\,755\,5(79)\times 10^{-5}
- w:es:Distribución normal 675 P(Z_{(0,1)} \le 0,37)= 0,644 308 699 \,\!
- w:es:Distribución normal 679 P(X_{(2,3)} \le 2,6) = P(Z_{(0,1)} \le 0,2) = 0,579 259 687 \,\!
- w:es:Enana blanca 94 \hbar\ \stackrel{\mathrm{def}}{=}\ \frac{h}{2\pi} = \,\,\, 1,054\ 571\ 68(18)\times10^{-34}\ \mbox{J}\cdot\mbox{s} \,\,\, = \,\,\, 6,582\ 119\ 15(56) \times10^{-16}\ \mbox{eV}\cdot\mbox{s}
- w:es:Algoritmo de Euclides 56 \mathrm{mcd}(2366,273)=\mathrm{mcd}(273,182)
- w:es:Algoritmo de Euclides 58 \mathrm{mcd}(273,182)=\mathrm{mcd}(182,91)
- w:es:Algoritmo de Euclides 62 \mathrm{mcd}(2366,273)=91
- w:es:Algoritmo de Euclides 62 \mathrm{mcd}(2366,273)=\mathrm{mcd}(273,182)=\mathrm{mcd}(182,91)=\mathrm{mcd}(91,0)
- w:es:Algoritmo de Euclides 62 \mathrm{mcd}(2366,273)=\mathrm{mcd}(91,0)
- w:es:Algoritmo de Euclides 165 \mathrm{mcd}(166,249)=83
- w:es:Riesgo atribuible 54 \Rightarrow {I_e}=\frac{27}{482}=0,056
- w:es:Riesgo atribuible 56 \mathbf{RA}=0,056-0,04=0,016
- w:es:Riesgo atribuible 111 \mathbf{RA}=0,016
- w:es:Riesgo atribuible 111 \mathbf{I_e}=0,056
- w:es:Riesgo atribuible 112 \mathbf{RA%}=\left(\frac{0,016}{0,056}\right)x100=28,57%
- w:es:Riesgo atribuible 152 \mathbf{RA}=0,016
- w:es:Riesgo atribuible 153 \mathbf{II}=\frac{1}{0,016}=62,5
- w:es:Tetraedro 125 R= \frac{ \sqrt{6} }{4} \cdot a \approx 0,6124 \cdot a
- w:es:Tetraedro 127 r=\frac{ \sqrt{6} }{12} \cdot a \approx 0,2041 \cdot a
- w:es:Tetraedro 129 \rho = \frac{ \sqrt{2} }{4} \cdot a \approx 0,3536 \cdot a
- w:es:Tetraedro 134 H = \frac{\sqrt{6} }{3} \cdot a \approx 0,8165 \cdot a
- w:es:Tetraedro 140 V=\frac{\sqrt{2}}{12} \cdot a^3 \approx 0,1179 \cdot a^3
- w:es:Tetraedro 145 A=4 \cdot A_c=4 \cdot \frac{\sqrt{3}}{4} \cdot a^2 =\sqrt{3} \cdot a^2 \approx 1,732 \cdot a^2
- w:es:Tetraedro 156 \omega = \frac {A_c} {H^2} = \frac {\frac{\sqrt{3}}{4} \cdot a^2}{\left( \frac{\sqrt{6}}{3} \cdot a \right)^2} = \frac{3\sqrt{3}}{8}sr \approx 0,650\ \text{sr}
- w:es:Índice de desarrollo humano 95 \mathrm{II} = \frac{\ln(\textrm{GNIpc}) - \ln(100)}{\ln(40,000) - \ln(100)}
- w:es:Índice de desarrollo humano 105 \mathrm{IEV}={\dfrac{80,5 - 20}{85 - 20}} = 0,931
- w:es:Índice de desarrollo humano 108 \mathrm{IE} = \frac{\sqrt{\textrm{98} \cdot \textrm{99}}} {\max\sqrt{\textrm{100} \cdot \textrm{100}}} = \textrm{0,985}
- w:es:Índice de desarrollo humano 112 \mathrm{IPIB}={\dfrac{\log (27.169) - \log (100)}{\log (40.000) - \log (100)}} = 0,935
- w:es:Índice de desarrollo humano 118 \mathrm{IDH}={\dfrac{1}{3} (0,931) + \dfrac{1}{3} (0,985) + \dfrac{1}{3} (0,935)} = 0,950
- w:es:Crecimiento económico 56 t = \frac{1}{\log_2(1+X/100)} \approx\frac{69,31}{X} + 0,3465 - 5,776\cdot 10^{-4}X + \dots
- w:es:Constante de Euler-Mascheroni 23 \gamma \approx 0,577\;215\;664\;901\;532\;860\;606\;\ldots
- w:es:Sistema de numeración decimal 48 \begin{array}{rllllllllll} 1,0243 & = & 1 \cdot 1 & + & 0 \cdot 0,1 & + & 2 \cdot 0,01 & + & 4 \cdot 0,001 & + & 3 \cdot 0,0001\\ {} & = & 1 \cdot 10^0 & + & 0 \cdot 10^{-1} & + & 2 \cdot 10^{-2} & + & 4 \cdot 10^{-3} & + & 3 \cdot 10^{-4} \end{array}
- w:es:Anexo:Símbolos matemáticos 59 \begin{pmatrix}a_{1,1} & a_{1,2} & \cdots & a_{1,127} \\a_{2,1} & a_{2,2} & \cdots & a_{2,127} \\\vdots & \vdots & \ddots & \vdots \\a_{2324,1} & a_{2324,2} & \cdots & a_{2324,127} \\\end{pmatrix}
- w:es:Error de división del Intel Pentium 76 \textstyle \frac{4.195.835}{3.145.727} = 1,333820449136241002
- w:es:Error de división del Intel Pentium 80 \textstyle \frac{4.195.835}{3.145.727} = 1,333{\color{Red}{739068902037589}}
- w:es:Mediodía 30 =~ 2451545 + 0,0009 + \dfrac{l_o}{360} + redondeo(J_{fecha} - 2451545 - 0.0009 - \dfrac{l_o}{360})\dfrac{}{}
- w:es:Interés 57 \left( 1+ \frac{6/100}{12} \right)^{12} \approx 1,0617 = 1 + 6,17%
- w:es:Interés 74 \left ( 1 + \frac {0,06}{12} \right )^{12} - 1 = 0,0617
- w:es:Interés 78 600 \cdot 0,0617 = 37
- w:es:Tasa anual equivalente 41 r = f ((TAE+1)^{1/f}-1) = 12((0,07+1)^{1/12}-1) = 0,06785 \,\!
- w:es:Tasa anual equivalente 46 100(r/12) = 100(0,06785/12) = 0,5654 % \,\!
- w:es:Tasa anual equivalente 58 \left ( 1 + \frac {0,06}{12} \right )^{12} - 1 = 0,0617 \,\!
- w:es:Tasa anual equivalente 62 600 \cdot 1,0617 = 637 \,\!
- w:es:La biblioteca de Babel 62 25^{1312000} = 1,956\times 10^{1834097}
- w:es:La biblioteca de Babel 66 {\color{OliveGreen} ({\color{BrickRed} (6,8423\times{\color{Magenta}10^{111}})}^{40})}^{410}=
- w:es:La biblioteca de Babel 67 {\color{OliveGreen} ({\color{BrickRed} (6,8423)}^{40}\times{\color{Magenta}(10^{111})}^{40})}^{410}\approx
- w:es:La biblioteca de Babel 68 {\color{OliveGreen} ({\color{BrickRed} (2,5587\times {\color{YellowOrange}10^{33}})}\times{\color{Magenta}(10^{(111\times{\color{OliveGreen}40})})})}^{410}=
- w:es:La biblioteca de Babel 69 {\color{BrickRed} (2,5587\times{\color{YellowOrange}10^{33}})}^{410}\times{\color{Magenta}(10^{4440})}^{410}=
- w:es:La biblioteca de Babel 70 {\color{BrickRed} (2,5587)}^{410}\times {\color{YellowOrange}(10^{33})}^{410}\times{\color{Magenta}(10^{(4440\times{\color{Black}410})})}\approx
- w:es:La biblioteca de Babel 71 ({\color{BrickRed}1,9560}\times{10^{\color{OliveGreen}167}})\times {\color{YellowOrange}(10^{(33\times{\color{Black}410})})}\times{\color{Magenta}(10^{1820400})}=
- w:es:La biblioteca de Babel 72 {\color{BrickRed}1,9560}\times({10^{\color{OliveGreen}167}})\times {(10^{\color{YellowOrange}13530})}\times(10^{\color{Magenta}1820400})=
- w:es:La biblioteca de Babel 73 {\color{BrickRed}1,9560}\times 10^{({\color{OliveGreen}167}+{\color{YellowOrange}13530}+{\color{Magenta}1820400})} = \mathbf{1,956 \times 10^{1834097}}
- w:es:Métodos de integración 55 \int^3_{-2} x \cos (2x^2+3) dx \approx 0,4591614613\dots
- w:es:Octava 42 \log_2\left(\frac{20.000}{20}\right)=9,965\text{ octavas}
- w:es:Tabla de contingencia 45 \pi_1 = 0,010,\ \pi_2 = 0,001
- w:es:Tabla de contingencia 46 d= \pi_1 - \pi_2 = 0,009
- w:es:Tabla de contingencia 47 \pi_1 = 0,41,\ \pi_2 = 0,401
- w:es:Tabla de contingencia 48 d= \pi_1 - \pi_2 = 0,009
- w:es:Tabla de contingencia 51 r=0,01/0,001 = 10
- w:es:Tabla de contingencia 52 r=0,41/0,401 = 1,02
- w:es:Revolución por minuto 46 \rm 1\ rpm=1 \frac{r}{min} = \frac{2\pi\ rad}{60\ s} = \frac{\pi}{30} \cdot \frac{rad}{s} \approx 0,10471976\ \frac{rad}{s}
- w:es:Ley de Planck 93 C_2={h c \over k}=1,4385 \cdot 10^{-2}\; {\rm m \cdot K}
- w:es:Ley de Planck 103 \frac {C_1 \cdot d\lambda }{\lambda ^5}=3,742 \cdot 10^{20} {W \cdot m^2} \cdot \frac {d\lambda (nm)}{\lambda ^5 (nm)}\,
- w:es:Ley de Planck 105 \frac {C_2}{\lambda }=1,439 \cdot 10^7 \frac {m \cdot K}{\lambda (nm)}
- w:es:Ley de Planck 109 1 \frac{W}{m^3}=1,434 \cdot 10^{-9}\frac{cal}{cm^2 \cdot mto \cdot \mu m}
- w:es:Paradojas de Zenón 51 10 + 1 + {1 \over 10} + {1 \over 100} + {1 \over 1000} + \cdots = \sum_{n=0}^\infty 10 \left ( {1 \over 10^{n}} \right ) = {10 \over {1-1/10}} = 11,11111... = 11,\overline{1}
- w:es:Resistencia aerodinámica 160 \rho=1,225 \ \text{kg}/\text{m}^3
- w:es:Resistencia aerodinámica 164 P =F_x \cdot V = \frac {1} {2} \rho S C_x V^3=\frac {1} {2} \cdot 1,225 \cdot 2,13 \cdot 0,32 \cdot {33,33}^3=15457,58 \ \text{W} = 21,03 \ \text{C.V.}
- w:es:Vatio-hora 45 \mbox {1 kWh}= {\frac {\mbox {238,8459 cal}} {\mbox{1 s }}}\times {\mbox {3600 s }} = \mbox{859 845,2 cal} = \mbox{859,8452 Kcal}
- w:es:Fórmula de Bailey-Borwein-Plouffe 58 +\ 0,000********.\ .\ .\
- w:es:DIN 476 94 a^2 = \cfrac{1m^2}{\sqrt{2}} \rightarrow \quad a = \sqrt{\cfrac{1m^2}{\sqrt{2}}} = \cfrac{1m}{\sqrt[4]{2}} = \cfrac{1}{1,189} \; m = 0,841 \; m
- w:es:DIN 476 110 \left . \begin{array}{l} a \cdot b = 1 m^2 \\ \\ a = 0,841 m \end{array} \right \} \rightarrow \quad (0,841 m) \cdot b = 1 m^2 \rightarrow \quad b = \cfrac{1 m^2}{0,841 m} = 1,189 m
- w:es:Formato de papel 32 \frac{x}{y}=\frac{y}{\frac{x}{2}}=\frac{2}{\frac{x}{y}}\Rightarrow \left ( \frac{x}{y} \right )^2=2\Rightarrow \left ( \frac{x}{y} \right )=\sqrt{2}\simeq 1,4142
- w:es:Altímetro 31 h = \frac{(1-(P_0/P_{ref})^{0,19026}) \cdot 288.15}{0,00198122}
- w:es:Flujo en tubería 121 V=100\ \left(\frac{0,3}{4}\right)^{2/3}\ 0,025^{0,5} = 2,812
- w:es:Flujo en tubería 125 Q = V A = 2,812\ \frac {(0,3)^2 3,14}{4} = 0,199\ m^3/s = 199\ l/s
- w:es:Flujo en tubería 155 J=\frac{50}{1500} = 0,03333
- w:es:Flujo en tubería 159 V=\frac{1}{n}\cdot R_h^{0,66} \cdot J^{0,5} =100 \cdot 0,075^{0,666} \cdot 0,11547 = 2,053 \ \text{m/s}
- w:es:Flujo en tubería 164 Q=U * A = 2,053 * 0,3^2 * \frac{3,14}{4} = 0,145 \ \text{m}^3\text{/s} = 145 \ \text{l/s}
- w:es:Flujo en tubería 169 P = 20 - \frac{2,053^2}{2 \cdot 9,8} \approx 1,97 \ \text{atm}
- w:es:Concreto armado 76 \frac{\sigma_{s1}(X)}{f_{yd}} = \begin{cases} -1 & -\infty<X<0,625d\\\cfrac{5}{3}\cfrac{X-d}{X} & 0,625d<X<h\\ \cfrac{X-d}{X-0,4h} & h<X \end{cases}, \quad \frac{\sigma_{s2}(X)}{f_{yd}} = \begin{cases} -1 & -\infty<X<-0,5d'\\\cfrac{2}{3}\cfrac{X-d'}{d'} & -0,5d'<X<2,5d'\\ 1 & 2,5d'<X \end{cases}
- w:es:Concreto armado 94 U_{s2} = \begin{cases}0 & M_d < 0,375 U_0 d_1 \\\frac{M_d -0,375 U_0 d_1}{d_1 - d_2} & M_d \ge 0,375U_0 d_1 \end{cases},\qquad A_{s2} = \frac{U_{s2}}{f_{yd}}
- w:es:Concreto armado 107 U_{s1} = \begin{cases}U_0 \left(1- \sqrt{1-\frac{2M_d}{U_0 d_1}} \right) & M_d < 0,375 U_0 d_1 \\0,5U_0 + U_{s2} & M_d \ge 0,375U_0d \end{cases},\qquad A_{s1} = \frac{U_{s1}}{f_{yd}}
- w:es:Probabilidad condicionada 134 P(enfermo) = 0,001
- w:es:Probabilidad condicionada 142 P(enfermo|positivo)=\frac{ 0,001 \times 0,99 }{0,001 \times 0,99+0,999 \times 0,05}= 0,019= 1,9%
- w:es:Hipoteca 145 1+0,01605 = (1+i_{12})^{12};
- w:es:Hipoteca 146 i_{12}=0,0013277607 = 0,13277607% (aproximadamente)
- w:es:Hipoteca 149 Cuota = \frac{100000 \cdot 0,13277607}{100 \cdot (1-(1+\frac{0,13277607}{100})^{-180})}=624,95249\
- w:es:Hipoteca 152 Cuota\ intereses=100000 \cdot{0,0013277607}=132,77607\
- w:es:Hipoteca 154 Cuota\ amortizaci\acute{o}n=624,95249-132,77607=492,17642\
- w:es:Hipoteca 156 {Capital\ pendiente} = 100000 - 492,17642=99507,82358\
- w:es:Hipoteca 162 {Total\ pagado\ en\ concepto\ de\ intereses}=180 \cdot 624,95249-100000 = 12491,44878\
- w:es:Hipoteca 180 1+0,01605 = (1+i_{12})^{12};
- w:es:Hipoteca 182 i_{12}=0,001327761
- w:es:Hipoteca 190 i_{12}=\frac{0,01605}{12} \
- w:es:Hipoteca 192 i_{12}=0,0013375
- w:es:Día marciano 18 24h\ 37m\ 22,663s+2m\ 12,58s=24h\ 39m\ 35,24s
- w:es:Día marciano 22 Ts\cdot 365,2422=24h\cdot 365,2422
- w:es:Electroforesis 63 e=1,602\times 10^{-19} C
- w:es:Coeficiente de dilatación 47 \Delta L = L \ \Delta T \ \alpha = 288 m \ {10}^oC \ 1,2 \ 10^{-5} = 0,0345 m = 3,45 cm
- w:es:Coeficiente de dilatación 50 \Delta L = L \ \Delta T \ \alpha = 1000 m \ {50}^oC \ 1,2 \ 10^{-5} = 0,600 m = 60 cm
- w:es:Caballo fiscal 19 P_f = T \left({0,785 \cdot D^{2} \cdot R}\right)^{0,6} \cdot N
- w:es:Caballo fiscal 30 V_c\left({cm}^3\right) = \pi \cdot \left(\frac{D}{2}\right)^{2}\cdot R = 0,785 \cdot D^{2} \cdot R
- w:es:Nonio 659 A = \frac{u}{n} = \frac{1 mm}{40} = 0,025 mm
- w:es:Nonio 679 S = \left ( k - \cfrac{1}{n} \right ) u = \left ( 1 - \cfrac{1}{40} \right ) 1 mm = 0,975mm
- w:es:Nonio 804 \left \{ \begin{array}{l} u = 1 mm \\ n = 40 \\ k = 1 \end{array} \right . \quad \longrightarrow \quad \left \{ \begin{array}{l} A = 0,025 mm \\ L = 39 mm \\ S = 0,975 mm \end{array} \right .
- w:es:Nonio 1363 A = \frac{u}{n} = \frac{1 mm}{40} = 0,025 mm
- w:es:Nonio 1383 S = \left ( k + \cfrac{1}{n} \right ) u = \left ( 1 + \cfrac{1}{40} \right ) 1 mm = 1,025 mm
- w:es:Teorema de Norton 46 I_\mathrm{total} = {15 \mathrm{V} \over 2\,\mathrm{k}\Omega + (1\,\mathrm{k}\Omega \| (1\,\mathrm{k}\Omega + 1\,\mathrm{k}\Omega))} = 5,625 \mathrm{mA}
- w:es:Diagrama de Moody 42 \frac{1}{\sqrt{\lambda}} = -2 \log_{10} {\left ( \frac{k/D}{3,7} + \frac{5,1286}{Re^{0,89}} \right )}
- w:es:Batería eléctrica 121 1 \ \mathrm{Ah}=3600 \ \mathrm{C} \qquad \mathrm{y} \qquad1 \ \mathrm{C} = 0,278 \ \mathrm{mAh}
- w:es:Batería eléctrica 138 1 \ \mathrm {Wh} = 3600 \ \mathrm{J} \qquad \mathrm{y} \qquad1 \ \mathrm{J} = 0,278 \ \mathrm{mWh}
- w:es:Ley de los gases ideales 117 \rm 8,314472 \quad \frac{J}{K \cdot mol}
- w:es:Ley de los gases ideales 119 \rm 0,08205746 \quad \frac{L \cdot atm}{K \cdot mol}
- w:es:Ley de los gases ideales 121 \rm 8,205746 \cdot 10^{-5} \quad \frac{m^3 \cdot atm}{K \cdot mol}
- w:es:Ley de los gases ideales 123 \rm 8,314472 \quad \frac{L \cdot kPa}{K \cdot mol}
- w:es:Ley de los gases ideales 125 \rm 62,36367 \quad \frac{L \cdot mmHg}{K \cdot mol}
- w:es:Ley de los gases ideales 127 \rm 62,36367 \quad \frac{L \cdot Torr}{K \cdot mol}
- w:es:Ley de los gases ideales 129 \rm 83,14472 \quad \frac{L \cdot mbar}{K \cdot mol}
- w:es:Ley de los gases ideales 131 \rm 1,98721 \quad \frac{cal}{K \cdot mol}
- w:es:Ley de los gases ideales 133 \rm 10,7316 \quad \frac{ft^3 \cdot psi}{^\circ R \cdot lbmol}
- w:es:Ley de los gases ideales 135 \rm 0,08205746 \quad \frac{dm^3 \cdot atm}{K \cdot mol}
- w:es:Partícula en una caja 141 R_{n,1}(r) = \frac{\bar{N}_{n,1}}{r^2}\left( \epsilon_{n,1}r\cos(\epsilon_{n,1}r) - \sin(\epsilon_{n,1}r) \right)\qquad \epsilon_{n,1} \approx \frac{4,4934}{R}
- w:es:Usuario:MRS~eswiki/taller 74 12 + {24 \over \pi} \mbox{arcsen} \left [ \tan 43^\circ 25' 42″ \tan 23^\circ 27' \right ] = 15,2324 \mbox{h} \approx \mbox{15h 14m}
- w:es:Usuario:MRS~eswiki/taller 84 10^{-n} \ = \ \begin{matrix} \\ \underbrace{ 0,000...000 } \\ {n \mbox{ ceros } } \end{matrix} \ 1
- w:es:Deuda pública 262 d=\dfrac{b_{0}(n-i)}{1+n}=\dfrac{1,20(0,01-0,07)}{1+0,01}=-0,071 =-7,1\%
- w:es:Deuda pública 266 D=d*Y=-1.666*7,1\%=-118,286
- w:es:Curva de Lorenz 70 \scriptstyle IG\ \approx 0,4911
- w:es:Arma nuclear 58 {}^2\mathrm{H (D)} + {}^3\mathrm{H (T)} \rightarrow {}^4\mathrm{He} + \mathrm{n} + 17,588\ \mathrm{MeV}
- w:es:Arma nuclear 59 \mathrm{D + D \rightarrow {}^3He + n + 3,268\ MeV}
- w:es:Agujero negro de Kerr 67 {{\text{4GM}\,\over\text{c}^2}}= {{4(6,673)(10}^{-8})(5,97)(10^{33})\over\text{9(10}^{20})} = 17,7\cdot 10^5\ \text{cm} =\text{17,7}\ \text{km}\!
- w:es:Radio solar 39 r_\bigodot = 6, 96\times 10^8\hbox{ m} = 0,00465247
- w:es:Temperatura de sensación 31 T_{s}=13,12+0,6215\cdot T-11,37\cdot V^{0,16}+0,3965\cdot T\cdot V^{0,16}
- w:es:Temperatura de sensación 337 T_{s}=13,12+0,6215\cdot T-11,37\cdot V^{0,16}+0,3965\cdot T\cdot V^{0,16}
- w:es:Temperatura de sensación 345 T_{sentida} = 35,74 + 0,6215\ T - 35,75\ v^{0,16} + 0,4275\ T\ v^{0,16}
- w:es:Agujero negro supermasivo 22 \rho \propto \frac{M}{R_S^3} \propto \frac{c^6}{G^3 M^2} \approx6,177\cdot 10^{17}\left(\frac{M_\odot}{M}\right)^2\ \frac{\mbox{g}}{\mbox{cm}^3}
- w:es:Zona de Fresnel 34 r_1 = 8,657 \sqrt{{D} \over f}
- w:es:Estructura estelar 98 a=\frac{4 \sigma}{c}=7,5658 \cdot 10^{-15} \frac{erg}{K^4cm^3}
- w:es:Ecuación de estado 137 \alpha = \left(1 + \left(0,48508 + 1,55171\omega - 0,15613\omega^2\right) \left(1-T_r^{0,5}\right)\right)^2
- w:es:Ecuación de estado 143 \alpha = 1,202 \exp\left(-0,30288T_r\right)
- w:es:Ecuación de estado 150 a = \frac{0,45723553R^2T_c^2}{P_c}
- w:es:Ecuación de estado 151 b = \frac{0,07779607RT_c}{P_c}
- w:es:Ecuación de estado 152 \alpha = \left(1 + \left(0,37464 + 1,54226\omega - 0,26992\omega^2\right) \left(1-T_r^{0,5}\right)\right)^2
- w:es:Ecuación de estado 198 \frac{P\upsilon}{RT}=Z=1+\frac{4\left\langle c\eta\right\rangle}{1-1,9\eta}-\frac{9,5\left\langle qY\eta\right\rangle}{1+1,7745\left\langle Y\eta\right\rangle}
- w:es:Ecuación de estado 203 q = 1 + 1,90476(c-1) \,
- w:es:Ecuación de estado 204 Y = \exp \left( \frac{\epsilon}{kT} \right)-1,0617
- w:es:Tobera 77 p_{c}=0,5282 \cdot p_{0}
- w:es:Sección eficaz 35 \lambda=\frac{\hbar}{p}=\frac{\hbar}{(2mE)^{1/2}} \rightarrow \pi\lambda^2=\frac{0,657}{A\cdot E(MeV)} barn
- w:es:Apantallamiento eléctrico 26 E_{ap} \simeq 0,0205[(Z_a+Z_x)^{5/3}-Z_a^{5/3}-Z_x^{5/3}]\frac{(\rho/\mu_e)^{1/3}}{T_f}
- w:es:Relación empuje a peso 21 \frac{E}{P}=\frac{3.820\ \mathrm{kN}}{(5.307\ \mathrm{kg})(9,807\ \mathrm{m/s^2})}=0,0734\ \frac{\mathrm{kN}}{\mathrm{N}}=73,4\ \frac{\mathrm{N}}{\mathrm{N}}=73,4
- w:es:Relación empuje a peso 29 \frac{E}{P}=\frac{empuje \ maximo \ (N)}{masa \ cargada \ (kg) * 9,807 \ (m/s^2) }=\frac{empuje \ maximo}{masa \ cargada * 9,807}
- w:es:Ventana (función) 47 a_0=0,53836;\quad a_1=0,46164\quad\,
- w:es:Ventana (función) 62 a_0=0,35875;\quad a_1=0,48829;\quad a_2=0,14128;\quad a_3=0,01168\,
- w:es:Ventana (función) 70 a_0=0,3635819; \quad a_1=0,4891775; \quad a_2=0,1365995; \quad a_3=0,0106411\,
- w:es:Ventana (función) 77 a_0=1;\quad a_1=1,93;\quad a_2=1,29;\quad a_3=0,388;\quad a_4=0,032\,
- w:es:Heptágono 34 A = \frac{7(t^2)}{4 \tan(\frac{\pi}{7})}\simeq 3,6339\ t^2
- w:es:Constante de Faraday 19 F = N_A \cdot e = 96 485,3365 \, \mbox{C mol}^{-1}
- w:es:Tiempo solar medio 24 \Delta\alpha_m = \frac{24^{h}}{365,2422} = 3^{m} 56^{s}, 55
- w:es:Discusión:Arquímedes 41 \pi = \frac{22}{7476476466} = 3,141678092778351442651
- w:es:Discusión:Arquímedes 49 3,1408 \approx \frac{223}{71} \leq \pi \leq \frac{22}{7} \approx 3,1428
- w:es:Atmósfera 224 \rho_0 = \frac {28,96}{22,4} \cdot \frac {g}{litro}= 1,293 \frac {g}{litro}=1,293 \cdot \frac {kg}{m^3}
- w:es:Atmósfera 228 \rho=1,293 \cdot P \frac {g}{litro}
- w:es:Atmósfera 248 R=8,313 \cdot \frac {\text {J}}{\text {K} \cdot \text{mol}}
- w:es:Atmósfera 250 1\ \text{atm}=1,013 \cdot 10^5 \cdot \frac {\text {N}}{\text{m}^2}
- w:es:Atmósfera 322 1-\frac {1}{e}=0,632= 63,2%
- w:es:Ganancia (electrónica) 45 \sqrt {\frac {600}{1000}} = \sqrt {\frac {3}{5}} = 0,774596669... V\,\!
- w:es:Tiempo de Planck 21 t_P = \sqrt{\frac{\hbar G}{c^5}} \; \approx \quad 5,39106(32) \cdot 10^{-44}
- w:es:Mantisa 36 \scriptstyle \log_{10} (0,008)
- w:es:Mantisa 37 \scriptstyle \log_{10} (0,008)
- w:es:Tiempo de reverberación 31 TR = \frac{0,161 V}{Aa}
- w:es:Tiempo de reverberación 37 TR = \frac{0,161 V}{Aa + Vx}
- w:es:Mecánica cuántica 48 \mu \, = \, \frac{m_e m_p}{m_e+m_p} \approx 0,999 m_e
- w:es:Constante de estructura fina 19 \alpha = \frac{e^2}{\hbar c \ 4 \pi \epsilon_0} = 7,297 352 568 \times 10^{-3} = \frac{1}{137,035 999 11}
- w:es:Constante de estructura fina 51 \alpha^{-1} = 137,035 999 710 (96)
- w:es:Longitud de Planck 42 R = \sum_{\alpha,\beta = 0}^{3} g^{\alpha \beta}R_{\alpha \beta} \; \approx \quad o(L_p^{-2}) \; \approx \quad 3,828 \cdot 10^{+69} \; \mbox{m}^{-2}
- w:es:Ruido de cuantificación 91 10 \left [ \log (4^b) + \log \left ( \frac {3}{2} \right ) \right ] = 10b \log (4) + 10 \log \left ( \frac {3}{2} \right ) \approx 6,0206b + 1,7609 \,\!
- w:es:Ruido de cuantificación 115 20 \log (2^b) + 20 \log \left (\frac {\sqrt {6}}{2} \right ) = 20b \log (2) + 20 \log \left (\frac {\sqrt {6}}{2} \right ) \approx 6,0206b + 1,7609 \,\!
- w:es:Ruido de cuantificación 183 SQNR \approx 6,0206b + 1,7609 + g \,\!
- w:es:Ruido de cuantificación 189 b_g = \log_4 k = \frac {\log k}{\log 4} \approx 1,661 \log k \,\!
- w:es:Ruido de cuantificación 195 SQNR \approx 6,0206 \left ( b + b_g \right ) + 1,7609\,\!
- w:es:Electroquímica 114 E^\circ = 0,0000 \text{ V}\,
- w:es:Electroquímica 149 E_{\rm celda} = \frac{0,0592 \ \mathrm{V}}{n} \log K\,
- w:es:Cuboctaedro 39 A = (6+2\sqrt{3})a^2 \approx 9,4641016a^2
- w:es:Cuboctaedro 41 V = \frac{5}{3} \sqrt{2}a^3 \approx 2,3570226a^3.
- w:es:Hexaquisicosaedro 31 Lado1= 0,36284333*R;
- w:es:Hexaquisicosaedro 32 Lado2= 0,54653305833*R
- w:es:Hexaquisicosaedro 33 Lado3= 0,64085182*R
- w:es:Constante de los gases ideales 29 R = \begin{cases} = 0,08205746 \mathrm{ \left[ \frac{atm \cdot L}{mol \cdot K} \right ]}\\ = 62,36367 \mathrm{ \left[ \frac{mmHg \cdot L}{mol \cdot K}\right ]}\\ = 1,987207 \mathrm{ \left[ \frac{cal}{mol \cdot K}\right ]}\\ = 8,314472 \mathrm{ \left[ \frac{J}{mol \cdot K} \right ]}\\ \end{cases}
- w:es:Constante de los gases ideales 31 R = 8,314472 \quad \mathrm{J / \left( K \cdot mol \right)}\,
- w:es:Constante de los gases ideales 32 R = 8,314472 \cdot 10^{-3} \ \quad \mathrm{kJ / \left( K \cdot mol \right)}
- w:es:Constante de los gases ideales 33 R = 0,08205746 \quad \mathrm{L \cdot atm / \left( K \cdot mol \right)}
- w:es:Constante de los gases ideales 34 R = 8,205746 \cdot 10^{-5} \quad \mathrm{m^3 \cdot atm / \left(K \cdot mol \right)}
- w:es:Constante de los gases ideales 35 R = 8,314472 \quad \mathrm{cm^3 \cdot MPa / \left( K \cdot mol \right)}
- w:es:Constante de los gases ideales 36 R = 8,314472 \quad \mathrm{L \cdot kPa / \left( K \cdot mol \right)}
- w:es:Constante de los gases ideales 37 R = 8,314472 \quad \mathrm{m^3 \cdot Pa / \left( K \cdot mol \right)}
- w:es:Constante de los gases ideales 38 R = 62,36367 \quad \mathrm{L \cdot mmHg / \left( K \cdot mol \right)}
- w:es:Constante de los gases ideales 39 R = 62,36365 \quad \mathrm{L \cdot Torr / \left( K \cdot mol \right)}
- w:es:Constante de los gases ideales 40 R = 83,14472 \quad \mathrm{L \cdot mbar / \left( K \cdot mol,\right)}
- w:es:Constante de los gases ideales 41 R = 1,987 \quad \mathrm{cal / \left( K \cdot mol \right)}
- w:es:Constante de los gases ideales 42 R = 6,132440 \quad \mathrm{lbf \cdot ft \cdot K^{-1} \cdot g-mol^{-1}}
- w:es:Constante de los gases ideales 43 R = 10,73159 \quad \mathrm{ft^3 \cdot {psi} \cdot {}^ \circ R^{-1} \cdot lb-mol^{-1}}
- w:es:Constante de los gases ideales 44 R = 0,7302413 \quad ft^3 \cdot atm \cdot {}^ \circ R^{-1} \cdot lb-mol^{-1} \,
- w:es:Constante de los gases ideales 45 R = 2,2024\quad ft^3 \cdot mmHg \cdot K^{-1} \cdot mol^{-1} \,
- w:es:Constante de los gases ideales 46 R = 8,314472 \cdot 10^7 \quad erg \cdot K^{-1} \cdot mol^{-1} \,
- w:es:Constante de los gases ideales 50 R = 0,08205746 \quad dm^3 \cdot atm / \left( K \cdot mol\right) \,
- w:es:Constante de los gases ideales 51 R = 8,314472 \cdot 10^{-5} \quad m^3 \cdot bar / \left( K \cdot mol\right) \,
- w:es:Eneadecágono 33 A = \frac{19(t^2)}{4 \tan(\frac{\pi}{19})}\simeq 28,4652\ t^2
- w:es:Ángulo Goodwin 23 \frac{360}{222,492371} \approx 1,618 033 \dots
- w:es:Fórmula de Hazen-Williams 19 Q = 0,2787 * C * ({Di})^{(4,87/1,85)} * S ^ {(1/1.85)}
- w:es:Radiación solar 25 T = \frac{2897,6\ \mathrm{\mu m\cdot{}^\ K}}{0,475\ \mu\mathrm{m}}=6099\ \mathrm{ {}^\ K}
- w:es:Octógono 39 A = \frac{8t^2}{4\ \tan(\frac{\pi}{8})}\simeq 4,8284\ t^2
- w:es:Constante solar 25 K=1366 \frac{julios}{s \cdot m^2}= \frac {1366 \cdot 0,24 \cdot 60}{10^4} = 1,967 \frac {calorias}{cm^2 \cdot minuto} \approx 2 \frac {calorias}{cm^2 \cdot minuto} \,
- w:es:Constante solar 76 K= \frac {1366}{1,5236^2}=588,45 \frac {W}{m^2}\,
- w:es:Potenciación 218 \begin{array}{lcl} 10^{-6} & = & 0,000001\\ 10^{-5} & = & 0,00001 \\ 10^{-4} & = & 0,0001 \\ 10^{-3} & = & 0,001 \\ 10^{-2} & = & 0,01 \\ 10^{-1} & = & 0,1 \end{array}
- w:es:Neper 29 \frac{V_1}{V_2}= e=2,71828182846
- w:es:Neper 31 1\text {Np} = 10 \log (e) dB \approx 4,343 \text {dB}
- w:es:Neper 33 1\text {Np(intensidad)} = 20 \log (e) dB (potencia) \approx 8,686 \text {dB (potencia)}
- w:es:Torsión mecánica 175 \tau_\mathrm{tria} = \frac{5\sqrt{3}}{18}\frac{M_T}{L^3}\approx 0,481\frac{M_T}{L^3}, \qquad \tau_\mathrm{cuad} \approx 4,80\frac{M_T}{L^3}
- w:es:YUV 41 \left \{\begin{array}{ccc}Y' & = & 0,299R+0,587G+0,114B\\U & = & 0,493(B-Y)\\ & = & -0,147R-0,289G+0,436B\\V & = & 0,877(R-Y) \\ & = & 0,615R-0,515G-0,100B\end{array}\right .
- w:es:YUV 59 \begin{bmatrix}Y'\\U\\V\end{bmatrix}=\left [\begin{array}{rrr} 0,299 & 0,587 & 0,114\\-0,147 & -0,289 & 0,436\\ 0,615 & -0,515 &-0,100\end{array}\right ]\begin{bmatrix}R\\G\\B\end{bmatrix}
- w:es:YUV 74 \left \{\begin{array}{ccl}R & = & Y'+0U+1,14V\\G & = & Y'-0.396U-0,581V\\B & = & Y'+2,029U+0V\end{array}\right .
- w:es:YUV 92 \begin{bmatrix}R\\G\\B\end{bmatrix}=\left [\begin{array}{rrr} 1 & 0 & 1,14\\ 1 & -0,396 & -0,581\\ 1 & 2,029 & 0\end{array}\right ]\begin{bmatrix}Y'\\U\\V\end{bmatrix}
- w:es:Segundo momento de área 91 I_x = {\pi R^4 \over 8}-{8R^4 \over 9\pi} \approx 0,10976R^4 \,
- w:es:Segundo momento de área 96 I_x = I_y = 0,0549R^4 \,
- w:es:Escala Mel 25 m = 1127,01048 \log_e(1+f/700) \,
- w:es:Escala Mel 29 f = 700(e^{m/1127,01048} - 1) \,
- w:es:YIQ 41 \begin{bmatrix} Y \\ I \\ Q \end{bmatrix}=\begin{bmatrix} 0,299 & 0,587 & 0,114 \\ 0,595716 & -0,274453 & -0,321263 \\ 0,211456 & -0,522591 & 0,311135\end{bmatrix}\begin{bmatrix} R \\ G \\ B \end{bmatrix}
- w:es:YIQ 52 \begin{bmatrix} R \\ G \\ B \end{bmatrix}=\begin{bmatrix} 1 & 0,9563 & 0,6210 \\ 1 & -0,2721 & -0,6474 \\ 1 & -1,1070 & 1,7046\end{bmatrix}\begin{bmatrix} Y \\ I \\ Q \end{bmatrix}
- w:es:YIQ 78 \begin{bmatrix} Y \\ I \\ Q \end{bmatrix}=\begin{bmatrix} 0,30 & 0,59 & 0,11 \\ 0,599 & -0,2773 & -0,3217 \\ 0,213 & -0,5251 & 0,3121\end{bmatrix}\begin{bmatrix} R \\ G \\ B \end{bmatrix}
- w:es:Dureza Vickers 22 HV = \frac{2\sin68^\circ F}{d^2} \approx \frac{1,8544 F}{d^2}
- w:es:Celda galvánica 85 E_{semicelda} = E^0 + 2,303 \cdot \frac {RT}{nF} \log [M^{n+}]
- w:es:Celda galvánica 89 {0,05918 V}/{n}
- w:es:Celda galvánica 91 E_{semicelda} = {E^0}_{semicelda} + \frac {0,05918}{n}\log [M^{n+}]
- w:es:Jean Fouquet 197 \Phi = \frac{1 + \sqrt{5}}{2} \approx 1,618\,
- w:es:Radio hidráulico 62 \frac {sin \alpha } {\alpha } = -0,2172
- w:es:Radio hidráulico 62 \ \alpha = 4,4934
- w:es:Radio hidráulico 64 \ (R_h)_{max} = r \cdot 0,6086
- w:es:Fórmula de Manning 61 \ V(h) = \frac{1,486} {n} * {\left ( \frac{A(h)} {P(h)}\right )}^{2/3} * S^{1/2}
- w:es:Fórmula de Manning 63 \ Q(h) = \frac{1,486} {n} * \frac{{A(h)}^{5/3}} {{P(h)}^{2/3}} * S^{1/2}
- w:es:Fórmula de Manning 83 \ 1 m = 3,2808 pies
- w:es:Fórmula de Manning 83 V =\frac{1,486} {n} * R^{2/3} * S^{1/2}
- w:es:Pérdida de carga 63 \ J = 0,000857 \cdot \left(1 + \frac {2 \gamma} {\sqrt D}\right)^2 \cdot \frac {q^2} {D^5}
- w:es:Pérdida de carga 71 \ J = 0,0019 \cdot q^2 \cdot D^{-5,32}
- w:es:Pérdida de carga 74 \ J = 0,0012 \cdot q^2 \cdot D^{-5,26}
- w:es:Pérdida de carga 75 \ J = 0,0016 \cdot q^2 \cdot D^{-5,26}
- w:es:Pérdida de carga 76 \ J = 0,0020 \cdot q^2 \cdot D^{-5,26}
- w:es:Ley de Titius-Bode 194 \log a =0,233058\times n +7,5119
- w:es:Ley de Titius-Bode 198 \ln a =0,53663\times n +17,2967
- w:es:Ley de Titius-Bode 200 a =e^{0,53663\times n +17,2967}
- w:es:Ley de Titius-Bode 203 \log a =0,233058 \times n -0,662989
- w:es:Ley de Titius-Bode 206 \log U.A. =\log 1,496 \times 10^8= 8,17493
- w:es:Ley de Titius-Bode 210 \ln a =0,53663\times n -1,52658
- w:es:Ley de Titius-Bode 214 a =e^{0,53663\times n -1,52658}
- w:es:Ley de Titius-Bode 218 a =0,21727 \times (1,71023)^n
- w:es:Ley de Titius-Bode 308 \ln a =0,5497 \times n -1,5723
- w:es:Ley de Titius-Bode 310 a =0,2075 \times (1,7327)^n
- w:es:Ley de Titius-Bode 323 \log a =0,2417 \times n +5,0724
- w:es:Ley de Titius-Bode 330 a =e^{0,55992 \times n +11,6796}
- w:es:Ley de Titius-Bode 332 a =118137,8 \times (1,75053)^n
- w:es:Ley de Titius-Bode 334 a =1,6524 \times (1,75053)^n
- w:es:Ley de Titius-Bode 351 \log a =0,21423\times n +5,4024
- w:es:Ley de Titius-Bode 355 a =3,53276 \times (1,63768)^n
- w:es:Ley de Titius-Bode 361 \log a =0,169036\times n +4,9432
- w:es:Ley de Titius-Bode 364 a =87738 \times (1,47583)^n
- w:es:Ley de Titius-Bode 367 a =3,5505524 \times (1,47583)^n
- w:es:Ley de Titius-Bode 377 \log a =0,11564\times n +5,0305
- w:es:Ley de Titius-Bode 381 a =107272,6 \times (1,30509)^n
- w:es:Ley de Titius-Bode 384 a =1,79157 \times (1,30509)^n
- w:es:UIT-R BT.601-7 26 E_Y' = 0,299*E_R' + 0,587*E_G' + 0,114*E_B
- w:es:UIT-R BT.601-7 41 \left \{ \begin{align} E'_R- E'_Y & = E'_R - (0,299*E'_R + 0,587*E'_G + 0,114*E'_B) \\ & = 0,701*E'_R - 0,587*E'_G - 0,114*E'_B\\ \\ E'_B-E'_Y & = E'_B - (0,299*E'_R + 0,587*E'_G + 0,114*E'_B) \\ & = -0,299*E'_R - 0,587*E'_G + 0,866*E'_B \end{align}\right .
- w:es:UIT-R BT.601-7 86 \left \{\begin{align} E'_{C_R} = \cfrac{E'_R - E'_Y}{1,402} \\ \\ E'_{C_B} = \cfrac{E'_B - E'_Y}{1,772}\end{align}\right .
- w:es:Sucesión de Padovan 103 P\left(n\right) \approx \frac {p^n} {\left(3p^2-1\right)} = \frac {p^n} {s}\approx \frac {p^n} {4,264632...}.
- w:es:Ecuación de Nernst 109 E = E_{0} - \frac{0,05916}{n}\log_{10}(Q)
- w:es:Ecuación de Nernst 111 \Delta E = \Delta E^{\rm o} - \frac{0,05916}{n}\log_{10}(Q)
- w:es:Apotema 217 sen (60^0) = 0,866025404
- w:es:Apotema 219 = 2 \cdot x \cdot 10 \cdot x \cdot 0,866025404 = 17,32050808
- w:es:Apotema 221 = \sqrt{10^2-\left(\frac{17,32050808}{2}\right)^2}
- w:es:Apotema 229 sen (45^0) = 0,7071068
- w:es:Apotema 231 = 2 \cdot x \cdot 10 \cdot x \cdot 0,7071068 = 14,14213562
- w:es:Apotema 233 = \sqrt{10^2-\left(\frac{14,14213562}{2}\right)^2}
- w:es:Apotema 233 = 7,071067812
- w:es:Apotema 235 = 10 - 7,071067812 = 2,928932188
- w:es:Apotema 241 sen (30^0) = 0,5000000
- w:es:Apotema 243 = 2 \cdot x \cdot 10 \cdot x \cdot 0,5000000 = 10
- w:es:Apotema 245 = 8,660254038
- w:es:Apotema 247 = 10 - 8,660254038 = 1,339745962
- w:es:Apotema 251 \frac {360^0} {2x7} = 25,71428^0
- w:es:Apotema 253 sen (25.71428^0) = 0,4338836
- w:es:Apotema 255 = 2 \cdot x 10 \cdot x \cdot 0,4338836 = 8,677672985
- w:es:Apotema 257 = \sqrt{10^2-\left(\frac{8,677672985}{2}\right)^2}
- w:es:Apotema 257 = 9,00968909
- w:es:Apotema 259 = 10 - 9,00968909 = 0,99031091
- w:es:Apotema 265 sen (22,5^0) = 0,3826834
- w:es:Apotema 267 = 2 \cdot x \cdot 10 \cdot x \cdot 0,3826834 = 7,653668647
- w:es:Apotema 269 = \sqrt{10^2-\left(\frac{7,653668647}{2}\right)^2}
- w:es:Apotema 269 = 9,238795325
- w:es:Apotema 271 = 10 - 9,238795325 = 0,761204675
- w:es:Apotema 277 sen (0,5^0) = 0,0087265
- w:es:Apotema 279 = 2 \cdot x \cdot 10 \cdot x \cdot 0,0087265 = 0,17453071
- w:es:Apotema 281 = \sqrt{10^2-\left(\frac{0,17453071}{2}\right)^2}
- w:es:Apotema 281 = 9,999619231
- w:es:Apotema 283 = 10 - 9,999619231 = 0,000380769
- w:es:Fórmula de Stirling 55 {e}^{\frac{1}{12 \; 29 + 1}} = 1,002869438...
- w:es:Fórmula de Stirling 56 {e}^{\frac{1}{12 \; 29}} = 1,002877696...
- w:es:Fórmula de Stirling 57 29! = \sqrt{2 \pi 29} \; \left(\frac{29}{e}\right)^{29} 1,002877577...
- w:es:Tiempo de concentración 28 \ b = \frac {0,0000276 \cdot i + c_r} {S^{1/3}}
- w:es:Coeficiente de restitución 110 C_1 = \frac{\sqrt{\pi}}{50^{1/5}} \frac{\Gamma(3/5)}{\Gamma(21/10)} = 1,15344,\ C_2 = 0,79826
- w:es:Teoría cinética 95 v^2 = \frac{2,4940 \cdot 10^4 \, T}{m_m}
- w:es:Caos y fractales 129 d = 0,6309
- w:es:Vaso de expansión 76 f ( t ) = 999,831 - 1,23956 . 10^{-2} x t + 6,00584 . 10^{-3} x t^2 - 1,97359 .10^{-5} x t^3 + 4,80021.10^{-8} x t^4
- w:es:Constante de Apéry 22 \zeta(3)=1,20205\; 69031\; 59594\; 28539\; 97381\;61511\; 44999\; 07649\; 86292\,\ldots
- w:es:Anomalía verdadera 28 e=0,09341
- w:es:Anomalía verdadera 30 M=41,9226^{\circ}
- w:es:Anomalía verdadera 31 E=45,75668
- w:es:Anomalía verdadera 34 \tan \frac {\nu}{2}=\sqrt {\frac {1+e} {1-e}}\tan \frac {E}{2}=1,09821 \times 0,42197=0,463412
- w:es:Anomalía verdadera 34 \nu=49,7272^{\circ}
- w:es:Usuario:Karshan/Trabajando en 37 v=513+10,365r-0,047r^2\mbox{ km/s}
- w:es:Eneágono 37 A = \frac{9(t^2)}{4\tan(\frac{\pi}{9})}\simeq 6,1818\ t^2
- w:es:Decágono 32 A = \frac{10(t^2)}{4\tan(\frac{\pi}{10})}\simeq 7,6942\ t^2
- w:es:0,9 periódico 37 \begin{align} \frac{1}{9} & = 0,111\dots \\ 9 \times \frac{1}{9} & = 9 \times 0,111\dots \\ 1 & = 0,999\dots\end{align}
- w:es:0,9 periódico 53 \begin{align}x &= 0,999\ldots \\10 x &= 9,999\ldots \\10 x - x &= 9,999\ldots - 0,999\ldots \\9 x &= 9 \\x &= 1\end{align}
- w:es:0,9 periódico 82 0,999\ldots = 9\left(\tfrac{1}{10}\right) + 9\left({\tfrac{1}{10}}\right)^2 + 9\left({\tfrac{1}{10}}\right)^3 + \cdots = \frac{9\left({\tfrac{1}{10}}\right)}{1-{\tfrac{1}{10}}} = 1.\,
- w:es:0,9 periódico 86 \scriptstyle 0,3~;~0,33~;~0,333~;~ \ldots
- w:es:0,9 periódico 92 0,999\ldots = \lim_{n\to\infty}0,\underbrace{ 99\ldots9 }_{n} = \lim_{n\to\infty}\sum_{k = 1}^n\frac{9}{10^k} = \lim_{n\to\infty}\left(1-\frac{1}{10^n}\right) = 1-\lim_{n\to\infty}\frac{1}{10^n} = 1.\,
- w:es:0,9 periódico 94 \scriptstyle 0,999\ldots
- w:es:0,9 periódico 275 \scriptstyle u_H\,=\,0,999\ldots;\ldots 999000\ldots
- w:es:0,9 periódico 281 \scriptstyle 0,999\ldots \,<\, 1
- w:es:Número de Liouville 31 {\sum_{k=1}^\infty} 10^{-k!}=0,110001000000000000000001000\ldots
- w:es:Régimen fluvial 47 {Ie} = {Mr} \times 31,557
- w:es:Swap (finanzas) 110 FD_{20/1/2009} = 0,982800983
- w:es:Swap (finanzas) 112 VE=VA=NPV=FD_t \cdot F_t \qquad 1965,6=FD_t \cdot 2000 \qquad 1965,6=0,982800983\cdot 2000
- w:es:Swap (finanzas) 138 FD_t=0,982800983=(1+i_t)^{-0,5}
- w:es:Conversión de coordenadas ecuatoriales a coordenadas horarias 32 \Theta_m(0h, Gr)=6 h 38m 45,836 s+8 640 184,542 s \cdot T+0,0929 s\cdot T^2
- w:es:Conversión de coordenadas ecuatoriales a coordenadas horarias 51 \Theta_m(t h, Gr)=\Theta_m(0h, Gr)+t \cdot 1,00273790935 \,
- w:es:Potencial de membrana 42 \frac{kT}{e}=\frac{(1,38 \ast 10^{-23} \ \frac{J}{K}) \ast (310\ K)}{1,60 \ast 10^{-19}} = 0,0267\ V = 26,7\ mV
- w:es:Potencial de membrana 52 V = V_1- V_2 = \pm ( 61,4\ mV)\log\frac{0,141\ \frac{mol}{L}}{0,005\ \frac{mol}{L}} = -89,2\ mV
- w:es:Círculo 43 \pi=3,14159\dots
- w:es:Método de Newton 151 \begin{matrix} x_1 & = & x_0 - \frac{f(x_0)}{f'(x_0)} & = & 0,5 - \frac{\cos(0,5) - 0,5^3}{-\sin(0,5) - 3 \times 0,5^2} & = & 1,112141637097 \\ x_2 & = & x_1 - \frac{f(x_1)}{f'(x_1)} & & \vdots & = & \underline{0},909672693736 \\ x_3 & & \vdots & & \vdots & = & \underline{0,86}7263818209 \\ x_4 & & \vdots & & \vdots & = & \underline{0,86547}7135298 \\ x_5 & & \vdots & & \vdots & = & \underline{0,8654740331}11 \\ x_6 & & \vdots & & \vdots & = & \underline{0,865474033102} \end{matrix}
- w:es:Ratio financiero 123 0,071 * 365
- w:es:Cifrado ElGamal 91 (g,p,K)=(7,15485863,8890431)
- w:es:Conjetura de Legendre 15 \theta = 23/42 = 0,547...
- w:es:Dodecágono 39 A = \frac{12(t^2)}{4 \tan(\frac{\pi}{12})}\simeq 11,1962\ t^2
- w:es:Tridecágono 34 A = \frac{13(t^2)}{4\ tan(\frac{\pi}{13})}\simeq 13,1858\ t^2
- w:es:Pentadecágono 30 A = \frac{15(t^2)}{4\tan(\frac{\pi}{15})}\simeq 17,6424\ t^2
- w:es:Tetradecágono 31 A = \frac{14(t^2)}{4\ tan(\frac{\pi}{14})}\simeq 15,3345\ t^2
- w:es:Hexadecágono 33 A = \frac{16(t^2)}{4\ \tan(\frac{\pi}{16})}\simeq 20,1094\ t^2
- w:es:Heptadecágono 33 A = \frac{17(t^2)}{4 \tan(\frac{\pi}{17})}\simeq 22,7355\ t^2
- w:es:Octodecágono 33 A = \frac{18(t^2)}{4 \tan(\frac{\pi}{18})}\simeq 25,5208\ t^2
- w:es:Usuario:MRS~eswiki/regresión lineal 134 a = \frac {10} {26} = \frac {5} {13} \approx 0,386
- w:es:Integración 113 \sqrt {\frac {1} {5}} \left ( \frac {1} {5} - 0 \right ) + \sqrt {\frac {2} {5}} \left ( \frac {2} {5} - \frac {1} {5} \right ) + \ldots + \sqrt {\frac {5} {5}} \left ( \frac {5} {5} - \frac {4} {5} \right ) \approx 0,7497\,\!
- w:es:142 857 61 \frac{3}{7}=0,428571...
- w:es:142 857 61 \frac{1}{7}=0,142857...
- w:es:142 857 61 \frac{2}{7}=0,285714...
- w:es:142 857 63 \frac{6}{7}=0,857142...
- w:es:142 857 63 \frac{4}{7}=0,571428...
- w:es:142 857 63 \frac{5}{7}=0,714285...
- w:es:Insolación 62 K_0=1,967 \frac {cal}{cm^2 \cdot minuto} \,
- w:es:Insolación 74 K_0=1,967 \frac {cal}{cm^2 \cdot minuto} \,
- w:es:Insolación 97 K_0=1,967 \frac {cal}{cm^2 \cdot minuto} \,
- w:es:Número decimal periódico 34 0,777\dots = 0,\overset{\frown}{7}
- w:es:Número decimal periódico 48 \begin{array}{l} \cfrac{1}{9} = 0,111111111111...\\ \cfrac{1}{7} = 0,142857142857...\\ \cfrac{1}{3} = 0,3333333333333...\\ \cfrac{2}{27} = 0,07407407407445...\\ \cfrac{7}{12} = 0,58333333333... \end{array}
- w:es:Número decimal periódico 61 \begin{array}{rcll} x & = & 0,333333\ldots\\ 10x & = & 3,333333\ldots & \text{(multiplicando por 10 ambos miembros)} \\ 9x & = & 3 & \text{(restando segunda fila menos primera fila)} \\ \\ x & = & \cfrac{3}{9} = \cfrac{1}{3} & \text{(simplificando)} \end{array}
- w:es:Número decimal periódico 70 \begin{array}{rcl} x & = & \;\;\; 2,85636363\ldots \\ 100x & = & 285,63636363\ldots \\ 99x & = & 282,78 \end{array}
- w:es:Número decimal periódico 100 12,345\ 67\ 67\ 67\dots = \frac{1234567-12345}{99000} = \frac{1222222}{99000} = \frac{611111}{49500}
- w:es:Número decimal periódico 163 \cfrac{5}{21} = 0,238095\ 238095\ 238095\dots
- w:es:Usuario:Robertollefi/articulo matematica 75 \Phi = \frac{1 + \sqrt{5}}{2} \approx 1,618\,033\,988\,749\,894\,848\,204
- w:es:Usuario:Rovnet/Articulo Matemática 75 \Phi = \frac{1 + \sqrt{5}}{2} \approx 1,618\,033\,988\,749\,894\,848\,204
- w:es:Usuario discusión:Rovnet 226 F_t = 101325,01 \frac{N}{m^2} \pi ( 0,0489 m )^2 = 76117,45 N = 7761,77 k \vec{g}
- w:es:Raíz cuadrada de dos 40 1 + \frac{24}{60} + \frac{51}{60^2} + \frac{10}{60^3} = 1,41421\overline{296}
- w:es:Raíz cuadrada de dos 45 1 + \frac{1}{3} + \frac{1}{3 \cdot 4} - \frac{1}{3 \cdot4 \cdot 34} = \frac{577}{408} \approx 1,414215686.
- w:es:Calibre de alambre estadounidense 21 \sqrt[39]{\frac{0,4600}{0,0050}}=\sqrt[39]{92}=1,1229
- w:es:Ley de Hardy-Weinberg 233 = 0,954
- w:es:Ley de Hardy-Weinberg 246 = 0,046
- w:es:Ley de Hardy-Weinberg 252 \mathrm{Esp}(AA) = p^2n = 0,954^2 \times 1612 = 1467,4
- w:es:Ley de Hardy-Weinberg 257 \mathrm{Esp}(Aa) = 2pqn = 2 \times 0,954 \times 0,046 \times 1612 = 141,2
- w:es:Ley de Hardy-Weinberg 262 \mathrm{Esp}(aa) = q^2n = 0,046^2 \times 1612 \leq 3,4
- w:es:Ley de Hardy-Weinberg 276 = 0,001 + 0,073 + 0,756
- w:es:Ley de Hardy-Weinberg 368 = 0,023.\,
- w:es:Números de Feigenbaum 28 \delta\approx 4,669\, 201\, 609\, 102\, 990\, 671\, 853\, 203\, 821\ 578\,439,\ldots
- w:es:Números de Feigenbaum 36 \alpha\approx 2,502\, 907\, 875\, 095\, 892\, 822\, 283\, 902\, 873\, 218\,478\ldots
- w:es:Desintegración alfa 46 m_{\alpha}c^2 = 3727,378
- w:es:Adquisición de datos 156 300\frac{Dato}{Segundo} * 4 \frac{bytes}{Dato}= 1,200 \quad bytes/segundo
- w:es:Adquisición de datos 158 3600*24*365=31,536,000 segundos
- w:es:Audio digital 39 SQNR = 10b \log (4) + 10 \log \left ( \frac {3}{2} \right ) \approx 6,0206b + 1,7609 \,\!
- w:es:Significando 26 1,23457 \cdot 10^2
- w:es:Edad del universo 28 13,700
- w:es:Solución estándar 43 W_{min} =\begin{matrix} \cfrac{0,0001}{0,1} \end{matrix} \cdot 100
- w:es:Equilibrio térmico de la Tierra 45 \frac{1367 \cdot (1-0,313)}{4}=\sigma T^4 \rightarrow T=253,7K \simeq -19,5{}^{\circ}\!C
- w:es:Media (matemáticas) 37 \tfrac{34+27+45+55+22+34}{6}\ = \tfrac{217}{6}\approx 36,167
- w:es:Media (matemáticas) 67 \frac{6}{\frac{1}{34}+\frac{1}{27}+\frac{1}{45} + \frac{1}{55} + \frac{1}{22}+\frac{1}{34}}\approx 33,018
- w:es:Anomalía gravitatoria 25 \Delta g_{AL}=g_{obs}+0,3086h-g_{teo}
- w:es:Módulo de torsión 38 J \approx \frac{1}{3}b^4 \cdot 0,40147 \approx 0,13382\ b^4\approx0,80295 I_0
- w:es:Permiso de agua dulce 46 D = E = Vs*Pes = Vs*1,025
- w:es:Permiso de agua dulce 52 D = E = Vd*Ped = Vd*1,000
- w:es:Permiso de agua dulce 56 Vd*1,000 = Vs*1,025
- w:es:Permiso de agua dulce 59 Vd=Vs*1,025/1,000
- w:es:Permiso de agua dulce 61 Vd=Vs*1,025
- w:es:Permiso de agua dulce 63 Vd=Vs*(1+0,025)
- w:es:Permiso de agua dulce 67 Vd = Vs+Vs*0,025
- w:es:Permiso de agua dulce 69 Vd-Vs = Vs*0,025
- w:es:Permiso de agua dulce 77 1,025 * (Vd-Vs) = 1,025 * (Vs/40)
- w:es:Permiso de agua dulce 79 1,025 * (Vd-Vs)
- w:es:Permiso de agua dulce 91 Ic * Tpc = 1,025 * (Vd-Vs)
- w:es:Permiso de agua dulce 93 1,025 * Vs = D
- w:es:Discusión:0,9 periódico 36 9 \times 0,1111\dots = 0,9999\dots
- w:es:Discusión:0,9 periódico 38 9,9999\dots - 0,9999\dots = 9
- w:es:Discusión:0,9 periódico 41 0,9999\dots := \lim_{n\to \infty} \sum_{k=1}^n 9\cdot 10^{-k} =9\cdot\lim_{n\to \infty} \frac{1-10(\frac{1}{10})^{n+1}}{10-1} = \frac{9}{9} = 1
- w:es:Curva 138 D_f = \frac{\ln 4}{\ln 3} \approx 1,26186\dots
- w:es:Regresión no lineal 92 \bar{x} = \frac{1}{n} \sum_{i=1}^{n} a_i = \frac{20,9}{8}= 2,6125
- w:es:Regresión no lineal 94 \overline{\ln(y)} = \frac{1}{n} \sum_{i=1}^{n} a_i=\frac{11,4628}{8}=1,43285
- w:es:Regresión no lineal 100 \frac{32,7614-1,43285(20,9)}{67,63-2,6125(20,9)} = 0,216047
- w:es:Regresión no lineal 102 a = e^{\overline{ln(y)} - b \bar{x}} = e^{1,43285 - 0,216047*2,6125} = e^{0,868427} = 2,38316
- w:es:Regresión no lineal 108 \hat{y} = 2,3831597 \; e^{0,216047x}
- w:es:Regresión no lineal 139 a=\frac{\sum\ln(x)y - \bar{y}\sum\ln(x)}{\sum(\ln(x))^2 - \bar{\ln(x)}\sum\ln(x) }=\frac{34,5581-4,5(6,5779)}{7,7798-0,8222(6,5779)}=2,090513
- w:es:Regresión no lineal 141 b=\bar{y} - (a \overline{ln(x)})=4,5 - (2,090513)(0,8222) = 2,78117
- w:es:Regresión no lineal 146 \hat{y} = 2,090513 \; ln(x) + 2,78117
- w:es:Composición centesimal 64 PM_{HNO_3} = 1 \cdot 1,008 + 1 \cdot 14,01 + 3 \cdot 16,00 = 63,018
- w:es:Composición centesimal 67 C_{Oxigeno} = {\cfrac {{3} \cdot {16}}{63,018}} \cdot 100 = 76,16 \%
- w:es:Usuario:Kn/Zona de pruebas personal 25 \mathrm{mcd}(2366,273)=\mathrm{mcd}(273,182)
- w:es:Usuario:Kn/Zona de pruebas personal 27 \mathrm{mcd}(273,182)=\mathrm{mcd}(182,91)
- w:es:Usuario:Kn/Zona de pruebas personal 31 \mathrm{mcd}(2366,273)=91
- w:es:Usuario:Kn/Zona de pruebas personal 31 \mathrm{mcd}(2366,273)=\mathrm{mcd}(273,182)=\mathrm{mcd}(182,91)=\mathrm{mcd}(91,0)
- w:es:Usuario:Kn/Zona de pruebas personal 31 \mathrm{mcd}(2366,273)=\mathrm{mcd}(91,0)
- w:es:Universo de Gödel 73 \scriptstyle R\ \approx 0,881373587...
- w:es:Tasa Horaria Zenital 72 THZ = \cfrac{\cfrac{N}{t} \cdot F \cdot r^{6.5-lim}}{\sen (hR)} = \cfrac{48 * 2,5 * 2,1}{0,766} = 329 meteoros/hora
- w:es:IK Pegasi 49 M_v = V + 5(\log_{10} \pi + 1) = 2,762
- w:es:IK Pegasi 316 R_{\star} = 0,006 \cdot (6,96 \times 10^8)\,\mbox{m}\;\approx 4200\,\mbox{km}
- w:es:IK Pegasi 324 \lambda_b = (2,898 \times 10^6 \operatorname{nm\ K})/(35500\ \operatorname{K}) \approx 82\,\mbox{nm}
- w:es:Integración de Montecarlo 53 \frac{\pi r^2}{4}=\frac{\pi}{4}\simeq 0,785
- w:es:Matriz (matemáticas) 91 a_{23,100}\,\!
- w:es:Elevación del punto de ebullición 42 (K_{SY}=0,00012)
- w:es:Elevación del punto de ebullición 43 T_{eb,P}=\frac{100-273,15(0,00012)(760-560)}{1+(0,00012)(760-560)}
- w:es:Elevación del punto de ebullición 45 (K_{SY}=0,00010)
- w:es:Elevación del punto de ebullición 46 T_{eb,P}=\frac{62-273,15(0,00010)(760-560)}{1+(0,00010)(760-560)}
- w:es:Solución patrón 38 W_{min} =\begin{matrix} \cfrac{0,0001}{0,1} \end{matrix} \cdot 100
- w:es:Micrómetro (instrumento) 151 \begin{array}{ll} 5 & mil \acute{\imath} metros \\ 0,5 & medio \; mil\acute{\imath} metro \\ 0,28 & cent \acute{e} simas \; en \; el \; tambor \\ 0,003 & la \; tercera \; divisi\acute{o}n \; del \; nonio \; coincide \; con \; una \; divisi\acute{o}n \; del \; tambor \\ \hline 5,783 & lectura \end{array}
- w:es:Proceso Teller-Ulam 80 4,184.10^9
- w:es:Falacia del apostador 30 0,5^5=0,03125
- w:es:Nat (información) 19 1\text{ nat} = \tfrac{1}{\ln 2} \text{ bit} = \tfrac{1}{\ln 10}\text{ ban}\approx 1,44\text{ bit} \approx 0,434\text{ ban}
- w:es:Usuario:THINK TANK/Anamorfosis del plano y del espacio cartesiano 191 \,\,\,2,994 \,\,x \,\,10^8\,\,\,m/seg \, \,
- w:es:Usuario:THINK TANK/Anamorfosis del plano y del espacio cartesiano 200 \,\,\frac {600}{8.900}\,\,= \,\,\,14,8333 \,
- w:es:Usuario:THINK TANK/Anamorfosis del plano y del espacio cartesiano 206 \,\vec v \,\ = \,\,0,998\,\,x\,\,\, 14,8333\,\, \, = \, \,\, 4.438.027.617 \,m/seg
- w:es:Usuario:THINK TANK/Anamorfosis del plano y del espacio cartesiano 341 \,\,\,2,994 \,\,x \,\,10^8\,\,\,m/seg \, \,
- w:es:Usuario:THINK TANK/Anamorfosis del plano y del espacio cartesiano 341 \,\,\,0,998 \, \, \,
- w:es:Usuario:THINK TANK/Anamorfosis del plano y del espacio cartesiano 344 \,\,\vec y\,\, =\vec v\,t_0 \,\,=\,\,2,994\,\,x\,\,10^8\,\,m/seg\,\,x\,\,2\,\,\,x\,\,10^{-6}\,\,seg\,\,=\,\,600\,\,m
- w:es:Usuario:THINK TANK/Anamorfosis del plano y del espacio cartesiano 347 \,\,\,2,994 \,\,x \,\,10^8\,\,\,m/seg \, \,
- w:es:Usuario:THINK TANK/Anamorfosis del plano y del espacio cartesiano 356 \,\,\,0,998 \, \,\vec c \,
- w:es:Usuario:THINK TANK/Anamorfosis del plano y del espacio cartesiano 358 \,\,\vec y\,\,^0 =\,\,\frac {\vec y} {\sqrt{1-\left(\frac{\vec v\,\,^2}{\vec c\,\,^2}\right)}} \,\, =\,\,\frac {\,600} {\sqrt{1-\left(\frac{(\,0,998 \,\,\vec c\,\,)^2}{\vec c\,\,^2}\right)}} \,\,m
- w:es:Usuario:THINK TANK/Anamorfosis del plano y del espacio cartesiano 361 \,\,=\,\,\frac {\,600} {\sqrt {\,1 \,\,-\,\,0,998}}\,\, m\,\,=\,\, \frac {600} {0,063}\,\,m\,\,=\,\,9.500\,\,m
- w:es:Usuario:THINK TANK/Anamorfosis del plano y del espacio cartesiano 369 \,t\,\, =\,\,\frac {\,t_0} {\sqrt{1-\left(\frac{\vec v\,\,^2}{\vec c\,\,^2}\right)}} \,\, =\,\,\frac {\,2\,\,x\,\,10^{-6}} {\sqrt{1-\left(\frac{(\,0,998 \,\,\vec c\,\,)^2}{\vec c\,\,^2}\right)}} \,\,seg\,\,
- w:es:Usuario:THINK TANK/Anamorfosis del plano y del espacio cartesiano 373 =\,\,\frac {\,\,2\,\,x\,\,10^{-6}} {\,\,0,063}\,\, seg\,\,=\,\, \,\,31,7\,\,x\,\,10^{-6}\,\,\,seg\,\, \,
- w:es:Usuario:THINK TANK/Anamorfosis del plano y del espacio cartesiano 376 \,\,\,0,998 \,\,\vec c\,\,
- w:es:Usuario:THINK TANK/Anamorfosis del plano y del espacio cartesiano 379 \,\,\vec y\,\,^0 \,\,=\vec v\,t \,\,=\,\,2,994\,\,x\,\,10^8\,\,m/seg\,\,x\,\,31,7\,\,\,x\,\,10^{-6}\,\,seg\,\,=\,\,9.500\,\,m
- w:es:Por mil 26 1 {}^0 \!\! / \! {}_{00} = 10^{-3} = \cfrac{1}{1000} = 0,001 = 0,1 {}^0 \!\! / \! {}_{0}
- w:es:Empaquetamiento compacto 35 \mathrm{Longitud}_Z = \sqrt{6} \cdot d\over 3\approx0,816499658 d
- w:es:Usuario:THINK TANK/«Causa» versus «efecto» 148 \,\left [\,\,1\,\,-\,\, \left(\frac {364}{365}\,\,x\,\,\frac {363}{365} \,\,x\,\,\frac {362}{365}\,\,x\,\,\frac {361}{365}\,\,x\,\,\frac {360}{365}\,\,x\,\,\frac {359}{365}\,\,x\,\,... \,\,x\,\,\frac {305}{365}\,\,\right) = \,\,0,995088798805291 \,\,\right]
- w:es:Usuario:THINK TANK/«Causa» versus «efecto» 158 \,\left [\, \frac {364}{365}\,\,x\,\,\frac {363}{365} \,\,x\,\,\frac {362}{365}\,\,x\,\,\frac {361}{365}\,\,x\,\,\frac {360}{365}\,\,x\,\,\frac {359}{365}\,\,x\,\,... \,\,x\,\,\frac {305}{365}\,\, = \,\,0,00491120119470925 \,\,\right]
- w:es:Gravedad 43 F = G \frac {m_{1} m_{2}} {d^2} = 6,67428 \times 10^{-11} \frac {50 \times 5,974 \cdot 10^{24}} {6378140^2} = 490,062\ \text{N}
- w:es:Intensidad del campo gravitatorio 34 g_{\rm sup} \approx 9,80665\ \frac{\mbox{m}}{\mbox{s}^{2}} \,
- w:es:Intensidad del campo gravitatorio 127 |\mathbf g_{ec}| = 9,78\ \frac{\mbox{m}}{\mbox{s}^2} \qquad |\mathbf g_{po}| = 9,8322\ \frac{\mbox{m}}{\mbox{s}^2}
- w:es:Esquema de Shamir 51 \left(1,1494\right);\left(2,1942\right);\left(3,2578\right);\left(4,3402\right);\left(5,4414\right);\left(6,5614\right)\,\!
- w:es:Esquema de Shamir 60 \left(x_0,y_0\right)=\left(2,1942\right);\left(x_1,y_1\right)=\left(4,3402\right);\left(x_2,y_2\right)=\left(5,4414\right)\,\!
- w:es:Número de Nusselt 239 \overline{\mathrm{Nu}}_D \ = \left [ 0.60 + 0,387 \left[ \frac {\mathrm{Ra}_D} {\left[ 1+ \left( \frac{0.559}{\mathrm{Pr}} \right)^{9/16} \right]^{16/9}} \right]^{1/6} \right]^{2}
- w:es:Método de la secante 31 \varphi = \frac{1+\sqrt{5}}{2} \approx 1,618
- w:es:Axiomas de los números reales 104 x_3=1,414
- w:es:Axiomas de los números reales 104 \sqrt{2} = 1,4142135623730950488016887242097...
- w:es:Empaquetamiento de esferas 48 \frac{\pi}{\sqrt{18}} \simeq 0,74048.
- w:es:Curva de aprendizaje 67 \ Y_x = 140 * 0,596311245980115 = 83,48 horas
- w:es:Toneladas por centímetro de inmersión 24 \mathit{TPC} = A_f {\color{red}(m^2)} * 0,01 {\color{red} (m/cm)} * 1,025 {\color{red}(t/m^3)}
- w:es:Constante de Catalan 20 \frac{1}{2}\int_0^1 K(k)\ dk =\frac{1}{2}\int_{k=0}^1 \int_{\theta=0}^{\pi/2} \frac{d\theta\ dk}{\sqrt{1-k^2\sin^2 \theta}}= \frac{1}{1^2}-\frac{1}{3^2}+\frac{1}{5^2}-\dots = 0,915965594...
- w:es:Pinza óptica 162 299,792,458 \
- w:es:Índice de Hart-Becking 18 \mathit{N=\frac{10,000}{a^{2}}} \,\!
- w:es:Índice de Hart-Becking 19 \mathit{N=\frac{20,000}{\sqrt{3}a^{2}}} \,\!
- w:es:Amarillo selectivo 34 y \ge 0,138 + 0,580 x
- w:es:Amarillo selectivo 37 y \le 1,290 x - 0,100
- w:es:Amarillo selectivo 40 y \ge 0,966 - x
- w:es:Amarillo selectivo 43 y \le 0,992 - x
- w:es:Amarillo selectivo 50 y \ge 0,940 - x
- w:es:Amarillo selectivo 52 y \ge 0,440
- w:es:Usuario discusión:Raulshc 460 F_t = 101325,01 \frac{N}{m^2} \pi ( 0,0489 m )^2 = 76117,45 N = 7761,77 k \vec{g}
- w:es:Notación posicional 53 5,0333... = 5 \cdot 10^0 + 0 \cdot 10^{-1} + 3 \cdot 10^{-2} + 3 \cdot 10^{-3} + 3 \cdot 10^{-4} ...
- w:es:Notación posicional 2157 \mbox{5B2,E}_{(16)} = [5 \cdot 16^2 + 11 \cdot 16^1 + 2 \cdot 16^0 + 14 \cdot 16^{-1}]_{(10)} = [1280 + 176 + 2 + 0,875]_{(10)} = 1458,875_{(10)}
- w:es:Regla de Hamilton 27 {4.145.316\over 31.955.956} \approx 0,1297
- w:es:Alfombra de Sierpinski 16 \log(8)/\log(3)\approx 1,892789...
- w:es:Isodecágono 33 A = \frac{20(t^2)}{4\ \tan(\frac{\pi}{20})}\simeq 31,5688\ t^2
- w:es:Velocidad relativa 82 |v_\text{AB}| = |v_\text{BA}| \approx 0,99995c < c \;
- w:es:Velocidad relativa 86 |v_\text{AB}| = |v_\text{BA}| = 1,98000c > c \;
- w:es:Resistencia eléctrica 293 \alpha = 0,00393\;
- w:es:Discusión:Número irracional 22 1,4142135c_1c_2 = \frac{14142135c_1c_2}{10^9}
- w:es:Discusión:Número irracional 35 \sqrt[]{2} = 1,4142135
- w:es:Hercólubus 94 F_{S} = G \frac {m_{S}\cdot m_{T}} {{d_{S}}^2} = 6,67428 \times 10^{-11} \frac {1,9891 \times 10^{30}\times 5,9736\times 10^{24}} {150.000.000.000^2} = 3524,64\times 10^{19} \text{N}
- w:es:Hercólubus 96 F_{H} = G \frac {m_{H}\cdot m_{T}} {{d_{H}}^2} = 6,67428 \times 10^{-11} \frac {11,394 \times 10^{27}\times 5,9736\times 10^{24}} {600.000.000.000^2} = 1,26\times 10^{19} \text{N}
- w:es:Hercólubus 103 {d_{H}}^2 = G \frac {m_{H}\cdot m_{T}} {F_{H}} = 6,67428 \times 10^{-11} \frac {11,394 \times 10^{27}\times 5,9736\times 10^{24}} {3524,64\times 10^{19} \text{N}} = 1,28885\times 10^{20}
- w:es:Hercólubus 104 d_{H} = \sqrt{1,28885\times 10^{20}} = 11.352.748.190 \text{m}
- w:es:Tasa de filtración glomerular 68 \mbox{TFG Estimada} = \mbox{186}\ \times \ \mbox{Creatinina en Plasma}^{-1,154} \ \times \ \mbox{Edad}^{-0,203} \ \times \ \mbox{1,21 si es de raza negra} \ \times \ \mbox{0,742 si es mujer}
- w:es:Datación potasio-argón 28 {}^{40}\mathrm{K} +\mathrm{e}^- \rightarrow {}^{40}\mathrm{Ar}+\gamma (1,505 MeV)
- w:es:Datación potasio-argón 30 {}^{40}\mathrm{K}\rightarrow {}^{40}\mathrm{Ca}+\beta^{-} (1,311 MeV)
- w:es:Datación potasio-argón 39 t=\frac{1}{0,1048\times\lambda}\cdot\frac{{}^{40}\mathrm{Ar}_t}{{}^{40}\mathrm{K}_t}
- w:es:Constante de Erdős–Borwein 21 E=\sum_{n=1}^{\infty}\frac{1}{2^n-1} \approx 1,60669 51524 15291 763\dots
- w:es:Horno cuerpo negro 39 h =\,\, 6,626\ 068 \ 96(33) \times10^{-34}\ \mbox{J}\cdot\mbox{s} \,\,
- w:es:Triángulo de Reuleaux 17 {1\over2}(\pi - \sqrt3)a^2 = 0,70477...\ a^2
- w:es:Triángulo de Reuleaux 17 {\pi \over 4} a^2 = 0,78539...\ a^2
- w:es:Número de Champernowne 26 C_{10} = 0,12345678910111213141516\dots
- w:es:Constante de Conway 26 \lambda \approx 1,303577269
- w:es:Constante de Cahen 16 C = \sum\frac{(-1)^i}{s_i-1}=\frac11 - \frac12 + \frac16 - \frac1{42} + \frac1{1806} - \cdots\approx 0,64341054629
- w:es:Función de Chebyshov 112 |\vartheta(x)-x|\le0,006788\frac{x}{\ln x}
- w:es:Función de Chebyshov 114 |\psi(x)-x|\le0,006409\frac{x}{\ln x}
- w:es:Función de Chebyshov 116 \psi(x)-\vartheta(x)<0,0000132\frac{x}{\ln x}
- w:es:Prueba t de Student 231 \overline{X}_1 - \overline{X}_2 = 0,095.
- w:es:Prueba t de Student 240 \sqrt{{s_1^2 \over n_1} + {s_2^2 \over n_2}} \approx 0,0485
- w:es:Prueba t de Student 255 S_{X_1X_2} \approx 0,084 \,
- w:es:Constante de Landau-Ramanujan 22 \lim_{x\rightarrow\infty} \frac{N(x)\sqrt{\ln(x)}}{x}\approx 0,76422365358922066299069873125.
- w:es:Constante de los inversos de Fibonacci 44 \psi =[3;2,1,3,1,1,13,2,3,3,2,1,1,6,3,2,4,362,2,4,8,6,30,50,1,6,3,3,2,7,2,3,1,3,2, \cdots ] \!\, .
- w:es:Discusión:Economía de Argentina 155 \Delta_{1,2005}={\text{ingresos decil 1 segundo trimestre 2005} - \text{ingresos decil 1 segundo trimestre 2004} \over \text{ingresos decil 1 segundo trimestre 2004}}
- w:es:Discusión:Economía de Argentina 161 \Delta_{10,2005}={\text{ingresos decil 10 segundo trimestre 2005} - \text{ingresos decil 10 segundo trimestre 2004} \over \text{ingresos decil 10 segundo trimestre 2004}}
- w:es:Discusión:Economía de Argentina 163 {\Delta_{1,2005} \over \Delta_{1,2005} + \Delta_{10,2005}}
- w:es:Discusión:Economía de Argentina 163 {\Delta_{10,2005} \over \Delta_{1,2005} + \Delta_{10,2005}}
- w:es:Prostaféresis 46 0,075
- w:es:Prostaféresis 46 \frac {1}{2} (-0,616 + 0,766 )
- w:es:Prostaféresis 52 0,046
- w:es:Prostaféresis 52 \frac {1}{2} (-0,875 + 0,096 )
- w:es:Anexo:Fractales por dimensión de Hausdorff 152 \scriptstyle{\frac{\log(12)}{\log(3)} = 2,2618}
- w:es:Eficiencia de pase 38 \textstyle {(2,375 + 2,375 + 2,375 + 2,375) \over 6}\times 100 = 158,3
- w:es:Átomo de hidrógeno 28 \mu \, = \, \frac{m_e m_p}{m_e+m_p} \approx 0,999 m_e
- w:es:Teorema de Mills 20 \theta \approx 1,30637788386308069046...
- w:es:Ecuación trascendente 50 \scriptstyle \alpha = 4,493409\,
- w:es:Ecuación trascendente 52 \alpha = 7,7252;\quad 10,9042;\quad 14,0661;\quad 17,2208; \dots
- w:es:Ecuación trascendente 86 c = 1- (\sqrt{3} - 1)f(1)/[f(\sqrt{3}) - f(1) = 1,1527608
- w:es:Gráfico Q-Q 26 \frac{k-0,3175}{n+0,365}
- w:es:Gráfico Q-Q 28 \frac{k-0,326}{n+0,348}
- w:es:Gráfico Q-Q 30 \frac{k-0,375}{n+0,25}
- w:es:Ortobicúpula triangular elongada 54 V_{J_{35}} = 4,9550988153084743549606507192748
- w:es:Teoremas de Mertens 23 \lim_{n\to\infty}\left(-\ln\ln n+\sum_{p \leq n}\frac1p\right)=0,2614972128\ldots,
- w:es:Algoritmo rho de Pollard 19 1,177\sqrt{p}
- w:es:Dimensión fractal 40 D_H = \lim_{\epsilon \rightarrow 0} \frac{\log N(\epsilon)}{\log\left(\frac{1}{\epsilon}\right)} =\lim_{k \rightarrow \infty} \frac{\log3^k}{\log2^k} = \frac{\log 3}{\log 2}\approx 1,585.
- w:es:Descenso crioscópico 120 m = \frac{m_2/M_2}{m_1} = \frac{\frac{35 \text{ g}}{58,5 \mathrm{ \ g \, mol^{-1}}}}{1 \text{ kg}} = 0,598 \text{ m}
- w:es:Descenso crioscópico 123 \Delta T_{\rm c} = i \cdot k_f \cdot m = 2 \cdot 1,86 \cdot 0,598 = 2,2 \mathrm{^\circ C}
- w:es:Discusión:Fórmula de Hazen-Williams 15 Q = 0,3546 * C * ({Di})^{0,63} * S ^ {0,54}
- w:es:Discusión:Fórmula de Hazen-Williams 18 Q = 0,2787 * C * ({Di})^{(4,87/1,85)} * S ^ {(1/1.85)}
- w:es:Discusión:Fórmula de Hazen-Williams 19 Q = 0,2787 * C * ({Di})^{2,63} * S ^ {0,54}
- w:es:Péndulo simple 70 \scriptstyle 0,999\pi\ \text{rad}\ \approx\ 180^0
- w:es:Conmutatriz 196 m_f = \frac {0,943} {cos f \cdot R}
- w:es:Conmutatriz 199 m_f = \frac {0,472} {cos f \cdot R}
- w:es:Función de verosimilitud 50 \frac{L(0,6)}{L(0,5)} = \frac{0,6^3(1-0,6)}{0,5^3 (1-0,5)} = 1,3824 \ge 1.
- w:es:Usuario discusión:THINK TANK/Área de una Parábola 73 \,\,a \,\,= \,\,\sqrt{b^2 + (2xb)^2} =\sqrt{\,6^2 + \,(2 x 6)^2}\,\,= \,\,\sqrt{36 + 144}\,\,= \,\,\sqrt{180}\,\,\,= \,\,13,41640786
- w:es:Usuario discusión:THINK TANK/Área de una Parábola 77 \acute{A} rea \,\,\,de\,\,\, la \,\,\,semielipse\,\,= \,\,\frac{\,3,1416 \,x \sqrt{180} \,x 6}{2}\,\,= \,\,\frac{\,252,89}{2} \,\,= \,\,126,44
- w:es:Usuario discusión:THINK TANK/Área de una Parábola 88 \,\,a \,\,= \,\,\sqrt{180}\,\,\,= \,\,13,41640786
- w:es:Usuario discusión:THINK TANK/Área de una Parábola 97 \acute{A} rea \,\,= \,\frac{\,12\,x \sqrt{180}}{2}\,\,\,= \,\,80,495
- w:es:Usuario:THINK TANK/Apotema y Sagita 376 \,seno \, \,60^0 = \,0,866025404
- w:es:Usuario:THINK TANK/Apotema y Sagita 379 = \,2 \,x \,10 \,x \,0,866025404 \, = \, 17,32050808\,
- w:es:Usuario:THINK TANK/Apotema y Sagita 382 = \sqrt{10^2-\left(\frac{17,32050808}{2}\,\right)^2}\,
- w:es:Usuario:THINK TANK/Apotema y Sagita 396 \,seno \, \,45^0 = \,0,7071068
- w:es:Usuario:THINK TANK/Apotema y Sagita 399 = \,2 \,x \,10 \,x \,0,7071068 \, = \, 14,14213562\,
- w:es:Usuario:THINK TANK/Apotema y Sagita 402 = \sqrt{10^2-\left(\frac{14,14213562}{2}\,\right)^2}\,
- w:es:Usuario:THINK TANK/Apotema y Sagita 402 \,= \, \,7,071067812
- w:es:Usuario:THINK TANK/Apotema y Sagita 405 \,= \,10 \,- \,7,071067812 \, = \,2,928932188 \,
- w:es:Usuario:THINK TANK/Apotema y Sagita 417 \,seno \, \,36^0 = \,0,5877853
- w:es:Usuario:THINK TANK/Apotema y Sagita 420 = \,2 \,x \,10 \,x \,0,5877853 \, = \, 11,75570505\,
- w:es:Usuario:THINK TANK/Apotema y Sagita 423 = \sqrt{10^2-\left(\frac{11,75570505}{2}\,\right)^2}\,
- w:es:Usuario:THINK TANK/Apotema y Sagita 423 \,= \, \,8,090169944
- w:es:Usuario:THINK TANK/Apotema y Sagita 426 \,= \,10 \,- \,8,090169944 \, = \,1,909830056 \,
- w:es:Usuario:THINK TANK/Apotema y Sagita 436 \,seno \, \,30^0 = \,0,5000000
- w:es:Usuario:THINK TANK/Apotema y Sagita 439 = \,2 \,x \,10 \,x \,0,5000000 \, = \, 10\,
- w:es:Usuario:THINK TANK/Apotema y Sagita 442 \,= \, \,8,660254038
- w:es:Usuario:THINK TANK/Apotema y Sagita 445 \,= \,10 \,- \,8,660254038 \, = \,1,339745962 \,
- w:es:Usuario:THINK TANK/Apotema y Sagita 453 \, \frac {\,360^0} {\,2\,x\,7} \, \, = 25,71428^0
- w:es:Usuario:THINK TANK/Apotema y Sagita 456 \,seno \, \,25.71428^0 = \,0,4338836
- w:es:Usuario:THINK TANK/Apotema y Sagita 459 = \,2 \,x \,10 \,x \,0,4338836 \, = \, 8,677672985\,
- w:es:Usuario:THINK TANK/Apotema y Sagita 462 \,= \, \,8,677672985
- w:es:Usuario:THINK TANK/Apotema y Sagita 465 \,= \,10 \,- \,8,677672985 \, = \,0,990310888 \,
- w:es:Usuario:THINK TANK/Apotema y Sagita 475 \,seno \, \,22,5^0 = \,0,3826834
- w:es:Usuario:THINK TANK/Apotema y Sagita 478 = \,2 \,x \,10 \,x \,0,3826834 \, = \, 7,653668647\,
- w:es:Usuario:THINK TANK/Apotema y Sagita 481 = \sqrt{10^2-\left(\frac{7,653668647}{2}\,\right)^2}\,
- w:es:Usuario:THINK TANK/Apotema y Sagita 481 \,= \, \,9,238795325
- w:es:Usuario:THINK TANK/Apotema y Sagita 484 \,= \,10 \,- \,9,238795325 \, = \,0,761204675 \,
- w:es:Usuario:THINK TANK/Apotema y Sagita 491 \,seno \, \,0,5^0 = \,0,0087265
- w:es:Usuario:THINK TANK/Apotema y Sagita 494 = \,2 \,x \,10 \,x \,0,0087265 \, = \, 0,17453071\,
- w:es:Usuario:THINK TANK/Apotema y Sagita 497 = \sqrt{10^2-\left(\frac{0,17453071}{2}\,\right)^2}\,
- w:es:Usuario:THINK TANK/Apotema y Sagita 497 \,= \, \,9,999619231
- w:es:Usuario:THINK TANK/Apotema y Sagita 500 \,= \,10 \,- \,9,999619231 \, = \,0,000380769 \,
- w:es:Subfactorial 110 148,349 = !1 + !4 + !8 + !3 + !4 + !9
- w:es:Energía gravitatoria 67 g= \frac{GM}{R^2} \approx 9,80665\ \rm{\frac{m}{s^2}}
- w:es:Prueba de legibilidad de Flesch-Kincaid 24 206,835 - 1,015 \left ( \frac{\mbox{Nº total de palabras}}{\mbox{Nº total de oraciones}} \right ) - 84,6 \left ( \frac{\mbox{Nº total de sílabas}}{\mbox{Nº total de palabras}} \right )
- w:es:Usuario:Aprender95 14 pi=3,1415926535..
- w:es:Pantalla táctil de ultrasonidos 146 R_I=|\frac {z_s - z_a} {z_s + z_a}|^2 \approx 0,9989
- w:es:Pantalla táctil de ultrasonidos 165 W = \frac {\lambda^2 z^2 |p|^2} {2 \pi \rho_o c b^2} r^A \doteqdot 0,041
- w:es:Resonancia de Laplace 61 n_{Io} - 2\cdot n_{Eu} = n_{Eu} - 2\cdot n_{Ga} = 0,739507 \quad {}^o/d\acute{\imath}a
- w:es:Unbiquadio 71 \,^{238}_{92}\mathrm{U} + \,^{nat}_{32}\mathrm{Ge} \to \,^{308,310,311,312,314}_{ 124}\mathrm{Ubq} ^{*} \, \, \, hasta \, fisi \acute{o} n.
- w:es:Usuario:Wikipider 26 4x9/1+0.97/87-47/23,17489954x20012399,10561= 40
- w:es:Usuario:Wikipider 27 4854544,5456497/644789,4+57564987,x120-15x 2000145,45= 56
- w:es:Anexo:Ejemplos de cálculo de líneas eléctricas 18 \rho=0,0175 \Omega mm^2 m^{-1}
- w:es:Anexo:Ejemplos de cálculo de líneas eléctricas 62 S= \frac{2 \cdot 0,0175 \Omega mm^2 m^{-1}}{5V} \Sigma (150 \cdot 40 + 300 \cdot 0) A \cdot m;
- w:es:Factorial exponencial 47 S = \sum_{k=1}^{\infty}\frac{1}{a_k} = \frac{1}{1} + \frac{1}{2} + \frac{1}{9} + \frac{1}{262144} + \cdots = 1,6111149258083767361111 \ldots
- w:es:Autosimilaridad 87 r_1^D + r_2^D = \left(\frac{1}{3}\right)^D + \left(\frac{1}{3}\right)^D =2\left(\frac{1}{3}\right)^D =1 \quad \Rightarrow \quad D = \frac{\ln 2}{\ln 3}\approx 0,630\dots
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 280 \Delta F = 3,3/N = 3,3/9 = 0,3667
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 283 \scriptstyle BandaTransicion = \Delta F \times FrecuenciaMuestreo = 0,3667\times 48000Hz = 17600Hz
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 304 \scriptstyle w(-4) = 0.54-0.46\times\textstyle cos\scriptstyle \left( \frac{2\times \textstyle \pi \scriptstyle \times -4}{9} \textstyle\right) = 0,9723
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 307 \scriptstyle w(-3) = 0.54-0.46\times\textstyle cos\scriptstyle \left( \frac{2\times \textstyle \pi \scriptstyle \times -3}{9} \textstyle\right) = 0,7700
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 310 \scriptstyle w(-2) = 0.54-0.46\times\textstyle cos\scriptstyle \left( \frac{2\times \textstyle \pi \scriptstyle \times -2}{9} \textstyle\right) = 0,4601
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 313 \scriptstyle w(-1) = 0.54-0.46\times\textstyle cos\scriptstyle \left( \frac{2\times \textstyle \pi \scriptstyle \times -1}{9} \textstyle\right) = 0,1876
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 316 \scriptstyle w(0) = 0.54-0.46\times\textstyle cos\scriptstyle \left( \frac{2\times \textstyle \pi \scriptstyle \times 0}{9} \textstyle\right) = 0,0800
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 319 \scriptstyle w(1) = 0.54-0.46\times\textstyle cos\scriptstyle \left( \frac{2\times \textstyle \pi \scriptstyle \times 1}{9} \textstyle\right) = 0,1876
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 322 \scriptstyle w(2) = 0.54-0.46\times\textstyle cos\scriptstyle \left( \frac{2\times \textstyle \pi \scriptstyle \times 2}{9} \textstyle\right) = 0,4601
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 325 \scriptstyle w(3) = 0.54-0.46\times\textstyle cos\scriptstyle \left( \frac{2\times \textstyle \pi \scriptstyle \times 3}{9} \textstyle\right) = 0,7700
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 328 \scriptstyle w(4) = 0.54-0.46\times\textstyle cos\scriptstyle \left( \frac{2\times \textstyle \pi \scriptstyle \times 4}{9} \textstyle\right) = 0,9723
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 334 f_c = f_p+\Delta F/2 = 4000Hz/48000Hz + 0,3667/2 = 0,2667
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 335 \omega _c = 2\pi f_c = 1,6755
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 350 \scriptstyle h_d(-4)_{LP} = \textstyle \frac{\sin\left(\scriptstyle -4 \times 1,6755\right)}{\scriptstyle -4\textstyle \pi}\scriptstyle = 0,0324
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 351 \scriptstyle h(-4)_{LP} = w(-4)\times h_d(-4)_{LP} = 0,1077 \times 0,0324 = 0,0035
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 354 \scriptstyle h_d(-3)_{LP} = \textstyle \frac{\sin\left(\scriptstyle -3 \times 1,6755\right)}{\scriptstyle -3\textstyle \pi}\scriptstyle = -0,1009
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 355 \scriptstyle h(-3)_{LP} = w(-3)\times h_d(-3)_{LP} = 0,3100 \times -0,1009 = -0,0313
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 358 \scriptstyle h_d(-2)_{LP} = \textstyle \frac{\sin\left(\scriptstyle -2 \times 1,6755\right)}{\scriptstyle -2\textstyle \pi}\scriptstyle = -0,0331
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 359 \scriptstyle h(-2)_{LP} = w(-2)\times h_d(-2)_{LP} = 0,6199 \times -0,0331 = -0,0205
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 362 \scriptstyle h_d(-1)_{LP} = \textstyle \frac{\sin\left(\scriptstyle -1 \times 1,6755\right)}{\scriptstyle -1\textstyle \pi}\scriptstyle = 0,3166
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 363 \scriptstyle h(-1)_{LP} = w(-2)\times h_d(-1)_{LP} = 0,8924 \times 0,3166 = 0,2825
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 366 \scriptstyle h_d(0)_{LP} = 2\times f_c = 2\times 0,2667 = 0,5334
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 367 \scriptstyle h(0)_{LP} = w(0)\times h_d(0)_{LP} = 1,0000 \times 0,5334 = 0,5334
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 370 \scriptstyle h_d(1)_{LP} = \textstyle \frac{\sin\left(\scriptstyle 1 \times 1,6755\right)}{\scriptstyle 1\textstyle \pi}\scriptstyle = 0,3166
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 371 \scriptstyle h(1)_{LP} = w(1)\times h_d(1)_{LP} = 0,8924 \times 0,3166 = 0,2825
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 374 \scriptstyle h_d(2)_{LP} = \textstyle \frac{\sin\left(\scriptstyle 2 \times 1,6755\right)}{\scriptstyle 2\textstyle \pi}\scriptstyle = -0,0331
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 375 \scriptstyle h(2)_{LP} = w(2)\times h_d(2)_{LP} = 0,6199 \times -0,0331 = -0,0205
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 378 \scriptstyle h_d(3)_{LP} = \textstyle \frac{\sin\left(\scriptstyle 3 \times 1,6755\right)}{\scriptstyle 3\textstyle \pi}\scriptstyle = -0,1009
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 379 \scriptstyle h(3)_{LP} = w(3)\times h_d(3)_{LP} = 0,3100 \times -0,1009 = -0,0313
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 382 \scriptstyle h_d(4)_{LP} = \textstyle \frac{\sin\left(\scriptstyle 4 \times 1,6755\right)}{\scriptstyle 4\textstyle \pi}\scriptstyle = 0,0324
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 383 \scriptstyle h(4)_{LP} = w(4)\times h_d(4)_{LP} = 0,1077 \times 0,0324 = 0,0035
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 389 f_c = f_p-\Delta F/2 = 20000Hz/48000Hz - 0,3667/2 = 0,2333
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 390 \omega_c = 2\pi f_c = 1,4661
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 405 \scriptstyle h_d(-4)_{HP} = -\textstyle \frac{\sin\left(\scriptstyle -4 \times 1,4661\right)}{\scriptstyle -4\textstyle \pi}\scriptstyle = 0,0324
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 406 \scriptstyle h(-4)_{HP} = w(-4)\times h_d(-4)_{HP} = 0,1077 \times 0,0324 = 0,0035
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 409 \scriptstyle h_d(-3)_{HP} = -\textstyle \frac{\sin\left(\scriptstyle -3 \times 1,4661\right)}{\scriptstyle -3\textstyle \pi}\scriptstyle = 0,1009
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 410 \scriptstyle h(-3)_{HP} = w(-3)\times h_d(-3)_{HP} = 0,3100 \times 0,1009 = 0,0313
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 413 \scriptstyle h_d(-2)_{HP} = -\textstyle \frac{\sin\left(\scriptstyle -2 \times 1,4661\right)}{\scriptstyle -2\textstyle \pi}\scriptstyle = -0,0331
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 414 \scriptstyle h(-2)_{HP} = w(-2)\times h_d(-2)_{HP} = 0,6199 \times -0,0331 = -0,0205
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 417 \scriptstyle h_d(-1)_{HP} = -\textstyle \frac{\sin\left(\scriptstyle -1 \times 1,4661\right)}{\scriptstyle -1\textstyle \pi}\scriptstyle = -0,3166
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 418 \scriptstyle h(-1)_{HP} = w(-2)\times h_d(-1)_{HP} = 0,8924 \times -0,3166 = -0,2825
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 421 \scriptstyle h_d(0)_{HP} = 1-2\times f_c = 1-2\times 0,2333 = 0,5334
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 422 \scriptstyle h(0)_{HP} = w(0)\times h_d(0)_{HP} = 1,0000 \times 0,5334 = 0,5334
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 425 \scriptstyle h_d(1)_{HP} = -\textstyle \frac{\sin\left(\scriptstyle 1 \times 1,4661\right)}{\scriptstyle 1\textstyle \pi}\scriptstyle = -0,3166
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 426 \scriptstyle h(1)_{HP} = w(1)\times h_d(1)_{HP} = 0,8924 \times -0,3166 = -0,2825
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 429 \scriptstyle h_d(2)_{HP} = -\textstyle \frac{\sin\left(\scriptstyle 2 \times 1,4661\right)}{\scriptstyle 2\textstyle \pi}\scriptstyle = -0,0331
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 430 \scriptstyle h(2)_{HP} = w(2)\times h_d(2)_{HP} = 0,6199 \times -0,0331 = -0,0205
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 433 \scriptstyle h_d(3)_{HP} = -\textstyle \frac{\sin\left(\scriptstyle 3 \times 1,4661\right)}{\scriptstyle 3\textstyle \pi}\scriptstyle = 0,1009
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 434 \scriptstyle h(3)_{HP} = w(3)\times h_d(3)_{HP} = 0,3100 \times 0,1009 = 0,0313
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 437 \scriptstyle h_d(4)_{HP} = -\textstyle \frac{\sin\left(\scriptstyle 4 \times 1,4661\right)}{\scriptstyle 4\textstyle \pi}\scriptstyle = 0,0324
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 438 \scriptstyle h(4)_{HP} = w(4)\times h_d(4)_{HP} = 0,1077 \times 0,0324 = 0,0035
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 444 f_b = f_{bp}-\Delta F/2 = 10000Hz/48000Hz - 0,3667/2 = 0,0250
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 445 \omega_b = 2\pi f_b = 0,1571
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 446 f_a = f_{ap}+\Delta F/2 = 14000Hz/48000Hz + 0,367/2 = 0,4750
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 447 \omega_a = 2\pi f_a = 2,9845
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 462 \scriptstyle h_d(-4)_{BP} = \textstyle \frac{\sin\left(-4\times 2,9845\right) - \sin\left(-4\times0,1571\right)}{-4\pi} \scriptstyle = -0,0935
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 463 \scriptstyle h(-4)_{BP} = w(-4)\times h_d(-4)_{BP} = 0,1077 \times -0,0935 = -0,0101
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 466 \scriptstyle h_d(-3)_{BP} = \textstyle \frac{\sin\left(-3\times 2,9845\right) - \sin\left(-3\times0,1571\right)}{-3\pi} \scriptstyle = 0,0000
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 467 \scriptstyle h(-3)_{BP} = w(-3)\times h_d(-3)_{BP} = 0,3100 \times 0,0000 = 0,0000
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 470 \scriptstyle h_d(-2)_{BP} = \textstyle \frac{\sin\left(-2\times 2,9845\right) - \sin\left(-2\times0,1571\right)}{-2\pi} \scriptstyle = -0,0984
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 471 \scriptstyle h(-2)_{BP} = w(-2)\times h_d(-2)_{BP} = 0,6199 \times -0,0984 = -0,0601
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 474 \scriptstyle h_d(-1)_{BP} = \textstyle \frac{\sin\left(-1\times 2,9845\right) - \sin\left(-1\times0,1571\right)}{-1\pi} \scriptstyle = 0,0000
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 475 \scriptstyle h(-1)_{BP} = w(-2)\times h_d(-1)_{BP} = 0,8924 \times 0,0000 = 0,0000
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 478 \scriptstyle h_d(0)_{BP} = 2\times (f_a - f_b) = 2\times (0,4750-0,0250) = 0,9000
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 479 \scriptstyle h(0)_{BP} = w(0)\times h_d(0)_{BP} = 1,0000 \times 0,9000 = 0,9000
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 482 \scriptstyle h_d(1)_{BP} = \textstyle \frac{\sin\left(1\times 2,9845\right) - \sin\left(1\times0,1571\right)}{1\pi} \scriptstyle = 0,0000
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 483 \scriptstyle h(1)_{BP} = w(1)\times h_d(1)_{BP} = 0,8924 \times 0,0000 = 0,0000
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 486 \scriptstyle h_d(2)_{BP} = \textstyle \frac{\sin\left(2\times 2,9845\right) - \sin\left(2\times0,1571\right)}{2\pi} \scriptstyle = -0,0984
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 487 \scriptstyle h(2)_{BP} = w(2)\times h_d(2)_{BP} = 0,6199 \times -0,0984 = -0,0601
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 490 \scriptstyle h_d(3)_{BP} = \textstyle \frac{\sin\left(3\times 2,9845\right) - \sin\left(3\times0,1571\right)}{3\pi} \scriptstyle = 0,0000
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 491 \scriptstyle h(3)_{BP} = w(3)\times h_d(3)_{BP} = 0,3100 \times 0,0000 = 0,0000
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 494 \scriptstyle h_d(4)_{BP} = \textstyle \frac{\sin\left(4\times 2,9845\right) - \sin\left(4\times0,1571\right)}{4\pi} \scriptstyle = -0,0935
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 495 \scriptstyle h(4)_{BP} = w(4)\times h_d(4)_{BP} = 0,1077 \times -0,0935 = -0,0101
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 501 f_b = f_{bp}+\Delta F/2 = 2000Hz/48000Hz + 0,3667/2 = 0,2250
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 502 \omega_b = 2\pi f_b = 1,4137
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 503 f_a = f_{ap}-\Delta F/2 = 22000Hz/48000Hz - 0,3667/2 = 0,2750
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 504 \omega_a = 2\pi f_a = 1,7279
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 519 \scriptstyle h_d(-4)_{BS} = \textstyle \frac{\sin\left(-4\times 1,4137\right) - \sin\left(-4\times 1,7279\right)}{-4\pi} \scriptstyle = -0,0935
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 520 \scriptstyle h(-4)_{BS} = w(-4)\times h_d(-4)_{BS} = 0,1077 \times -0,0935 = -0,0101
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 523 \scriptstyle h_d(-3)_{BS} = \textstyle \frac{\sin\left(-3\times 1,4137\right) - \sin\left(-3\times 1,7279\right)}{-3\pi} \scriptstyle = 0,0000
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 524 \scriptstyle h(-3)_{BS} = w(-3)\times h_d(-3)_{BS} = 0,3100 \times 0,0000 = 0,0000
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 527 \scriptstyle h_d(-2)_{BS} = \textstyle \frac{\sin\left(-2\times 1,4137\right) - \sin\left(-2\times 1,7279\right)}{-2\pi} \scriptstyle = 0,0984
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 528 \scriptstyle h(-2)_{BS} = w(-2)\times h_d(-2)_{BS} = 0,6199 \times 0,0984 = 0,0601
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 531 \scriptstyle h_d(-1)_{BS} = \textstyle \frac{\sin\left(-1\times 1,4137\right) - \sin\left(-1\times 1,7279\right)}{-1\pi} \scriptstyle = 0,0000
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 532 \scriptstyle h(-1)_{BS} = w(-2)\times h_d(-1)_{BS} = 0,8924 \times 0,0000 = 0,0000
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 535 \scriptstyle h_d(0)_{BS} = 1-2\times (f_a - f_b) = 1-2\times (1,7279-1,4137) = 0,9000
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 536 \scriptstyle h(0)_{BS} = w(0)\times h_d(0)_{BS} = 1,0000 \times 0,9000 = 0,9000
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 539 \scriptstyle h_d(1)_{BS} = \textstyle \frac{\sin\left(1\times 1,4137\right) - \sin\left(1\times 1,7279\right)}{1\pi} \scriptstyle = 0,0000
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 540 \scriptstyle h(1)_{BS} = w(1)\times h_d(1)_{BS} = 0,8924 \times 0,0000 = 0,0000
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 543 \scriptstyle h_d(2)_{BS} = \textstyle \frac{\sin\left(2\times 1,4137\right) - \sin\left(2\times 1,7279\right)}{2\pi} \scriptstyle = 0,0984
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 544 \scriptstyle h(2)_{BS} = w(2)\times h_d(2)_{BS} = 0,6199 \times 0,0984 = 0,0601
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 547 \scriptstyle h_d(3)_{BS} = \textstyle \frac{\sin\left(3\times 1,4137\right) - \sin\left(3\times 1,7279\right)}{3\pi} \scriptstyle = 0,0000
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 548 \scriptstyle h(3)_{BS} = w(3)\times h_d(3)_{BS} = 0,3100 \times 0,0000 = 0,0000
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 551 \scriptstyle h_d(4)_{BS} = \textstyle \frac{\sin\left(4\times 1,4137\right) - \sin\left(4\times 1,7279\right)}{4\pi} \scriptstyle = -0,0935
- w:es:Diseño de Filtros de Respuesta Finita al Impulso 552 \scriptstyle h(4)_{BS} = w(4)\times h_d(4)_{BS} = 0,1077 \times -0,0935 = -0,0101
- w:es:Problema del ganado 92 \begin{align}B &{}=7,460,514 \\W &{}=10,366,482 \\D &{}=7,358,060 \\Y &{}=4,149,387 \\b &{}=4,893,246 \\w &{}=7,206,360 \\d &{}=3,515,820 \\y &{}=5,439,213\end{align}
- w:es:Problema del ganado 132 N = 7,760271\times 10^{206544}
- w:es:Pie cúbico por minuto 28 \rm \frac{1pie^3}{1minuto}\cdot\frac{(0.3048m)^3}{1pie^3}\cdot\frac{1,000 L}{1 m^3}\cdot\frac{1 minuto}{60 s}
- w:es:Discusión:Polígono regular 38 \tan \delta = \cfrac {10}{2 \cdot 6.88} \simeq 0,7267
- w:es:Discusión:Polígono regular 45 \delta = \arctan(0,7267) \simeq 36^\circ \;
- w:es:Parámetro de escala 73 1/\Phi^{-1}(3/4) \approx 1,4826
- w:es:Parámetro de escala 75 1,4826... * DAM
- w:es:Representación logarítmica 191 {3,802} = \frac{X}{100}
- w:es:Ecuación de Van der Waals 240 Z_\mathrm{c,vdW}= \frac{3}{8}=0,375
- w:es:Ámbar (color) 60 y = x - 0,120
- w:es:Ámbar (color) 63 y = 0,390
- w:es:Ámbar (color) 66 y = 0,790 - 0,670 x
- w:es:Acidosis metabólica 73 SBE = 0,9287 \cdot [HCO_3^- - 24.4 + 14,83 \cdot (pH - 7,4)]
- w:es:Ecuación de tercer grado 171 t = x - 1 = u + v - 1 = \sqrt[3]{\frac {-1 - \sqrt {5}} {2}} + \sqrt[3]{\frac {-1 + \sqrt {5}} {2}} - 1 \approx -1,3221853546
- w:es:Humedad del aire 61 \log p_{vs} = \frac{7,5.(T_s - 273,16)}{T_s - 35,85} + 2,7858
- w:es:Humedad del aire 106 w = \frac{p_v}{p - p_v}.\frac{R_a}{R_v} = 0,622.\frac{p_v}{p - p_v}
- w:es:Humedad del aire 111 w = \frac {p_v}{p}.\frac {R_a}{R_v} = 0,622.\frac {p_v}{p}
- w:es:Humedad del aire 134 \; = \;\frac {0,622.\frac{p_v}{p-p_v}}{0,622.\frac{p_{vs}}{p-p_{vs}}}\;
- w:es:Longitud de Debye 148 \kappa^{-1}(\mathrm{nm}) = \frac{0,304}{\sqrt{I(\mathrm{M})}}
- w:es:Teorema de Lochs 19 \lim_{n \rightarrow \infty} \frac{m}{n} = \frac {6 \ln 2 \ln 10}{ \pi^2} \approx 0,97027014\, .
- w:es:Teorema de Lochs 25 \frac { \pi^2}{6 \ln 2 \ln 10} \approx 1,03064083\, ,
- w:es:Vincenzo Viviani 35 V=R^3\,(\frac{2\pi}3-\frac89)\approx 1,2055\,(para \,\,R=1)
- w:es:Escuadría 18 {e}=\frac{D}{\sqrt 2}=0,707 {D}
- w:es:Constante de Lévy 22 \gamma = e^{\pi^2/(12\ln2)} = 3,275822918721811159787681882\ldots
- w:es:Análisis de vibraciones 32 E=0,9465\left( \frac{mf_f^2}{b}\right ) \left( \frac{L^3}{t^3} \right )T_1
- w:es:Análisis de vibraciones 41 T_1=1+6,585(1+0,0752\mu+0,8109\mu^2)\left( \frac{t}{L}\right)^2 -0,868 \left( \frac{t}{L} \right )^4-\left( \frac{8,340(1+0,2023\mu+2,173\mu^2)\left( \frac{t}{L}\right )^4}{1,000+6,338(1+0,1408\mu+1,536\mu^2)\left( \frac{t}{L} \right )^2} \right)
- w:es:Análisis de vibraciones 53 R=\left( \frac{1+\left( \frac{b}{t}\right )^2}{4-2,521 \frac{t}{b}\left( 1-\frac{1,991}{e^\pi\frac{b}{t}+1} \right )} \right)\left( 1+ \frac{0,00851n^2b^2}{L^2}\right)-0,060\left( \frac{nb}{L}\right)^\frac{3}{2}\left( \frac{b}{t}-1\right)^2
- w:es:Usuario:LordT/apuntes/Apuntes 151 \begin{align} & \overset{5}{\mathop{1}}\,\overset{4}{\mathop{1}}\,\overset{3}{\mathop{0}}\,\overset{2}{\mathop{1}}\,\overset{1}{\mathop{0}}\,\overset{0}{\mathop{1}}\,,\overset{-1}{\mathop{1}}\,\overset{-2}{\mathop{0}}\,\overset{-3}{\mathop{1}}\,=1\cdot 2^{5}+1\cdot 2^{4}+0\cdot 2^{3}+1\cdot 2^{2}+0\cdot 2^{1}+1\cdot 2^{0}+1\cdot 2^{-1}+0\cdot 2^{-2}+1\cdot 2^{-3}= \\ & =32+16+0+4+0+1+\frac{1}{2^{1}}+\frac{0}{2^{2}}+\frac{1}{2^{3}}=32+16+0+4+0+1+0,5+0+0,125=53,625 \\ \end{align}
- w:es:Problema del solapamiento mínimo 60 M(n)/n < 0,38201
- w:es:Problema del solapamiento mínimo 63 M(n)/n < 0,38093
- w:es:Duración de Macaulay 58 DMac = \frac{(1 \cdot \frac{50} { (1,06)^{1}} +2 \cdot \frac{50} { (1,06)^{2}} + 3 \cdot \frac{1.050} { (1,06)^{3}})}{ \frac{50} { (1,06)^{1}}+ \frac{50} { (1,06)^{2}} + \frac{1.050} { (1,06)^{3} }}= 2,857
- w:es:Luminosidad (color) 89 L^\star =\begin{cases}116 \cdot \left(\dfrac{Y}{Y_n}\right)^{1/3} - 16 & \mbox{si } \dfrac{Y}{Y_n} > \left(\dfrac{6}{29}\right)^3 = 0,008856, \\116 \cdot \dfrac13 \cdot \left( \dfrac{29}{6} \right)^2 \cdot \dfrac{Y}{Y_n} = 903,3 \cdot \dfrac{Y}{Y_n} & \mbox{en otro caso}.\end{cases}
- w:es:Teorema de los tres momentos 131 M_{max}^+ = \frac{9}{128}qL^2 \approx 0,0703 qL^2
- w:es:Diseño de transformadores 80 An : 11,55^{2} \, = 133,4025... W\,
- w:es:Diseño de transformadores 89 I : \frac{125}{220} = 0,5681... \; A
- w:es:Usuario:Jerowiki/mantenimiento 241 \begin{array}{l}0,583333333333... \\= 0,58\overline{3} \\= 0,58\underline{3} \\= 0,58[3]\end{array}
- w:es:Logaritmo decimal 28 G: 1,10,100,1000,...,
- w:es:Característica (logaritmos) 24 \overline{2},123=0,123-2=8,123-10
- w:es:Ecuación del cohete de Tsiolkovski 68 v_e \ln 2 \approx 0,693 v_e
- w:es:Ecuación del cohete de Tsiolkovski 112 v_e=0,6275 \Delta v
- w:es:Ecuación del cohete de Tsiolkovski 113 E = 0,772 m_1(\Delta v)^2
- w:es:Usuario:LFISPKETSITUPM2011/Taller 318 \varepsilon\ = \delta\ T = 0,030567s
- w:es:Usuario:LFISPKETSITUPM2011/Taller 319 \varepsilon\ = \delta\ T' = 0,011566s
- w:es:Usuario:LFISPKETSITUPM2011/Taller 325 \delta\ T_0 = 0,0210665s
- w:es:Usuario:LFISPKETSITUPM2011/Taller 331 \varepsilon_0 = \delta\ T_0 = 0,02190916
- w:es:Usuario:LFISPKETSITUPM2011/Taller 348 g = 4 \pi ^2 {43 \over (1,31883262)^2} = 975,99779 \ cm/s^2
- w:es:Usuario:LFISPKETSITUPM2011/Taller 352 \Delta\ g = g ( {\Delta\ l \over l}\ + \ 2 {\Delta\ T \over T} = 975,997779 \ ( \ {0,1 \over 43} \ + \ 2 { 0,02 \over 1,131883262}) = 34,696776 \; cm/s^2
- w:es:Luma (vídeo) 19 Y' =0,299R' + 0,587G' + 0,114B'
- w:es:Sistema iterativo de funciones 52 r_1^D + r_2^D = \left(\frac{1}{3}\right)^D + \left(\frac{1}{3}\right)^D =2\left(\frac{1}{3}\right)^D =1 \quad \Rightarrow \quad D = \frac{\ln 2}{\ln 3}\approx 0,630\dots
- w:es:Usuario:LFISPKETSITUPM2011/Seleccion 321 g = 4 \pi ^2 {43 \over (1,31883262)^2} = 975,99779 cm/s^2
- w:es:Usuario:LFISPKETSITUPM2011/Seleccion 325 \Delta\ g = g ({\Delta\ l \over l} + 2 {\Delta\ T \over T} = 975,997779 ({0,1 \over 43} + 2 {0,02 \over 1,131883262}) = 34,696776 cm/s^2
- w:es:Conducto de aire 159 P_A-P_B= \alpha . 2,5984.10^{-3}.L \frac {Q^{1,82}.Per^{1,22}}{S^{3,04}}=\alpha . 2,5984.10^{-3}.L \frac {Q^{1,82}}{D_{eq}^{4,86}}
- w:es:Ecuación de Antoine 71 \log_{10} P\ =\ 1,1650 \left( 5,8524 - \frac{1000}{80 + 216} \right)
- w:es:Pelotón (ciclismo) 39 \displaystyle F = 0,007 \cdot V^2 \cdot S
- w:es:Pelotón (ciclismo) 51 \displaystyle F = 0,7 \cdot 0,007 \cdot V^2 \cdot S = 0,005 \cdot V^2 \cdot S
- w:es:Pelotón (ciclismo) 65 \displaystyle F = 0,005 \cdot V^2 \cdot 0,4 = 0,002 \cdot V^2 = (V/10)^2/5
- w:es:Acústica variable 24 TR = \frac{0,161 V}{Aa}
- w:es:Usuario:Celemin/Ortoedro áureo 44 Siendo: \, \varphi = \, \frac{1 + \sqrt{5}}{2} \approx \, 1,618033988749894848204586834365638117720309...
- w:es:Usuario:Celemin/Ortoedro áureo 51 D \, = \, 1 + \sqrt{5} = \, 2 \varphi \, \approx \, 3,2360679775
- w:es:Ortoedro áureo 40 Siendo: \, \varphi = \, \frac{1 + \sqrt{5}}{2} \approx \, 1,618033988749894848204586834365638117720309...
- w:es:Ortoedro áureo 47 D \, = \, 1 + \sqrt{5} = \, 2 \varphi \, \approx \, 3,2360679775
- w:es:Constante de masa atómica 17 1,660 539 040(20)\cdot 10^{-27}
- w:es:Material de Saint-Venant–Kirchhoff 61 \scriptstyle \Lambda \approx 0,577\dots
- w:es:Coste amortizado 61 50.000 - 500 = 18.360,428 \times (1 +i_e)^{-1} + 18.360,428 \times (1 +i_e)^{-2} + 18.360,428 \times (1 +i_e)^{-3}
- w:es:Pila de combustible 386 F = 96\,485,339\,9(24)\,\mbox{C mol}^{-1}
- w:es:Teatro Municipal de San Bernardo 47 \varphi = \frac{1 + \sqrt{5}}{2} \approx 1,61803398874989...
- w:es:Regla de Chvorinov 27 B = \left[ \frac{\rho_m L}{ \left( T _m-T_o \right )} \right ]^2 \left[ \frac{\pi }{4 k \rho c} \right] \left[ 1 + \left( \frac{c_m \Delta T_s}{L} \right)^2 \right] \left(\frac{1 min}{60 s}\right) \left(\frac{1 m^2}{10,000 cm^2}\right)
- w:es:Teorema de Liouville (álgebra diferencial) 59 \gamma = \lim_{n \rightarrow \infty} \left[ \sum_{k = 1}^n \frac{1}{k} - \ln(n)\right] \approx 0,577 215 664 901 ...
- w:es:Integración simbólica 46 \int_{-1}^1 x^2\,dx \approx 0,6667
- w:es:Usuario:LFISETSITUPM2013/Taller 179 \varepsilon\ = \delta\ T = 0,030567s
- w:es:Usuario:LFISETSITUPM2013/Taller 180 \varepsilon\ = \delta\ T' = 0,011566s
- w:es:Usuario:LFISETSITUPM2013/Taller 184 \delta\ T_0 = 0,0210665s
- w:es:Usuario:LFISETSITUPM2013/Taller 188 \varepsilon_0 = \delta\ T_0 = 0,02190916
- w:es:Usuario:LFISETSITUPM2013/Taller 203 g = 4 \pi ^2 {43 \over (1,31883262)^2} = 975,99779 \ cm/s^2
- w:es:Usuario:LFISETSITUPM2013/Taller 207 \Delta\ g = g ( {\Delta\ l \over l}\ + \ 2 {\Delta\ T \over T}) = 34,696776 \; cm/s^2
- w:es:Compuesto intersticial 35 \scriptstyle d \sqrt{2} / 4 \, \approx \, 0,612\,d
- w:es:Compuesto intersticial 35 \scriptstyle d / \sqrt{2} \, \approx \, 0,707\,d
- w:es:Compuesto intersticial 38 \scriptstyle d / \sqrt{3} \, \approx \, 0,577 \, d
- w:es:Compuesto intersticial 38 \scriptstyle d\,\sqrt{6}\,/\,3\,\approx\,0,816\,d
- w:es:Amagat 31 \eta= \left(\frac{1\, {\rm atm}}{p_0}\right)\left(\frac{273.15\, {\rm K}}{(273.15+20)\, {\rm K}}\right) {\rm amagat}=0,932\ {\rm amagat}
- w:es:Usuario:Amalia1983/Taller 82 \eta_H = 0,675 \times V_{real}
- w:es:Usuario:Amalia1983/Taller 134 F = 96\,485,339\,9(24)\,\mbox{C mol}^{-1}
- w:es:Usuario:Jose1901c/Capitalización Continua 52 M = {100,000} \, e^{0.25(3)}
- w:es:Usuario:Jose1901c/Capitalización Continua 54 M = {211,700}
- w:es:Usuario:Jose1901c/Capitalización Continua 58 C\, = \frac{1,000}{e\,^{0.09(1/12)}}
- w:es:Capitalización continua 48 M = {100,000} \, e^{0.25(3)}
- w:es:Capitalización continua 50 M = {211,700}
- w:es:Capitalización continua 56 C\, = \frac{1,000}{e\,^{0.09(1/12)}}
- w:es:Linealización 20 \sqrt{4,001} = \sqrt{4 + 0,001}
- w:es:Linealización 38 \sqrt{4,001}
- w:es:Linealización 38 2 + \frac{4,001-4}{4} = 2.00025
- w:es:Linealización 38 \sqrt{4,001}
- w:es:Ecuación de Sackur-Tetrode 46 \frac{S_0}{R} = -1,151\ 7078(23)\text{ para } p^\ominus = 100\text{ kPa};
- w:es:Ecuación de Sackur-Tetrode 47 \frac{S_0}{R} = -1,164\ 8708(23)\text{ para } p^\ominus = 101,325\text{ kPa}.
- w:es:Usuario:Psovo137/Taller 229 n \approx (533!)^2 * 3^{19} * 2 * 1,0552695531403177888814 =
- w:es:Usuario:Psovo137/Taller 231 = 4,446591526292623184*10^{2456}
- w:es:Baudhayana-sulba-sutra 66 1 + \frac{1}{3} + \frac{1}{3 \cdot 4} - \frac{1}{3 \cdot4 \cdot 34} = \frac{577}{408} \approx 1,414215686.
- w:es:Discusión:Hemisferios de Magdeburgo 21 V = \frac{4\ \pi \ 5/2\ dm^3}{3} = 65,44984583\ dm^3\ o\ sea\ 65,44984583\ L
- w:es:Discusión:Hemisferios de Magdeburgo 29 diam =2\ \sqrt[3] \frac {500\ dm^3\ 3}{4\ \pi} = 9,84745021\ dm\ o\ sea\ 98,4745021\ cm
- w:es:Usuario:THE MATES MASTER/Taller 124 65368543,5674613276342 : 4347
- w:es:Usuario:Melquiades Babilonia/codigo 47 \pi = \frac{22}{7476476466} = 3,141678092778351442651
- w:es:Usuario:Melquiades Babilonia/codigo 52 3,1408 \approx \frac{223}{71} \leq \pi \leq \frac{22}{7} \approx 3,1428
- w:es:Usuario:Mr. Moonlight/Taller 20 \sqrt 2=1,4142
- w:es:Usuario:Esperanamia444 159 \pi=3,1415926535897932384626\dots
- w:es:Usuario:Esperanamia444 167 0,00000\dots
- w:es:Usuario:Esperanamia444 169 \mathbb{R}^+\cup\mathbb{R}^-\cup\{0,00000\dots\}
- w:es:Usuario:MrLejinad/Baúl 77 T = \frac{2897,6\ \mathrm{\mu m\cdot{}^\circ K}}{0,475\ \mu\mathrm{m}}=6099\ \mathrm{ {}^\circ K}
- w:es:Usuario:WIKIFISICA2015/Constante de Planck 276 h =\,\, 6,626\ 069 \ 57(29) \times10^{-34}\ \mbox{J}\cdot\mbox{s} \,\, = \,\, 4,135\ 667\ 51(40) \times10^{-15}\ \mbox{eV}\cdot\mbox{s}
- w:es:Formato en coma flotante de simple precisión 51 v = 1.25 \times 2^{-3} = 0,15625
- w:es:Formato en coma flotante de simple precisión 99 63=m \times 2^5 \Rightarrow m= \frac {63}{ 2^5} = 1,96875
- w:es:Formato en coma flotante de simple precisión 110 7,3491 \times 10^{22}=2^x \Rightarrow x=\frac{\ln 7,3491 \times 10^{22}} {\ln 2} \approx 75,95
- w:es:Formato en coma flotante de simple precisión 114 7,3491 \times 10^{22} = M \times 2^{75} \Rightarrow M = 1,945290573_{10}
- w:es:Formato en coma flotante de simple precisión 123 1,023 \times 10^{-21}=2^x \Rightarrow x=\frac{\ln 1,023 \times 10^{-21}} {\ln 2} \approx -69,72
- w:es:Formato en coma flotante de simple precisión 127 1,023 \times 10^{-21}=m \times 2^{-70} \Rightarrow m=\frac{1,023 \times 10^{-21}} {2^{-70}} \approx 1,207745228
- w:es:Formato en coma flotante de simple precisión 146 \begin{array}{llll} \text{7F7FFFFF}_{16} & = & 0-11111110-11111111111111111111111_{2} &=& (1-2^{-24}) \times 2^{128} \approx 3,402823466 \times 10^{38}\\ \text{00800000}_{16} & = & 0-00000001-00000000000000000000000_{2} &=& 2^{-126} \approx 1,175494351 \times 10^{-38} \end{array}
- w:es:Formato en coma flotante de simple precisión 185 1,5625 \times 2^{4} = 25
- w:es:Formato en coma flotante de simple precisión 193 [-16777216,16777216]
- w:es:Formato en coma flotante de simple precisión 196 [16777217,33554432]
- w:es:Notación Steinhaus–Moser 72 M(256,256,3)\approx(256\uparrow)^{256}257
- w:es:Notación Steinhaus–Moser 79 M(256,256,3)\approx(10\uparrow)^{255}1.99\times 10^{619}
- w:es:Casi seguro 48 p^{1,000,000}\neq 0
- w:es:Casi seguro 48 1 - p^{1,000,000}
- w:es:Plantilla:Portada Bueno/3646 22 \pi \approx 3,14159265358979323846 \; \dots
- w:es:Aire húmedo 38 M_{as}=\frac {78,08*28,016 + 20,95*32 + ...}{100}=28,966 g/mol
- w:es:Aire húmedo 59 c_v=0,718 kJ/(kg.K)
- w:es:Aire húmedo 60 c_p = 1,005 kJ/(kg.K)
- w:es:Presión parcial de un gas en sangre 53 SO_2 = (\frac{23,400}{pO_2^3 + 150 pO_2} +1)^{-1}
- w:es:Matriz de Cabibbo-Kobayashi-Maskawa 149 {0,2257}_{-0,0010}^{+0,0009}
- w:es:Matriz de Cabibbo-Kobayashi-Maskawa 153 {0,814}_{-0,022}^{+0,021}
- w:es:Matriz de Cabibbo-Kobayashi-Maskawa 157 {0,135}_{-0,016}^{+0,031}
- w:es:Matriz de Cabibbo-Kobayashi-Maskawa 161 {0,349}_{-0,017}^{+0,015}
- w:es:Orden de magnitud (números) 302 25^{1,312,000} \approx 1.956 \times 10^{1,834,097}
- w:es:Notación flecha de Knuth 94 3\uparrow\uparrow\uparrow2 = 3\uparrow\uparrow3 = 3^{3^3} = 3^{27}=7,625,597,484,987
- w:es:Einstein (unidad de medida) 43 E = N \cdot h \cdot \nu = N \cdot h \cdot c/\lambda = 6,022\,10^{23} \cdot 6,626\,10^{-34} \cdot 299.792.458 / 555\,10^{-9} = 215536\,J
- w:es:Usuario:Jmleonrojas/Taller 1516 \begin{align}EF + TI + TC &= \left(\leqslant 10\right) + TI + TC \\ &= \left(\leqslant 10\right) + \left(\left(\leqslant 3\right) + \left(\leqslant 0,75\right)\right) + TC \\ &= \left(\leqslant 10\right) + \left(\left(\leqslant 3\right) + \left(\leqslant 0,75\right)\right) + \left(\left(\leqslant \overline{0,5}\right) + \left(\leqslant \overline{0,125}\right) + \left(\leqslant \overline{0,125}\right)\right)\end{align}
- w:es:Experimento de Davisson-Germer 45 \lambda = D \cdot \sin \alpha = 215 \, pm \cdot \sin 50^\circ = 215 \, pm \, \cdot 0,766 = 165 \, pm
- w:es:Experimento de Davisson-Germer 54 6,626 \cdot 10^{-34} J \cdot s
- w:es:Experimento de Davisson-Germer 71 e=1,602 \cdot 10^{-19} C
- w:es:Experimento de Davisson-Germer 71 h=6,626 \cdot 10^{-34} J \cdot s
- w:es:Usuario:123/Taller 15 \Delta_{1,2005}={\text{ingresos decil 1 segundo trimestre 2005} - \text{ingresos decil 1 segundo trimestre 2004} \over \text{ingresos decil 1 segundo trimestre 2004}}
- w:es:Usuario:123/Taller 17 {\Delta_{1,2005} \over \Delta_{1,2005} + \Delta_{10,2005}}
- w:es:Sucesión de números reales 33 e\ \approx 2,71828 18284 59045 23536 ...
- w:es:Calibre de un cartucho 60 d_n = \left(\frac{6 \cdot 453,59~\mathrm{g}}{11,352~\mathrm{g/cm}^3 \cdot n \cdot \pi}\right)^{1/3} = \frac{4,2416}{\sqrt[3]{n}}~\mathrm{cm}
- w:es:Birmingham Wire Gauge 129 in = 0,3 \cdot 0,897^{(BWG-1)}
- w:es:Integración de Verlet 83 \Delta t = 0,005
- w:es:Integración de Verlet 83 \Delta t = 0,001
- w:es:Wikipedia discusión:Proyecto educativo/Matemática discreta y numérica/Plan de aprendizaje 146 \begin{align}EF + TI + TC &= \left(\leqslant 10\right) + TI + TC \\ &= \left(\leqslant 10\right) + \left(\left(\leqslant 3\right) + \left(\leqslant 0,75\right)\right) + TC \\ &= \left(\leqslant 10\right) + \left(\left(\leqslant 3\right) + \left(\leqslant 0,75\right)\right) + \left(\left(\leqslant \overline{0,5}\right) + \left(\leqslant \overline{0,125}\right) + \left(\leqslant \overline{0,125}\right)\right)\end{align}
- w:es:Wikipedia discusión:Proyecto educativo/Matemática discreta y numérica/Plan de aprendizaje/Curso académico 2016-2017 67 \begin{align}TI + TC + EF &= TI + TC + \left(\leqslant 5,5\right) \\ &= TI + \left(\overline{0,5} + \overline{0,125} + \overline{0,125}\right) + \left(\leqslant 5,5\right) \\ &= \left(\left(\leqslant 3\right) + \left(\leqslant 0,75\right)\right) + \left(\overline{0,5} + \overline{0,125} + \overline{0,125}\right) + \left(\leqslant 5,5\right) \\ &\leqslant 10\end{align}
- w:es:Wikipedia discusión:Proyecto educativo/Matemática discreta y numérica/Plan de aprendizaje/Curso académico 2016-2017 83 \begin{align}EF + TI + TC &= \left(\leqslant 10\right) + TI + TC \\ &= \left(\leqslant 10\right) + \left(\left(\leqslant 3\right) + \left(\leqslant 0,75\right)\right) + TC \\ &= \left(\leqslant 10\right) + \left(\left(\leqslant 3\right) + \left(\leqslant 0,75\right)\right) + \left(\overline{0,5} + \overline{0,125} + \overline{0,125}\right)\end{align}
- w:es:Wikipedia discusión:Proyecto educativo/Matemática discreta y numérica/Plan de aprendizaje/Curso académico 2016-2017 109 \left\{\begin{align}TI &= 0 \\EF + TC &= \left(\leqslant 10\right) + TC \\ &= \left(\leqslant 10\right) + \left(\overline{0,5} + \overline{0,125} + \overline{0,125}\right)\end{align}\right .
- w:es:Fractal de Vicsek 18 \log(5)/\log(3)\approx 1,46497...
- w:es:Sistema de Delay 30 C = 331,45 + 0,597t
- w:es:Ciclos por instrucción 101 \text{T} = \text{CPI} \times \text{Número de instrucciones} \times \text{tiempo de reloj} = \frac{\text{CPI} \times \text{Número de instrucciones}}{\text{frecuencia}} = \frac{1,55 \times 100000}{400 \times 1000000} = \frac{1,55}{4000} = 0,0003875 \, \text{s} = 0,3875 \, \text{ms}
- w:es:Matriz numérica de una imagen digital 65 Fc[(R_{i,j,}G_{i,j,}B_{i,j,})-(128,128,128)] + (128,128,128)
- w:es:COGIX 40 COGIX_{gas} = p_{el} - 1,053 \cdot p_{gas} - 0,47 \frac{t_{CO2e}}{MWh} \cdot p_{CO_2}
- w:es:Polinomio de torre 110 \textstyle{\frac{8! 8!}{3!5!5!}} = 18,816
- w:es:Cuaterna armónica 307 \lim_{n\rightarrow\infty}\frac{P_{n+2}-P_{n+1}}{P_{n+1}-P_{n}}=-\Phi^{-2}= -0,381966011...
- w:es:Cuaterna armónica 321 \lim_{n\rightarrow\infty}\frac{P_{n+2}-P_{n+1}}{P_{n+1}-P_{n}}= \lim_{n\rightarrow\infty}\frac{q_1^{\,\,n+2}-q_1^{\,\,n+1}}{q_1^{\,\,n+1}-q_1^{\,\,n}} = \lim_{n\rightarrow\infty}\frac{q_1^{\,\,n+1} (q_1-1)}{q_1^{\,\,n} (q_1-1)}= q_1 = -\Phi^{-2} = -0,381966011...
- w:es:Cuaterna armónica 328 \lim_{n\rightarrow\infty}\frac{P_{n+2}-P_{n+1}}{P_{n+1}-P_{n}}= \lim_{n\rightarrow\infty}\frac{q_2^{\,\,n+2}-q_2^{\,\,n+1}}{q_2^{\,\,n+1}-q_2^{\,\,n}} = \lim_{n\rightarrow\infty}\frac{q_2^{\,\,n+1} (q_2-1)}{q_2^{\,\,n} (q_2-1)}= q_2 = -\Phi^{2} = -2,61803399...
- w:es:Wikipedia discusión:Proyecto educativo/Matemática discreta y numérica/Plan de aprendizaje/Curso académico 2017-2018 142 \begin{align}EF + TI + TC &= \left(\leqslant 10\right) + TI + TC \\ &= \left(\leqslant 10\right) + \left(\left(\leqslant 3\right) + \left(\leqslant 0,75\right)\right) + TC \\ &= \left(\leqslant 10\right) + \left(\left(\leqslant 3\right) + \left(\leqslant 0,75\right)\right) + \left(\left(\leqslant \overline{0,5}\right) + \left(\leqslant \overline{0,125}\right) + \left(\leqslant \overline{0,125}\right)\right)\end{align}
eswikibooks
[Bearbeiten | Quelltext bearbeiten]- b:es:Usuario:Rahr182/Heuristica/Ejercicio1 57 P/2= 12,565
- b:es:Química/Concepto de mol 85 0,082 \frac{atm L}{mol K}
- b:es:Química/Concepto de mol 91 6,022\,141\,29 \times 10^{23}
- b:es:Química/Concepto de mol 101 6,022\,141\,29 \times 10^{23} (\acute{a}tomos) \times 32 \frac{u}{\acute{a}tomo}
- b:es:Química/Concepto de mol 101 1,927\,08 \times 10^{25} \frac{u}{mol}
- b:es:Química/Concepto de mol 103 0,031\,98\,kg
- b:es:Química/Concepto de mol 112 6,022 \times 10^{23}
- b:es:Diseño de circuitos digitales y tecnología de computadores/Sistemas de numeración 301 \left .\begin{matrix}0.73 \cdot 8 = 5.84 \\0.84 \cdot 8 = 6,72 \\0.72 \cdot 8 = 5,76\end{matrix}\right \} 0.73)_{10} = 0,565)_8
- b:es:Matemáticas Bachillerato LOGSE/Herramientas de aritmética 29 \mathrm{-3} \qquad \frac{57}{25}=2,28 \qquad \frac{22}{6}=3,6666666...=3,\widehat{6}
- b:es:Matemáticas Bachillerato LOGSE/Herramientas de aritmética 80 \mathrm {3,287} \cdot \mathrm{10^{12}} = 3\,287\,000\,000\,000
- b:es:Matemáticas Bachillerato LOGSE/Herramientas de aritmética 84 \mathrm{2,34 \cdot 10^{-4}} \cdot \mathrm{3,45 \cdot 10^{8}} = (2,34 \cdot 3,45) \cdot 10^{-4+8} = 8,073 \cdot 10^{4}
- b:es:Matemáticas Bachillerato LOGSE/Herramientas de aritmética 86 \mathrm{7,04 \cdot 10^{3}} \cdot \mathrm{5,35 \cdot 10^{8}} = 37,664 \cdot 10^{11} = 3,7664 \cdot 10^{12}
- b:es:Matemáticas Bachillerato LOGSE/Herramientas de aritmética 92 \frac {2,34 \cdot 10^{-4}}{1,45 \cdot 10^{8}}=\bigg( \frac {2,34}{1,45} \bigg) \cdot 10^{-4-8}=1,614 \cdot 10^{-12}
- b:es:Matemáticas Bachillerato LOGSE/Herramientas de aritmética 94 \frac {5,35 \cdot 10^{8}}{7,04 \cdot 10^{3}}=0,7599 \cdot 10^{5}= 7,599 \cdot 10^{4}
- b:es:Matemáticas Bachillerato LOGSE/Herramientas de aritmética 98 4,3 \cdot 10^{9} + 3,67 \cdot 10^{13} - 5,324 \cdot 10^{10}=
- b:es:Matemáticas Bachillerato LOGSE/Herramientas de aritmética 102 = 36651,06 \cdot 10^{9} = 3,665106 \cdot 10^{13}
- b:es:Matemáticas Bachillerato LOGSE/Herramientas Algebraicas 405 (6-x^2) \log 5= \log 3 \rightarrow 6-x^2=\frac{\log 3}{\log 5}\approx 0,6826 \rightarrow x^2 \approx 6-0,6826 \approx 5,3174 \rightarrow x \approx \pm 2,3059\,\!
- b:es:Matemáticas Bachillerato LOGSE/Resolución de triángulos 66 t=\frac{0,8}{0,6}=1,333
- b:es:Matemáticas Bachillerato LOGSE/Resolución de triángulos 78 sin(100^o) = 0,984807753
- b:es:Matemáticas Bachillerato LOGSE/Resolución de triángulos 78 sin(100 rad) = -0,506365641
- b:es:Matemáticas Bachillerato LOGSE/Resolución de triángulos 98 \sin \hat A = \frac{14}{23}=0,6087 \rightarrow \hat A=37,5^\circ
- b:es:Matemáticas Bachillerato LOGSE/Resolución de triángulos 216 h = \cfrac{1.453}{2,571}\; 30cm
- b:es:Matemáticas Bachillerato LOGSE/Funciones y fórmulas trigonométricas 209 \frac{360}{2\pi}=\frac{180}{3,141592654} \approx 57^\circ \ \ 17^\prime \ \ 44,81^{\prime\prime}
- b:es:Química/Cálculos de concentración y preparación de soluciones 137 0,150\,L \times 0,4 \frac{mol}{L} = 0,06\, moles\,de\, soluto
- b:es:Química/Cálculos de concentración y preparación de soluciones 146 V = \frac {0,06 mol} {8,979 \frac{mol}{L}} = 6,68 \times 10^{-3} L
- b:es:Algoritmia/Algoritmos de escalada 42 \begin{matrix} x_1 & = & x_0 - \frac{f(x_0)}{f'(x_0)} & = & 0,5 - \frac{\cos(0,5) - 0,5^3}{-\sin(0,5) - 3 \times 0,5^2} & = & 1,112141637097 \\ x_2 & = & x_1 - \frac{f(x_1)}{f'(x_1)} & & \vdots & = & \underline{0},909672693736 \\ x_3 & & \vdots & & \vdots & = & \underline{0,86}7263818209 \\ x_4 & & \vdots & & \vdots & = & \underline{0,86547}7135298 \\ x_5 & & \vdots & & \vdots & = & \underline{0,8654740331}11 \\ x_6 & & \vdots & & \vdots & = & \underline{0,865474033102}\end{matrix}
- b:es:Matemáticas/Aritmética/Números fraccionarios 61 \frac{2}{3} = 2 : 3 = 0,666...
- b:es:Física/Magnitudes mecánicas fundamentales/Trabajo, potencia 68 1\ CV = 75\ kg \cdot 9,80665\ m/s^2 \cdot 1\ m/s = 735,49875\ W
- b:es:Física/Magnitudes mecánicas fundamentales/Campos y energía potencial 84 g:= \frac{GM}{R^2} \approx 9,8065 \frac{m}{s^2}
- b:es:Electrónica/Resistencia Eléctrica 30 R_{eq} = \frac{1 \cdot 999}{1 + 999} = \frac{999}{1000} = 0,999 \Omega
- b:es:Matemáticas/Aritmética/Números racionales 119 \begin{array}{rcl}\cfrac 1 7&=&0,142857142857\dots\\&=&0,\overline{142857}\end{array}
- b:es:Matemáticas/Aritmética/Números racionales 121 \begin{array}{rcl}\cfrac 1 {60}&=&0,01666\dots\\&=&0,01\overline{6}\end{array}
- b:es:Matemáticas/Aritmética/Números racionales 136 \begin{array}{r}0,1428571\ldots\\7\overline{)10\;\,\;\,\;\,\;\,\;\,\;\,\;\,\;\,\;\,\;\,}\\30\;\,\;\,\;\,\;\,\;\,\;\,\;\,\;\,\;\,\\20\;\,\;\,\;\,\;\,\;\,\;\,\;\,\;\,\\60\;\,\;\,\;\,\;\,\;\,\;\,\;\,\\40\;\,\;\,\;\,\;\,\;\,\;\,\\50\;\,\;\,\;\,\;\,\;\,\\10\;\,\;\,\;\,\;\,\\\vdots\;\,\;\,\;\,\;\,\end{array}
- b:es:Matemáticas/Aritmética/Números racionales 143 11,3636\dots=\frac{1136-11}{99}=\frac{1125}{99}
- b:es:Matemáticas/Aritmética/Números racionales 144 12,345676767\dots
- b:es:Matemáticas/Aritmética/Números racionales 145 0,113611361136\dots=\frac{1136}{9999}
- b:es:Matemáticas/Aritmética/Números racionales 146 \frac{1136}{99}-\frac{1}{9}=\frac{1136-11}{99}=11,47474747\dots-0,11111111\dots=11,36363636\dots
- b:es:Problemario de Señales y Sistemas/Operaciones con Señales 508 {}_\!A_\mbox{abs}=\frac {1}{T} \int_{T} \left | x(t) \right \vert \, dt=\frac {1}{4}\int_{0}^{4} \left |\cos(\frac{\pi}{2}t)+\cos(\pi t)+\cos(3\pi t) \right \vert \, dt=\frac {3,9847}{4}=0,996
- b:es:Manual del estudiante de Ingeniería en Sistemas de UTN/Diseño e Implementación de Estructuras de Datos/Guías prácticas/Complejidad computacional/Solución al ejercicio 3 de complejidad computacional 10 k = 0,005 \frac{ms}{elemento}
- b:es:Manual del estudiante de Ingeniería en Sistemas de UTN/Diseño e Implementación de Estructuras de Datos/Guías prácticas/Complejidad computacional/Solución al ejercicio 3 de complejidad computacional 10 0,005 \frac{ms}{elemento} * 500 = 2,5 ms
- b:es:Manual del estudiante de Ingeniería en Sistemas de UTN/Diseño e Implementación de Estructuras de Datos/Guías prácticas/Complejidad computacional/Solución al ejercicio 3 de complejidad computacional 19 k = 0,005 \frac{ms}{elemento}
- b:es:Manual del estudiante de Ingeniería en Sistemas de UTN/Diseño e Implementación de Estructuras de Datos/Guías prácticas/Complejidad computacional/Solución al ejercicio 3 de complejidad computacional 21 0,005 \frac{ms}{elemento} * 500 = 2,5 ms
- b:es:Manual del estudiante de Ingeniería en Sistemas de UTN/Diseño e Implementación de Estructuras de Datos/Guías prácticas/Complejidad computacional/Solución al ejercicio 3 de complejidad computacional 29 k = 0,0010857 \frac{ms}{elemento}
- b:es:Manual del estudiante de Ingeniería en Sistemas de UTN/Diseño e Implementación de Estructuras de Datos/Guías prácticas/Complejidad computacional/Solución al ejercicio 3 de complejidad computacional 31 0,0010857 \frac{ms}{elemento} * 500ln500 = 3,37 ms
- b:es:Manual del estudiante de Ingeniería en Sistemas de UTN/Diseño e Implementación de Estructuras de Datos/Guías prácticas/Complejidad computacional/Solución al ejercicio 3 de complejidad computacional 38 k = 0,00005 \frac{ms}{elemento}
- b:es:Manual del estudiante de Ingeniería en Sistemas de UTN/Diseño e Implementación de Estructuras de Datos/Guías prácticas/Complejidad computacional/Solución al ejercicio 3 de complejidad computacional 40 0,00005 \frac{ms}{elemento} * 250000 = 12,5 ms
- b:es:Manual del estudiante de Ingeniería en Sistemas de UTN/Diseño e Implementación de Estructuras de Datos/Guías prácticas/Complejidad computacional/Solución al ejercicio 3 de complejidad computacional 48 k = 0,0000005 \frac{ms}{elemento}
- b:es:Manual del estudiante de Ingeniería en Sistemas de UTN/Diseño e Implementación de Estructuras de Datos/Guías prácticas/Complejidad computacional/Solución al ejercicio 3 de complejidad computacional 50 0,0000005 \frac{ms}{elemento} * 125000000 = 62,5 ms
- b:es:Manual del estudiante de Ingeniería en Sistemas de UTN/Diseño e Implementación de Estructuras de Datos/Guías prácticas/Complejidad computacional/Solución al ejercicio 4 de complejidad computacional 17 k = 0,005 \frac{ms}{elemento}
- b:es:Manual del estudiante de Ingeniería en Sistemas de UTN/Diseño e Implementación de Estructuras de Datos/Guías prácticas/Complejidad computacional/Solución al ejercicio 4 de complejidad computacional 19 0,005 \frac{ms}{elemento} * x = 1000 ms
- b:es:Manual del estudiante de Ingeniería en Sistemas de UTN/Diseño e Implementación de Estructuras de Datos/Guías prácticas/Complejidad computacional/Solución al ejercicio 4 de complejidad computacional 25 k = 0,0010857 \frac{ms}{elemento}
- b:es:Manual del estudiante de Ingeniería en Sistemas de UTN/Diseño e Implementación de Estructuras de Datos/Guías prácticas/Complejidad computacional/Solución al ejercicio 4 de complejidad computacional 27 0,0010857 \frac{ms}{elemento} * xlnx = 1000 ms
- b:es:Manual del estudiante de Ingeniería en Sistemas de UTN/Diseño e Implementación de Estructuras de Datos/Guías prácticas/Complejidad computacional/Solución al ejercicio 4 de complejidad computacional 70 k = 0,00005 \frac{ms}{elemento}
- b:es:Manual del estudiante de Ingeniería en Sistemas de UTN/Diseño e Implementación de Estructuras de Datos/Guías prácticas/Complejidad computacional/Solución al ejercicio 4 de complejidad computacional 71 0,00005 \frac{ms}{elemento} * x^2 = 1000 ms
- b:es:Manual del estudiante de Ingeniería en Sistemas de UTN/Diseño e Implementación de Estructuras de Datos/Guías prácticas/Complejidad computacional/Solución al ejercicio 4 de complejidad computacional 76 k = 0,0000005 \frac{ms}{elemento}
- b:es:Manual del estudiante de Ingeniería en Sistemas de UTN/Diseño e Implementación de Estructuras de Datos/Guías prácticas/Complejidad computacional/Solución al ejercicio 4 de complejidad computacional 77 0,0000005\frac{ms}{elemento} * x^3 = 1000 ms
- b:es:Ecuación cuadrática/Conceptos previos 42 \sqrt{2} = 1,41421...
- b:es:Electricidad/Apéndice 1: Vectores 131 2,5 \cdot \vec{a} = 8 \vec{i} - 3,175 \vec{j} + 15 \vec{k}
- b:es:Tablas estadísticas/Distribución normal 98 P(Z_{( 0 , 1 )} < 1,32) = 0,906 582 \,
- b:es:Tablas estadísticas/Distribución normal 101 P(Z_{( 0 , 1 )} < -1,32) = 1 -0,906 582 \,
- b:es:Tablas estadísticas/Distribución normal 104 P(Z_{( 0 , 1 )} < -1,32) = 0,093 417 \,
- b:es:Tablas estadísticas/Distribución normal 129 P(Z_{( 0 , 1 )} < 2,11) = 0,982 570 \,
- b:es:Tablas estadísticas/Distribución normal 132 P(Z_{( 0 , 1 )} > 2,11) = 1 - 0,982 570 \,
- b:es:Tablas estadísticas/Distribución normal 135 P(Z_{( 0 , 1 )} > 2,11) = 0,017 430 \,
- b:es:Tablas estadísticas/Distribución normal 162 P(Z_{( 0 , 1 )} > -2,02) = P(Z_{( 0 , 1 )} < 2,02) = 0,978 308 \,
- b:es:Tablas estadísticas/Distribución normal 176 P(Z_{( 0 , 1 )} < 1,50) = 0,933 192 \,
- b:es:Tablas estadísticas/Distribución normal 177 P(Z_{( 0 , 1 )} < 2,00) = 0,977 249 \,
- b:es:Tablas estadísticas/Distribución normal 183 P(1,50 < Z_{( 0 , 1 )} < 2,00) = 0,977 249 - 0,933 192 \,
- b:es:Tablas estadísticas/Distribución normal 186 P(1,50 < Z_{( 0 , 1 )} < 2,00) = 0,044 057 \,
- b:es:Tablas estadísticas/Distribución normal 201 P(Z_{( 0 , 1 )} < 2,23) = 0,987 126 \,
- b:es:Tablas estadísticas/Distribución normal 202 P(Z_{( 0 , 1 )} < 2,24) = 0,987 454 \,
- b:es:Tablas estadísticas/Distribución normal 208 y= \frac{(2,2345-2,23)}{( 2,24 -2,23)} \; (0,987 454 -0,987 126) + 0,987 126
- b:es:Tablas estadísticas/Distribución normal 211 y= \frac{(0,0045)}{(0,01)} \; (0,000 328) + 0,987 126
- b:es:Tablas estadísticas/Distribución normal 214 y=0,000 147 + 0,987 126 \,
- b:es:Tablas estadísticas/Distribución normal 217 y= 0,987 274 \,
- b:es:Tablas estadísticas/Distribución normal 220 P(Z_{( 0 , 1 )} < 2,2345) = 0,987 274 \,
- b:es:Tablas estadísticas/Distribución normal 246 P(Z_{(0,19 , \; 1,25)} < 3,14) = P(Z_{(0 , 1)} < 2,36) = 0,990 862
- b:es:Tablas estadísticas/Distribución normal 256 P(Z_{(0, 1)} < x) = 0,705 \,
- b:es:Tablas estadísticas/Distribución normal 262 P(Z_{(0, 1)} < 0, 538 836) = 0,705 \,
- b:es:Tablas estadísticas/Distribución t de Student 46 P(t_9 < 0,25) = 0,596 \,
- b:es:Tablas estadísticas/Distribución t de Student 97 P(t_6 < 1,45) = 0,901 \,
- b:es:Tablas estadísticas/Distribución t de Student 100 P(t_6 < -1,45) = 1 - 0,901 \,
- b:es:Tablas estadísticas/Distribución t de Student 103 P(t_6 < -1,45) = 0,099 \,
- b:es:Tablas estadísticas/Distribución t de Student 130 P(t_{15} < 2,45) = 0,986 \,
- b:es:Tablas estadísticas/Distribución t de Student 133 P(t_{15} > 2,45) = 1 - 0,986 \,
- b:es:Tablas estadísticas/Distribución t de Student 136 P(t_{15} > 2,45) = 0,014 \,
- b:es:Tablas estadísticas/Distribución t de Student 165 P(t_9 > -1,95) = P(t_9 < 1,95) = 0,959 \,
- b:es:Tablas estadísticas/Distribución t de Student 182 P(t_{25} < 0,75) = 0,770 \,
- b:es:Tablas estadísticas/Distribución t de Student 183 P(t_{25} < 1,25) = 0,889 \,
- b:es:Tablas estadísticas/Distribución t de Student 186 P(0,75 < t_{25} < 1,25) = 0,889 - 0,770 \,
- b:es:Tablas estadísticas/Distribución t de Student 189 P(0,75 < t_{25} < 1,25) = 0,119 \,
- b:es:Tablas estadísticas/Distribución t de Student 207 P(t_{10} < 0,85) = 0,792 \,
- b:es:Tablas estadísticas/Distribución t de Student 208 P(t_{10} < 0,90) = 0,805 \,
- b:es:Tablas estadísticas/Distribución t de Student 214 y= \frac{(0,87-0,85)}{( 0,90-0,85)} \; (0,805 -0,792) + 0,792
- b:es:Tablas estadísticas/Distribución t de Student 217 y= \frac{(0,02)}{(0,05)} \; (0,013) + 0,792
- b:es:Tablas estadísticas/Distribución t de Student 220 y= 0,0052 + 0,792 \,
- b:es:Tablas estadísticas/Distribución t de Student 223 y= 0,7972 \,
- b:es:Tablas estadísticas/Distribución t de Student 226 P(t_{10} < 0,87) = 0,7972 \,
- b:es:Tablas estadísticas/Distribución t de Student 237 x = 1,155 768 \,
- b:es:Tablas estadísticas/Distribución chi-cuadrado 50 P(\chi^2_4 < 1,2) = 0,121 901
- b:es:Tablas estadísticas/Distribución chi-cuadrado 76 P(\chi^2_6 < 3,4) = 0,242 777
- b:es:Tablas estadísticas/Distribución chi-cuadrado 79 P(\chi^2_6 > 3,4) = 1 - 0,242 777
- b:es:Tablas estadísticas/Distribución chi-cuadrado 82 P(\chi^2_6 > 3,4) = 0,757 223
- b:es:Tablas estadísticas/Distribución chi-cuadrado 110 \begin{cases} P(\chi^2_8 < 3,4) =0,093 189 \\ P(\chi^2_8 < 5,6) = 0,308 063 \end{cases}
- b:es:Tablas estadísticas/Distribución chi-cuadrado 116 P( 3,4 < \chi^2_8 < 5,6) = 0,308 063 - 0,093 189
- b:es:Tablas estadísticas/Distribución chi-cuadrado 119 P( 3,4 < \chi^2_8 < 5,6) = 0,214 874
- b:es:Tablas estadísticas/Distribución chi-cuadrado 146 \begin{cases} P(\chi^2_5 < 1,6) = 0,098 751 \\ P(\chi^2_5 < 1,8) = 0,123 932 \end{cases}
- b:es:Tablas estadísticas/Distribución chi-cuadrado 152 y= \frac{(1,75 -1,6)}{(1,8-1,6)} \; (0,123 932-0,098 751) + 0,098 751
- b:es:Tablas estadísticas/Distribución chi-cuadrado 155 y= \frac{(0,15)}{( 0,2)} \; (0,025181) + 0,098 751
- b:es:Tablas estadísticas/Distribución chi-cuadrado 158 y= 0,018 886 + 0,098 751 \,
- b:es:Tablas estadísticas/Distribución chi-cuadrado 161 y= 0,117 637 \,
- b:es:Tablas estadísticas/Distribución chi-cuadrado 165 P(\chi^2_5 < 1,75) = 0,117 637
- b:es:Tablas estadísticas/Distribución chi-cuadrado 189 x= 8,558 \,
- b:es:Tablas estadísticas/Distribución chi-cuadrado 210 \begin{cases} P(\chi^2_4 < 1,064) = 0,1 \\ P(\chi^2_4 < 1,649) = 0,2 \end{cases}
- b:es:Tablas estadísticas/Distribución chi-cuadrado 216 y= \frac{(1,2 - 1,064)}{(1,649 - 1,064)} \; (0,2 - 0,1) + 0,1
- b:es:Tablas estadísticas/Distribución chi-cuadrado 219 y= \frac{(0,136)}{( 0,585)} \; (0,1) + 0,1
- b:es:Tablas estadísticas/Distribución chi-cuadrado 222 y= 0,0232 + 0,1 \,
- b:es:Tablas estadísticas/Distribución chi-cuadrado 225 y= 0,1232 \,
- b:es:Tablas estadísticas/Distribución chi-cuadrado 228 P(\chi^2_4 < 1,2)= 0,1232
- b:es:Trigonometría/Tabla trigonométrica 29 \sin(5,4) = 0,094 108 \,
- b:es:Trigonometría/Tabla trigonométrica 88 \sin (39,4) = 0,634 731 \,
- b:es:Trigonometría/Tabla trigonométrica 91 \sin (50,6) = \sqrt{1 - (0,634 731) ^2} \,
- b:es:Trigonometría/Tabla trigonométrica 94 \sin (50,6) = 0,772 733 \,
- b:es:Trigonometría/Tabla trigonométrica 128 \sin (12,4) = 0,214 735 \,
- b:es:Trigonometría/Tabla trigonométrica 131 \cos (12,4) = \sqrt{1 - (0,214 735)^2 }\,
- b:es:Trigonometría/Tabla trigonométrica 134 \cos (12,4) = 0,976 672 \,
- b:es:Trigonometría/Tabla trigonométrica 159 \cos(75) = \sin(15) = 0,258 819 \,
- b:es:Trigonometría/Tabla trigonométrica 177 \sin (32,1) = 0,531 399 \,
- b:es:Trigonometría/Tabla trigonométrica 180 \tan(32,1) = \frac{ 0,531 399 }{\sqrt{ 1 - (0,531 399 ) ^2 } }
- b:es:Trigonometría/Tabla trigonométrica 183 \tan(32,1) = \frac{ 0,531 399 }{0,847 122}
- b:es:Trigonometría/Tabla trigonométrica 186 \tan(32,1) = 0,627 299 \,
- b:es:Trigonometría/Tabla trigonométrica 213 \sin(37) = 0,601 815 \,
- b:es:Trigonometría/Tabla trigonométrica 216 \tan (53) = \sqrt{\frac{ 1}{(0,601 815)^2} - 1}
- b:es:Trigonometría/Tabla trigonométrica 219 \tan (53) = \sqrt{2,761 048 - 1}
- b:es:Trigonometría/Tabla trigonométrica 222 \tan (53) = \sqrt{1,761 048}
- b:es:Trigonometría/Tabla trigonométrica 225 \tan (53) = 1,327 045 \,
- b:es:Física/Calorimetría/Propagación del calor 60 5,670 \cdot 10^{-8} \frac{W}{m^2 K^4}
- b:es:Tablas estadísticas/Tabla para imprimir: Distribución normal inversa 23 P(Z_{(0, 1)} < x) = 0,804 \,
- b:es:Tablas estadísticas/Tabla para imprimir: Distribución normal inversa 26 P(Z_{(0, 1)} < 0, 855 \; 996) = 0,804 \,
- b:es:Tablas estadísticas/Tabla para imprimir: Distribución t de Student 31 P(t_7 < 0,20) = 0,576 \,
- b:es:Tablas estadísticas/Tabla para imprimir: Distribución t de Student inversa 27 x = 1,414 924 \,
- b:es:Discusión:Problemario de Señales y Sistemas/Operaciones con Señales 402 {}_\!A_\mbox{abs}=\frac {1}{T} \int_{T} \left | x(t) \right \vert \, dt=\frac {1}{4}\int_{0}^{4} \left |\cos(\frac{\pi}{2}t)+\cos(\pi t)+\cos(3\pi t) \right \vert \, dt=\frac {3,9847}{4}=0,996
- b:es:Matemáticas/Aritmética/Números decimales 32 4,5 * 3,5 = 15,750
- b:es:Matemáticas/Aritmética/Números decimales 42 6,4^{3} = 262,144
- b:es:Manual del estudiante de Ingeniería en Sistemas de UTN/Evaluación y modelado de redes de información 58 S_d = 0,025 [\frac{seg}{acceso}]
- b:es:Manual del estudiante de Ingeniería en Sistemas de UTN/Evaluación y modelado de redes de información 62 C = \frac{\frac{0,4 * 1800[seg]}{0,025}}{320 [\frac{acceso}{trabajo}]} = 90 [trabajo]
- b:es:Manual del estudiante de Ingeniería en Sistemas de UTN/Evaluación y modelado de redes de información 72 X_d = \frac{0,4}{0,025 [\frac{seg}{acceso}]} = 16 [\frac{acceso}{seg}]
- b:es:Electrónica/Conceptos básicos/Resistencia, Condensador y Bobina 84 R_{eq} = \frac{1 \cdot 999}{1 + 999} = \frac{999}{1000} = 0,999 \Omega
- b:es:Ingeniería de aguas residuales/Cálculos hidráulicos 207 \mu=0,405+\cfrac{0,003}{h}\,\left (1+0,55\cfrac{h^2}{(h+p)^2}\right )
- b:es:Ingeniería de aguas residuales/Cálculos hidráulicos 211 \mu=2/3\,\left (0,605+\cfrac{1}{1050\,h-3}+0,08\cfrac{h}{P}\right )
- b:es:Física/Física avanzada/Teoría cuántica de campos/Preliminares 49 \alpha=e^2=\frac{q_e^2}{4\pi\epsilon_0\hbar c}\simeq0,007297\simeq\frac1{137,035}
- b:es:Matemáticas/Matrices/Concepto de Matriz 55 a_{23,100}\,\!
- b:es:Matemáticas/Aritmética/Multiplicación 48 10^{-5} = 0,00001
- b:es:Mantenimiento y Montaje de Equipos Informáticos/Tema 3/Almacenamiento magnético 201 Latencia = \cfrac{ 1 rev\cdot 60 s}{7500 rev}=0,008 s = 8 ms;
- b:es:Mantenimiento y Montaje de Equipos Informáticos/Tema 3/Almacenamiento magnético 206 Latencia Media = \cfrac{Latencia}{2}= 0,004 s = 4 ms;
- b:es:Mantenimiento y Montaje de Equipos Informáticos/Tema 3/Almacenamiento magnético 213 Tiempo Medio Busqueda = \cfrac{0,002}{2}= 0,001 s = 1 ms;
- b:es:Curso de alemán nivel medio con audio/Lección 009 176 1,1,2,3,5,8,13,21,34,55,89,144,233,377\ldots \,
- b:es:Usuario:Daniela.ceron.urzua 1274 \frac{2}{3} = 2 : 3 = 0,666...
- b:es:Usuario:Daniela.ceron.urzua 1296 \begin{array}{rcl}\cfrac 1 7&=&0,142857142857\dots\\&=&0,\overline{142857}\end{array}
- b:es:Usuario:Daniela.ceron.urzua 1298 \begin{array}{rcl}\cfrac 1 {60}&=&0,01666\dots\\&=&0,01\overline{6}\end{array}
- b:es:Usuario:Daniela.ceron.urzua 1313 \begin{array}{r}0,1428571\ldots\\7\overline{)10\;\,\;\,\;\,\;\,\;\,\;\,\;\,\;\,\;\,\;\,}\\30\;\,\;\,\;\,\;\,\;\,\;\,\;\,\;\,\;\,\\20\;\,\;\,\;\,\;\,\;\,\;\,\;\,\;\,\\60\;\,\;\,\;\,\;\,\;\,\;\,\;\,\\40\;\,\;\,\;\,\;\,\;\,\;\,\\50\;\,\;\,\;\,\;\,\;\,\\10\;\,\;\,\;\,\;\,\\\vdots\;\,\;\,\;\,\;\,\end{array}
- b:es:Usuario:Daniela.ceron.urzua 1320 15,3434\dots=\frac{1534-15}{99}
- b:es:Usuario:Daniela.ceron.urzua 1321 12,345676767\dots
- b:es:Números y Operaciones/Propiedades Aritméticas 147 \begin{array}{rcl}\cfrac 1 7&=&0,142857142857\dots\\&=&0,\overline{142857}\end{array}
- b:es:Números y Operaciones/Propiedades Aritméticas 149 \begin{array}{rcl}\cfrac 1 {60}&=&0,01666\dots\\&=&0,01\overline{6}\end{array}
- b:es:Números y Operaciones/Propiedades Aritméticas 164 \begin{array}{r}0,1428571\ldots\\7\overline{)10\;\,\;\,\;\,\;\,\;\,\;\,\;\,\;\,\;\,\;\,}\\30\;\,\;\,\;\,\;\,\;\,\;\,\;\,\;\,\;\,\\20\;\,\;\,\;\,\;\,\;\,\;\,\;\,\;\,\\60\;\,\;\,\;\,\;\,\;\,\;\,\;\,\\40\;\,\;\,\;\,\;\,\;\,\;\,\\50\;\,\;\,\;\,\;\,\;\,\\10\;\,\;\,\;\,\;\,\\\vdots\;\,\;\,\;\,\;\,\end{array}
- b:es:Números y Operaciones/Propiedades Aritméticas 171 15,3434\dots=\frac{1534-15}{99}
- b:es:Números y Operaciones/Propiedades Aritméticas 172 12,345676767\dots
- b:es:Números y Operaciones/Números Naturales/Máximo Común Divisor 108 MCD(65,145)= ...
- b:es:Números y Operaciones/Números Racionales/Expresión decimal 21 \frac{2}{3} = 2 : 3 = 0,666...
- b:es:Números y Operaciones/Números Racionales/Representación decimal 17 \begin{array}{rcl}\cfrac 1 7&=&0,142857142857\dots\\&=&0,\overline{142857}\end{array}
- b:es:Números y Operaciones/Números Racionales/Representación decimal 19 \begin{array}{rcl}\cfrac 1 {60}&=&0,01666\dots\\&=&0,01\overline{6}\end{array}
- b:es:Números y Operaciones/Números Racionales/Representación decimal 34 \begin{array}{r}0,1428571\ldots\\7\overline{)10\;\,\;\,\;\,\;\,\;\,\;\,\;\,\;\,\;\,\;\,}\\30\;\,\;\,\;\,\;\,\;\,\;\,\;\,\;\,\;\,\\20\;\,\;\,\;\,\;\,\;\,\;\,\;\,\;\,\\60\;\,\;\,\;\,\;\,\;\,\;\,\;\,\\40\;\,\;\,\;\,\;\,\;\,\;\,\\50\;\,\;\,\;\,\;\,\;\,\\10\;\,\;\,\;\,\;\,\\\vdots\;\,\;\,\;\,\;\,\end{array}
- b:es:Números y Operaciones/Números Racionales/Representación decimal 41 15,3434\dots=\frac{1534-15}{99}
- b:es:Números y Operaciones/Números Racionales/Representación decimal 42 12,345676767\dots
- b:es:Electricidad/Electrostática/Unidad de medida de la carga eléctrica 22 -1,602564 \times 10^{-19}C
- b:es:Administración de empresas/Matemática financiera/Lista de ratios 35 Empresa \ A: \frac{40,000}{10,000} = 4
- b:es:Administración de empresas/Matemática financiera/Lista de ratios 41 Empresa \ B: \frac{50,000}{30,000} = 1.67
- b:es:Administración de empresas/Macroeconomía/Introducción a la macroeconomía 175 3*1,000 $ =3,000$
- b:es:Administración de empresas/Macroeconomía/Introducción a la macroeconomía 177 5*1,200 $ =6,000$
- b:es:Administración de empresas/Macroeconomía/Introducción a la macroeconomía 179 \frac{3,000$} {6,000$} *100 = 50%
- b:es:Administración de empresas/Macroeconomía/Introducción a la macroeconomía 189 PIB \ real = 5 * 1,000$ = 5,000$
- b:es:Administración de empresas/Macroeconomía/Introducción a la macroeconomía 201 Deflactor \ del \ PIB = \frac{1,200$} {1,000$} = 1.2
- b:es:Administración de empresas/Macroeconomía/Introducción a la macroeconomía 203 PIB \ real = \frac{6,000$} {1.2} = 5,000$
- b:es:Administración de empresas/Macroeconomía/Introducción a la macroeconomía 217 PIB \ per \ c\acute{a}pita \ P1 = \frac{10,00$} {1,000} = 10$ \ por \ persona
- b:es:Administración de empresas/Macroeconomía/Introducción a la macroeconomía 219 PIB \ per \ c\acute{a}pita \ P2 = \frac{10,00$} {3,000} = 3.33$ \ por \ persona
- b:es:Administración de empresas/Marketing/Coma, beba y respire marketing 237 Aurter = \frac{3,000 \ autos} {16,835 \ ventas \ del \ mercado} \ \ \ \ Otgger = \frac{1,440 \ autos} {16,835 \ ventas \ del \ mercado}
- b:es:Administración de empresas/Marketing/Coma, beba y respire marketing 237 Fret = \frac{4,395 \ autos} {16,835 \ ventas \ del \ mercado} \ \ \ \ Trojget = \frac{8,000 \ autos} {16,835 \ ventas \ del \ mercado}
- b:es:Electrónica de Potencia/Transistor Bipolar de Potencia/Problemas de diseño 79 C= 0,072
- b:es:Electrónica de Potencia/Transistor Bipolar de Potencia/Problemas de diseño 113 W_R =W_L = 2,025 J
- b:es:Electrónica de Potencia/Transistor Bipolar de Potencia/Problemas de diseño 119 P_R =\frac{W_R}{T} = \frac{2,025}{0,1} \! = 20,25 W
- b:es:Electrónica de Potencia/Transistor Bipolar de Potencia/Problemas de diseño 136 I_s =\frac{1}{2} \frac{(0,01 s)(4,5 A)}{0,1 s} = 0,025 A
- b:es:Electrónica de Potencia/Transistor Bipolar de Potencia/Problemas de diseño 142 P_s = V_cc I_s = (90 V)(0,225 A)= 20,25 W
- b:es:Electrónica de Potencia/Tiristor/Problemas de diseño 63 \theta = tan^{-1}\left ( \frac{\omega L}{R} \right ) = tan^{-1}\left ( \frac{3,77\cdot0,02}{2} \right ) = 1,312 rad
- b:es:Electrónica de Potencia/Tiristor/Problemas de diseño 77 \alpha\ = 45^\circ = 0,785rad
- b:es:Electrónica de Potencia/Tiristor/Problemas de diseño 114 i(\omega t) = 21,8sen(\omega t - 1,312) - 50+75e^{-\frac{\omega t }{3,77}} A
- b:es:Electrónica de Potencia/Tiristor/Problemas de diseño 121 \mbox{para} \ 0,787 rad \le \; \omega t \le \; 3,37 rad
- b:es:Electrónica de Potencia/IGBT/Problemas de diseño 101 C= 0,017
- b:es:Números y Operaciones/Números Racionales B 235 \frac{2}{3} = 2 : 3 = 0,666...
- b:es:Números y Operaciones/Números Racionales B 257 \begin{array}{rcl}\cfrac 1 7&=&0,142857142857\dots\\&=&0,\overline{142857}\end{array}
- b:es:Números y Operaciones/Números Racionales B 259 \begin{array}{rcl}\cfrac 1 {60}&=&0,01666\dots\\&=&0,01\overline{6}\end{array}
- b:es:Números y Operaciones/Números Racionales B 274 \begin{array}{r}0,1428571\ldots\\7\overline{)10\;\,\;\,\;\,\;\,\;\,\;\,\;\,\;\,\;\,\;\,}\\30\;\,\;\,\;\,\;\,\;\,\;\,\;\,\;\,\;\,\\20\;\,\;\,\;\,\;\,\;\,\;\,\;\,\;\,\\60\;\,\;\,\;\,\;\,\;\,\;\,\;\,\\40\;\,\;\,\;\,\;\,\;\,\;\,\\50\;\,\;\,\;\,\;\,\;\,\\10\;\,\;\,\;\,\;\,\\\vdots\;\,\;\,\;\,\;\,\end{array}
- b:es:Números y Operaciones/Números Racionales B 281 15,3434\dots=\frac{1534-15}{99}
- b:es:Números y Operaciones/Números Racionales B 282 12,345676767\dots
- b:es:Matemáticas/Generalidades/Símbolos Matemáticos/Genéricos 48 \pi \approx 3,14159265358979323846\dots
- b:es:Electrónica de Potencia/CLASIFICACIÓN DE LOS MÓDULOS DE RECTIFICACIÓN'/Rectificador trifásico no controlado en puente con carga resistiva pura (R) 65 V_{avg}= 1,652*V_{m} = 1,652 * 220 *\sqrt{2} = 513,98 V
- b:es:Electrónica de Potencia/Módulos de regulación de alterna/Clasificación 572 VS=VM[sen(wt)*cos(\frac{2\pi}{3}) - cos(wt)*sen(\frac{2\pi}{3})]=VM[-0,5*senwt-0,866*coswt]
- b:es:Electrónica de Potencia/Módulos de regulación de alterna/Clasificación 574 VRN=\frac{VM}{2}[1,5*sen(wt)+0,866*cos(wt)
- b:es:Electrónica de Potencia/Módulos de regulación de alterna/Clasificación 611 VS=VM[sen(wt)*cos(\frac{2\pi}{3}) - cos(wt)*sen(\frac{2\pi}{3})]=VM[-0,5*senwt-0,866*coswt]
- b:es:Electrónica de Potencia/Módulos de regulación de alterna/Clasificación 612 VRS=VR-VS=VM[1,5*sen(wt)+0,866*cos(wt)
- b:es:Electrónica de Potencia/Módulos de regulación de alterna/Clasificación 618 VRS=VR-VS=VM[1,5*sen(\frac{\pi}{3})+0,866*cos(\frac{\pi}{3})]=538,66V
- b:es:Curso de alemán para principiantes con audio/Lección 071b 1247 3,1415926 \in \R
- b:es:Curso de alemán para principiantes con audio/Lección 072b 704 \operatorname{kgV}(3528,3780) = 2^{\color{Red}3} \cdot 3^{\color{OliveGreen}3} \cdot 5^{\color{OliveGreen}1} \cdot 7^{\color{Red}2} = 52.920
- b:es:Curso de alemán para principiantes con audio/Lección 072b 712 \operatorname{kgV}(144,160,175) = 2^{\color{OliveGreen}5} \cdot 3^{\color{Red}2} \cdot 5^{\color{Blue}2} \cdot 7^{\color{Blue}1} = 50.400.
- b:es:Curso de alemán para principiantes con audio/Lección 072b 713 \operatorname{kgV}(144,160) = 1440
- b:es:Curso de alemán para principiantes con audio/Lección 072b 713 \operatorname{kgV}(1440,175) = 50.400,
- b:es:Curso de alemán para principiantes con audio/Lección 072b 763 \operatorname{ggT}(3528,3780) = 2^{\color{OliveGreen}2} \cdot 3^{\color{Red}2} \cdot 7^{\color{OliveGreen}1} = 252
- b:es:Curso de alemán para principiantes con audio/Lección 072b 774 \operatorname{ggT}(144,160,175) = 1.
- b:es:Curso de alemán para principiantes con audio/Lección 072b 775 \operatorname{ggT}(144,160) = 16
- b:es:Curso de alemán para principiantes con audio/Lección 072b 775 \operatorname{ggT}(16,175) = 1,
- b:es:Curso de alemán para principiantes con audio/Lección 075b 729 \tfrac{222.068}{1.000.000} = 0,222068
- b:es:Algoritmo de Euclides 61 \mathrm{mcd}(2366,273)=\mathrm{mcd}(273,182)
- b:es:Algoritmo de Euclides 63 \mathrm{mcd}(273,182)=\mathrm{mcd}(182,91)
- b:es:Algoritmo de Euclides 67 \mathrm{mcd}(2366,273)=91
- b:es:Algoritmo de Euclides 67 \mathrm{mcd}(2366,273)=\mathrm{mcd}(273,182)=\mathrm{mcd}(182,91)=\mathrm{mcd}(91,0)
- b:es:Algoritmo de Euclides 67 \mathrm{mcd}(2366,273)=\mathrm{mcd}(91,0)
- b:es:Aritmética/Pre-Algebra/Notación Científica 95 {2\cdot (537,5642\cdot 10^{2})}
- b:es:Aritmética/Pre-Algebra/Notación Científica 95 {2,5375642\cdot 10^{5}}
- b:es:Curso de alemán para principiantes con audio/Lección 081b 236 \tfrac{2,0333}{60}
- b:es:Curso de alemán para principiantes con audio/Lección 081b 265 \tfrac{43,5833}{60}
- b:es:Curso de alemán nivel medio con audio/Lección 115c 43 \frac{30}{3600} = 3,141666...
- b:es:Aritmética/Bases Numéricas/Conversiones 179 \begin{align} & \overset{5}{\mathop{1}}\,\overset{4}{\mathop{1}}\,\overset{3}{\mathop{0}}\,\overset{2}{\mathop{1}}\,\overset{1}{\mathop{0}}\,\overset{0}{\mathop{1}}\,,\overset{-1}{\mathop{1}}\,\overset{-2}{\mathop{0}}\,\overset{-3}{\mathop{1}}\,=1\cdot 2^{5}+1\cdot 2^{4}+0\cdot 2^{3}+1\cdot 2^{2}+0\cdot 2^{1}+1\cdot 2^{0}+1\cdot 2^{-1}+0\cdot 2^{-2}+1\cdot 2^{-3}= \\ & =32+16+0+4+0+1+\frac{1}{2^{1}}+\frac{0}{2^{2}}+\frac{1}{2^{3}}=32+16+0+4+0+1+0,5+0+0,125=53,625 \\ \end{align}
- b:es:Curso de alemán nivel medio con audio/Lección 080c 118 \textstyle 0,225 = \frac{225}{1000}
- b:es:Curso de alemán nivel medio con audio/Lección 084c 142 -(3,1415926 \dots) \times \sqrt{-1}
- b:es:Curso de alemán nivel medio con audio/Lección 097c 69 F= 1,0587
- b:es:Curso de alemán nivel medio con audio/Lección 099c 54 0,30103 \dots = \log_{10} 2
- b:es:Curso de alemán nivel medio con audio/Lección 099c 54 10^{0,30103 \dots} = 2
- b:es:Curso de alemán nivel medio con audio/Lección 100c 27 3 \cdot 17580 + 0,000232
- b:es:Curso de alemán nivel medio con audio/Lección 128c 71 \pi = 3,141\, 592\, 653\, 589\, 793\, 238\, 462\, 643\, 383\, 279\, 502\, ...
- b:es:Curso de alemán nivel medio con audio/Lección 129c 57 e = 2,718\, 281\, 828\, 459\, ...
- b:es:Curso de alemán nivel medio con audio/Lección 129c 59 {\left( 1 + \frac{1}{10^4} \right)}^{10} = 2,718\, 459\, 3
- b:es:Curso de alemán nivel medio con audio/Lección 129c 68 3,84510
- b:es:Curso de alemán nivel medio con audio/Lección 129c 69 0,84510
- b:es:Curso de alemán nivel medio con audio/Lección 129c 70 0,84510 - 3
- b:es:Curso de alemán nivel medio con audio/Lección 129c 70 0,007
- b:es:Curso de alemán nivel medio con audio/Lección 129c 72 7,534^{27,19843}
- b:es:Curso de alemán nivel medio con audio/Lección 129c 72 375,722^{\frac{1}{\pi}}
- b:es:Implementación de algoritmos/Matemáticas/Método de Newton 38 \begin{matrix} x_1 & = & x_0 - \frac{f(x_0)}{f'(x_0)} & = & 0,5 - \frac{\cos(0,5) - 0,5^3}{-\sin(0,5) - 3 \times 0,5^2} & = & 1,112141637097 \\ x_2 & = & x_1 - \frac{f(x_1)}{f'(x_1)} & & \vdots & = & \underline{0},909672693736 \\ x_3 & & \vdots & & \vdots & = & \underline{0,86}7263818209 \\ x_4 & & \vdots & & \vdots & = & \underline{0,86547}7135298 \\ x_5 & & \vdots & & \vdots & = & \underline{0,8654740331}11 \\ x_6 & & \vdots & & \vdots & = & \underline{0,865474033102}\end{matrix}
- b:es:Curso de alemán para principiantes con audio/Lección 100b 841 00095,000
- b:es:Curso de alemán para principiantes con audio/Lección 100b 1213 \textstyle 0,02 % = 0,02 \cdot 0,01 = 0,0002
- b:es:Curso de alemán para principiantes con audio/Lección 100b 1227 \textstyle 0,397 = 0,397 \cdot 100 % = 39,7 %
- b:es:Curso de alemán para principiantes con audio/Lección 100b 1256 \textstyle \frac{- 0,80}{2,95} = - 0,271
- b:es:Curso de alemán para principiantes con audio/Lección 100b 1258 - 0,271 \cdot 100 % = - 27,1
- b:es:Curso de alemán para principiantes con audio/Lección 100b 1322 \textstyle x = \frac{215.000}{0,13} = 1.653.846,153
- b:es:Curso de alemán para principiantes con audio/Lección 101b 1023 \textstyle \frac{22}{7} = 3,142857
- b:es:Curso de alemán para principiantes con audio/Lección 101b 1024 \textstyle \pi = 3,141592
- b:es:Curso de alemán para principiantes con audio/Lección 101b 1043 \begin{align} \textstyle \frac{100}{3,141592} & = \frac{x}{ \frac{22}{7} } \quad \quad | \quad \cdot \frac{22}{7} \\ \frac{100}{3,141592} \cdot \frac{22}{7} & = x \\ \frac{100 \cdot 22}{3,141592 \cdot 7} \cdot \frac{22}{7} & = x \\ 100,04027 & = x x & = 100,04 \end{align}
- b:es:Curso de alemán para principiantes con audio/Lección 101b 1185 U \approx 6 \cdot 3,1415926 m
- b:es:Curso de alemán para principiantes con audio/Lección 101b 1186 U \approx 18,8495556 m
- b:es:Curso de alemán para principiantes con audio/Lección 101b 1204 A \approx 9 \cdot 3,1415926 \quad cm^2
- b:es:Curso de alemán para principiantes con audio/Lección 102b 247 \textstyle \frac{(6+8+5+6+7+10+13)}{7} = \frac{55}{7} = 7,857
- b:es:Curso de alemán para principiantes con audio/Lección 104b 630 6,462 \cdot 1000 = 6462
- b:es:Curso de alemán para principiantes con audio/Lección 104b 721 \begin{align} \tfrac{8}{3} & = \tfrac{6}{3} + \tfrac{2}{3} \\ & = 2 \tfrac{2}{3} \\ & = 2,\overline{6} \\ & \approx 2,667 \end{align}
- b:es:Curso de alemán para principiantes con audio/Lección 104b 779 (0; 1,333)
- b:es:Curso de alemán para principiantes con audio/Lección 105b 1570 y = - \tfrac{1}{6} x - 3,4342
- b:es:Curso de alemán para principiantes con audio/Lección 087b 1471 \tfrac{\;1^\circ}{3600} = 0,0002\overline{7}{}^\circ
- b:es:Curso de alemán para principiantes con audio/Lección 088b 1142 \tfrac{1,4378}{1000}
- b:es:Curso de alemán para principiantes con audio/Lección 091b 422 \tfrac{43{,}7 \cdot 1{,}7}{100} = 0,7429
- b:es:Curso de alemán para principiantes con audio/Lección 091b 668 \operatorname{kgV}(144,160,175) = 2^{\color{OliveGreen}5} \cdot 3^{\color{Red}2} \cdot 5^{\color{Blue}2} \cdot 7^{\color{Blue}1} = 50.400.
- b:es:Curso de alemán para principiantes con audio/Lección 091b 670 \operatorname{kgV}(144,160) = 1440
- b:es:Curso de alemán para principiantes con audio/Lección 091b 670 \operatorname{kgV}(1440,175) = 50.400,
- b:es:Curso de alemán para principiantes con audio/Lección 091b 1699 A = 3,141 \cdot r^2
- b:es:Curso de alemán para principiantes con audio/Lección 094b 1209 10^{3,6989} = 5000
- b:es:Curso de alemán para principiantes con audio/Lección 094b 1492 10^x = 5 \Rightarrow log_{10}{5} = 0,69897
- b:es:Curso de alemán para principiantes con audio/Lección 094b 1493 10^{log_{}{5}} = 10^{0,69897} = 5
- b:es:Curso de alemán para principiantes con audio/Lección 094b 1494 log_{10}{0,2} = log_{2}{(\tfrac{1}{5})} = - log_{10}{5} = -0,69897
- b:es:Curso de alemán para principiantes con audio/Lección 094b 1505 b = e = 2,718 \; 281
- b:es:Curso de alemán para principiantes con audio/Lección 095b 1482 \pi = 3,141 ...
- b:es:Curso de alemán para principiantes con audio/Lección 095b 1483 U = 3,141 \cdot d
- b:es:Curso de alemán para principiantes con audio/Lección 095b 1505 3,141 \; 592
- b:es:Curso de alemán para principiantes con audio/Lección 095b 1511 \tfrac{22}{7} = 3,1428
- b:es:Curso de alemán para principiantes con audio/Lección 095b 1551 \quad \quad \quad \quad \quad \quad \quad \quad A \approx \tfrac{3,141}{4} \cdot d^2
- b:es:Curso de alemán para principiantes con audio/Lección 095b 1589 A \approx 3,141 r^2
- b:es:Curso de alemán para principiantes con audio/Lección 097b 3426 \begin{align} s & = s \\ 105 \cdot (t_b + 2{,}5) = 136 \cdot t_b \\ 105 t_b + 262,5 = 136 \cdot t_b \quad \quad | \quad - 105 t_b \\ 262,5 = 136 t_b - 105 t_b \\ 262,5 = 31 t_b \quad \quad | \quad : 31 \\ t_b = \tfrac{262,5}{31} \\ t_b = 8,4677 \end{align}
- b:es:Curso de alemán para principiantes con audio/Lección 097b 3536 \begin{align} ( (25 : 60) + 10,2 ) : 60 + 2 & = ( \tfrac{25}{60} + 10,2 ) : 60 + 2 \\ & = ( \tfrac{5}{12} + 10,2 ) : 60 + 2 \\ & \approx ( 0,41667 + 10,2 ) : 60 + 2 \\ & \approx ( 10,61667 ) : 60 + 2 \\ & \approx 0,1769 + 2 \\ & \approx 2,1769 \end{align}
- b:es:Curso de alemán para principiantes con audio/Lección 097b 3668 s = 11,2 \cdot 2,057
- b:es:Curso de alemán para principiantes con audio/Lección 097b 3669 s = 23,0384
- b:es:Curso de alemán para principiantes con audio/Lección 097b 3670 23,038
- b:es:Curso de alemán para principiantes con audio/Lección 097b 3678 s = 12,32 \cdot 1,925
- b:es:Curso de alemán para principiantes con audio/Lección 097b 3679 s = 23,716
- b:es:Curso de alemán para principiantes con audio/Lección 097b 3680 23,716
- b:es:Curso de alemán para principiantes con audio/Lección 097b 3692 23,038
- b:es:Curso de alemán para principiantes con audio/Lección 097b 3693 23,716
- b:es:Curso de alemán para principiantes con audio/Lección 097b 3694 23,038 + 23,716 = 46,754
- b:es:Curso de alemán para principiantes con audio/Lección 097b 3820 s = 24,559
- b:es:Curso de alemán para principiantes con audio/Lección 097b 3821 24,559
- b:es:Curso de alemán para principiantes con audio/Lección 097b 3828 s = 13,178 \cdot 1,93
- b:es:Curso de alemán para principiantes con audio/Lección 097b 3829 s = 25,43354
- b:es:Curso de alemán para principiantes con audio/Lección 097b 3830 25,43354
- b:es:Curso de alemán para principiantes con audio/Lección 097b 3833 24,559 + 25,43354 = 49,99254
- b:es:Curso de alemán para principiantes con audio/Lección 097b 3836 s_a = 24,559
- b:es:Curso de alemán para principiantes con audio/Lección 097b 3837 s_b = 25,43354
- b:es:Curso de alemán para principiantes con audio/Lección 097b 3869 83 : 60 = 1,383
- b:es:Curso de alemán para principiantes con audio/Lección 097b 3871 v_a = \tfrac{s}{1,383}
- b:es:Curso de alemán para principiantes con audio/Lección 097b 3876 134 : 60 = 2,233
- b:es:Curso de alemán para principiantes con audio/Lección 097b 3878 v_b = \tfrac{s}{2,233}
- b:es:Curso de alemán para principiantes con audio/Lección 097b 3880 v_a = \tfrac{s}{1,383}
- b:es:Curso de alemán para principiantes con audio/Lección 097b 3881 v_b = \tfrac{s}{2,233}
- b:es:Curso de alemán para principiantes con audio/Lección 097b 3906 v_a = \tfrac{s}{1,383}
- b:es:Curso de alemán para principiantes con audio/Lección 097b 3919 v_b = \tfrac{1000}{2,233}
- b:es:Curso de alemán para principiantes con audio/Lección 097b 3969 v_a = \tfrac{s}{1,383}
- b:es:Curso de alemán para principiantes con audio/Lección 097b 4141 83 : 60 = 1,383
- b:es:Curso de alemán para principiantes con audio/Lección 097b 4143 v_a = \tfrac{10}{1,383}
- b:es:Curso de alemán para principiantes con audio/Lección 097b 4149 134 : 60 = 2,233
- b:es:Curso de alemán para principiantes con audio/Lección 097b 4151 v_b = \tfrac{10}{2,233}
- b:es:Curso de alemán para principiantes con audio/Lección 097b 4159 s_{a1} = 7,23 \cdot 0,4 = 2,892
- b:es:Curso de alemán para principiantes con audio/Lección 097b 4160 2,892
- b:es:Curso de alemán para principiantes con audio/Lección 097b 4161 7,108
- b:es:Curso de alemán para principiantes con audio/Lección 097b 4162 10 - 2,892 = 7,108
- b:es:Curso de alemán para principiantes con audio/Lección 097b 4166 7,108
- b:es:Curso de alemán para principiantes con audio/Lección 097b 4169 t = 7,108 : 11,71 = 0,607
- b:es:Curso de alemán para principiantes con audio/Lección 097b 4171 0,607 \cdot 60 = 36,42
- b:es:Curso de alemán para principiantes con audio/Lección 097b 4197 v_a = \tfrac{1000}{1,383}
- b:es:Curso de alemán para principiantes con audio/Lección 097b 4202 v_b = \tfrac{1000}{2,233}
- b:es:Curso de alemán para principiantes con audio/Lección 097b 4207 s_{a1} = 723,06 \cdot 0,4 = 289,224
- b:es:Curso de alemán para principiantes con audio/Lección 097b 4208 289,224
- b:es:Curso de alemán para principiantes con audio/Lección 097b 4209 710,776
- b:es:Curso de alemán para principiantes con audio/Lección 097b 4210 1000 - 289,224 = 710,776
- b:es:Curso de alemán para principiantes con audio/Lección 098b 782 \begin{align} 1 : x & = 22,9 : 14,7 \\ x & = 14,7 : 22,9 \\ x & = 0,641921 \end{align}
- b:es:Curso de alemán para principiantes con audio/Lección 098b 783 0,641921 \cdot 100.000 = 641.921
- b:es:Curso de alemán para principiantes con audio/Lección 098b 1231 \begin{align} \tfrac{1}{x} & = \tfrac{304,8}{2,54} \quad \quad | \quad \cdot x \\ 1 & = \tfrac{304,8}{2,54} \cdot x \quad \quad | \quad \cdot \tfrac{2,54}{304,8} \\ \tfrac{2,54}{304,8} & = x \\ x & = 0,008333 \end{align}
- b:es:Curso de alemán para principiantes con audio/Lección 098b 1278 \begin{align} x & = \tfrac{1}{0,008333} \\ x & = 120 \end{align}
- b:es:Curso de alemán para principiantes con audio/Lección 098b 2015 \begin{align} \tfrac{1 \; \text{cm} }{650 \; \text{km} } & = \tfrac{x \; \text{cm} }{100 \; \text{km} } \quad \quad | \quad \cdot 100 \; \text{km} \\ x \; \text{cm} & = \tfrac{1 \; \text{cm} \cdot 100 \; \text{km} }{650 \; \text{km} } \\ x \; \text{cm} & = \tfrac{100 \; \text{cm} \cdot \; \text{km} }{650 \; \text{km} } \\ x \; \text{cm} & = \tfrac{100}{650} \cdot \tfrac{\text{cm} \cdot \; \text{km} }{\text{km} } \\ x \; \text{cm} & = 0,1538 \cdot \tfrac{\text{cm} \cdot 1}{1} \\ x \; \text{cm} & = 0,1538 \cdot \; \text{cm} \\ x \; \text{cm} & = 0,1538 \; \text{cm} \end{align}
- b:es:Curso de alemán para principiantes con audio/Lección 098b 3153 218 : 1578,34 = 376,345 : x
- b:es:Curso de alemán para principiantes con audio/Lección 098b 3154 x = \tfrac{376,345 \cdot 1578,34}{218}
- b:es:Curso de alemán para principiantes con audio/Lección 098b 3378 \begin{align} (h - c) : b & = h : a \\ \tfrac{h - c}{b} & = \tfrac{h}{a} \\ \tfrac{h - 1,25}{0,96} & = \tfrac{h}{1,3} \quad \quad | \quad \cdot 0,96 \cdot 1,3 \\ 1,3 {h - 1,25} & = 0,96 h \\ 1,3 h - 1,625 & = 0,96 h \quad \quad | \quad + 1,625 \\ 1,3 h & = 0,96 h + 1,625 \quad \quad | \quad - 0,96 h \\ 1,3 h - 0,96 h & = 1,625 \\ 0,34 h & = 1,625 \quad \quad | \quad : 0,34 \\ h & = \tfrac{1,625}{0,34} h & = 4,78 \end{align}
- b:es:Curso de alemán para principiantes con audio/Lección 098b 3484 A_K = 2,0625 \pi
- b:es:Curso de alemán para principiantes con audio/Lección 098b 3485 A_K = 6,479
- b:es:Curso de alemán para principiantes con audio/Lección 098b 3488 A_a = \pi \cdot 2,5^2 = 14,726
- b:es:Curso de alemán para principiantes con audio/Lección 098b 3575 \pi = 3,141
- b:es:Curso de alemán para principiantes con audio/Lección 098b 3580 \begin{align} r_b & = \sqrt{\pi} \cdot r_a \\ r_b & = \sqrt{3,141} \cdot 2,5 \\ r_b & = 1,77245 \cdot 2,5 \\ r_b & = 4,431125 \end{align}
eswikiquote
[Bearbeiten | Quelltext bearbeiten]- q:es:Mnemónicos 261 \frac{355}{113} = 3,141592
eswikiversity
[Bearbeiten | Quelltext bearbeiten]- v:es:Principales conjuntos numéricos/Números racionales 27 2,134 = \frac{2134}{1000}
- v:es:Principales conjuntos numéricos/Números racionales 34 1,333333333333333... = 1,\overline{3}
- v:es:Principales conjuntos numéricos/Números racionales 35 2,345112211221122... = 2,345\overline{1122}
- v:es:Principales conjuntos numéricos/Números racionales 44 1,333333333333333... = 1,\overline{3} = \frac{13 - 1}{9}
- v:es:Principales conjuntos numéricos/Números racionales 45 2,345112211221122... = 2,345\overline{1122} = \frac{23451122 - 2345}{9999000}
- v:es:Numeración/Sistema de numeraciones 45 \sqrt{2}=1,4142135...
- v:es:Programación de Ingeniería Mecánica UPB:Grupo 1320 05 66 Hombre: {66,4730} + ({13,751} * {w}) + ({5,0033} * {h} ) - (6,55 * {a})
- v:es:Programación de Ingeniería Mecánica UPB:Grupo 1320 05 67 Mujer: {655,1} + ({9,463} * {w}) + ({1,8} * {h}) - ({4,6756} * {a})
- v:es:Rectificación de media onda no controlada con carga resistiva 75 V_{dc}=\frac{1}{T}\int^{\frac{T}{2} }_0V_S(t)dt=\frac{1}{2\pi}\int^\pi_0V_{max}Sen\omega t\;d\omega t=\frac{V_{max} }{\pi}=0,318V_{max}
- v:es:Rectificación de media onda no controlada con carga resistiva 92 FF=\frac{V_{rms} }{V_{dc} }=\frac{0,5V_{max} }{0,318V_{max} }=1,57
- v:es:Rectificación de media onda no controlada con carga resistiva 112 P_\mathrm{dc}=\frac{(V_\mathrm{dc})^2}{R}=\frac{(0,318\,V_\mathrm{max})^2}{R}
- v:es:Rectificación de media onda no controlada con carga resistiva 120 \eta=\frac{P_\mathrm{dc} }{P_\mathrm{ac} }=\frac{\dfrac{(V_\mathrm{dc})^2}{R} }{\dfrac{(V_\mathrm{rms})^2}{R} }=\frac{(0,318\,V_\mathrm{max})^2}{(0,5\,V_\mathrm{max})^2 }=\frac{0,101}{0,25}=0,404\rightarrow (40,4%)
- v:es:Rectificación de media onda no controlada con carga resistiva 156 V_{de} = (0,318)\cdot V_\mathrm{max} = 108 V
- v:es:Rectificación de media onda no controlada con carga resistiva-inductiva 148 \theta=arctg\left[ \frac{L\omega }{R} \right]= 0,361rad
- v:es:Rectificación de media onda no controlada con carga resistiva-inductiva 155 \omega \tau =\omega \frac{L}{R}=0,377 rad
- v:es:Rectificación de media onda no controlada con carga resistiva-inductiva 171 i(\omega \ t)= 0,936[ sen(\omega t-0,361 )+0,331 e^{-\frac{\omega t}{0,377 }} ]
- v:es:Rectificación de media onda no controlada con carga resistiva-inductiva 179 sen(\beta -0,361)+sen(0,361)e^{-\frac{\beta }{0,377}}=0
- v:es:Rectificación de media onda no controlada con carga resistiva-inductiva 187 i(\omega \ t)= 0,936[ sen(\omega t-0,361 )+0,331 e^{-\frac{\omega t}{0,377 }} ]
- v:es:Rectificación de media onda no controlada con carga resistiva-inductiva 205 I=\frac{1}{2\pi }\int_{0 }^{3,5}i(\omega t)d(\omega t)= \frac{1}{2\pi }\int_{0 }^{3,5} 0,936[ sen(\omega t-0,361 )+0,331 e^{-\frac{\omega t}{0,377 }}d(\omega t)= 0,308A
- v:es:Rectificación de media onda no controlada con carga resistiva-inductiva 223 I_{rms}= \sqrt{\frac{1}{2\pi }\int_{0}^{3,5 }[0,936 sen(\omega t-0,361 )+0,331 e^{-\frac{\omega t}{0,377 }}]^{2}d\left( \omega t \right)}= 0,473A
- v:es:Rectificación de media onda no controlada con carga resistiva-inductiva 305 \beta = \frac{\left( 11\cdot 2\cdot \pi \right)}{20} = 3,455 rad = 198^{\circ}
- v:es:Rectificación de media onda no controlada con carga resistiva-inductiva 339 \beta = 3,45576 rad =198^{\circ }
- v:es:Rectificación de media onda no controlada con carga resistiva-inductiva 353 I_{AVG}= \frac{( I_{max}+ I_{min} )}{2}=\frac{( 323,416 + 306,423 )}{2}
- v:es:Rectificación de media onda no controlada con carga resistiva-inductiva 359 I_{media}= 314,9195 ( mA )
- v:es:Rectificación de media onda no controlada con carga resistiva-inductiva 375 I_{AVG}= \frac{1}{2\pi }\int_{0}^{3,45576} \frac{100}{\sqrt{100^{2}+( 0.1\cdot 2\pi 50 )^{2}}}\left[sen(\omega t -arctg( \frac{0.1\cdot 2\pi 50}{100} ) )+ sen(arctg( \frac{0.1\cdot 2\pi 50}{100} ))e^{- \omega t/2\pi 50\frac{0,1}{100}} \right]d\omega t
- v:es:Rectificación de media onda no controlada con carga resistiva-inductiva 382 I_{AVG}= 0,311( A )= 311( mA )
- v:es:Rectificación de media onda no controlada con carga resistiva-inductiva 391 I_{AVG}=\frac{V_{o,AVG}}{R}=\frac{\frac{V_{m}}{2\pi } ( 1- cos\beta )}{100}=\frac{\frac{100}{2\pi } ( 1- cos(3,45576) )}{100}= 0,31052( A )= 310,52( mA )
- v:es:Rectificación de media onda no controlada con carga resistiva-inductiva 405 I_{RMS}= \frac{( I_{max}+ I_{min} )}{2}=\frac{( 488,994 + 474,713 )}{2}
- v:es:Rectificación de media onda no controlada con carga resistiva-inductiva 411 I_{RMS}= 481,8535 ( mA )
- v:es:Rectificación de media onda no controlada con carga resistiva-inductiva 427 I_{RMS}=\sqrt{ \frac{1}{2\pi }\int_{0}^{3,45576} \frac{100^{2}}{100^{2}+( 0.1\cdot 2\pi 50 )^{2}} \left[sen(\omega t -arctg( \frac{0.1\cdot 2\pi 50}{100} ) )+ sen(arctg( \frac{0.1\cdot 2\pi 50}{100} ))e^{- \omega t/2\pi 50\frac{0,1}{100}} \right]^{2}d\omega t}
- v:es:Rectificación de media onda no controlada con carga resistiva-inductiva 434 I_{RMS}= 0,480545( A )= 480,545( mA )
- v:es:Rectificación de media onda no controlada con carga resistiva-inductiva 443 I_{RMS}=\frac{V_{o,RMS}}{Z}=\frac{\frac{V_{m}}{\sqrt{2}}}{\sqrt{R^{2}+L^{2} \omega^{2} }}=\frac{\frac{100}{\sqrt{2}}}{\sqrt{100^{2}+0,1^{2} (2\cdot \pi \cdot 50)^{2}}}= 0,6746( A )= 674,6( mA )
- v:es:Rectificación de media onda no controlada con carga resistiva-inductiva 459 P_{absRL}= \frac{( P_{max}+ P_{min} )}{2}=\frac{( 23,968 + 22,541 )}{2}
- v:es:Rectificación de media onda no controlada con carga resistiva-inductiva 465 P_{absRL}= 23,2545 ( W )
- v:es:Rectificación de media onda no controlada con carga resistiva-inductiva 484 fp = \frac{P_{abs}}{V_{s,rms} \cdot I_{rms}}=\frac{P_{abs}}{( \frac{V_{m}}{\sqrt{2}} )\cdot I_{rms}}=\frac{23,2545}{( \frac{100}{\sqrt{2}} )\cdot 0,4818535}
- v:es:Rectificación de media onda no controlada con carga resistiva-inductiva 492 fp = 0,68251
- v:es:Rectificación de media onda no controlada con carga inductiva y fuente de continua 541 i(\omega t)=36,4658-33,07*cos(\omega t)-15,7(\omega t)
- v:es:Rectificación de media onda no controlada con carga resistiva-inductiva y fuente de continua 151 a = sen^{-1} (100/282,84) = 0,36130 rad
- v:es:Rectificación de media onda no controlada con carga resistiva-inductiva y fuente de continua 153 w = 314.159(2/50) = 1,256 rad
- v:es:Rectificación de media onda no controlada con carga resistiva-inductiva y fuente de continua 161 i(wt) = 3,52sen(wt-1,01)-2+2,737e^{(wt /1,256)}
- v:es:Rectificación de media onda no controlada con carga resistiva-inductiva y fuente de continua 167 i(B ) = 3,52sen(B -0,89)-2+2,734e^{(B /1,256)} = 0
- v:es:Rectificación de media onda no controlada con carga resistiva-inductiva y fuente de continua 172 = 3,485 rad
- v:es:Rectificación de media onda no controlada con carga resistiva-inductiva y fuente de continua 180 I_{RMS} = \sqrt {\frac{1}{2 } \int_{0,36}^{3,48} {i^2}(wt)\, d(wt)} = 0,917 A
- v:es:Rectificación de media onda no controlada con carga resistiva-inductiva y fuente de continua 187 P_R = I_{RMS}^2 R = (0,917)^2 \cdot 50 = 42,096 W
- v:es:Rectificación de media onda no controlada con carga resistiva-inductiva y fuente de continua 197 I = {\frac{1}{2 }} {\int_{0,36}^{3,48} i(wt)\, d(wt)} = 0,3429 A
- v:es:Rectificación de media onda no controlada con carga resistiva-inductiva y fuente de continua 203 P_{CC} = I\cdot V_{CC} = (0,3429)(100) = 34,29 W
- v:es:Rectificación de media onda no controlada con carga resistiva-inductiva y fuente de continua 211 P_{S} = P_{R} + P_{CC} = 42,096 + 34,29 = 76,3891 W
- v:es:Rectificación de media onda no controlada con carga resistiva-inductiva y fuente de continua 217 fdp = {\frac{P}{S}} = {\frac{P}{V_{S,RMS}I_{RMS}}} = {\frac{76,3891}{(200)(0,917)}} = 0,42
- v:es:Rectificación de media onda no controlada con carga resistiva-inductiva y fuente de continua 242 a = sen^{-1} (50/169,7) = 17,13 (grados) = 0,299 rad
- v:es:Rectificación de media onda no controlada con carga resistiva-inductiva y fuente de continua 244 wr = 377(0,02/2) = 3,016 rad
- v:es:Rectificación de media onda no controlada con carga resistiva-inductiva y fuente de continua 250 i(wt) = 26,93sen(wt-1,25)-10+35,13e^{(-B /3,016)}
- v:es:Rectificación de media onda no controlada con carga resistiva-inductiva y fuente de continua 256 i(B) = 26,93sen( B -1,25)-10+35,13e^{(-B /3,016)} = 0
- v:es:Rectificación de media onda no controlada con carga resistiva-inductiva y fuente de continua 267 I_{RMS} = \sqrt {\frac{1}{2pi} \int_{0,299}^{3,016} {i^2}(wt)\, d(wt)} = 3,27 A
- v:es:Rectificación de media onda no controlada con carga resistiva-inductiva y fuente de continua 284 I = {\frac{1}{2pi }} {\int_{0,299}^{3,016} i(wt)\, d(wt)} = 2,01 A
- v:es:Rectificación de media onda no controlada con carga resistiva-inductiva y fuente de continua 304 fdp = {\frac{P}{S}} = {\frac{P}{V_{S,RMS}I_{RMS}}} = {\frac{116,85}{(120)(3,27)}} = 0,297
- v:es:Rectificación de media onda controlada con carga resistiva 160 \theta=arctg\left[ \frac{L\omega }{R} \right]= 0,361rad
- v:es:Rectificación de media onda controlada con carga resistiva 167 \omega \tau =\omega \frac{L}{R}=0,377 rad
- v:es:Rectificación de media onda controlada con carga resistiva 183 i(\omega \ t)= 0,936[ sen(\omega t-0,361 )+0,331 e^{-\frac{\omega t}{0,377 }} ]
- v:es:Rectificación de media onda controlada con carga resistiva 191 sen(\beta -0,361)+sen(0,361)e^{-\frac{\beta }{0,377}}=0
- v:es:Rectificación de media onda controlada con carga resistiva 199 i(\omega \ t)= 0,936[ sen(\omega t-0,361 )+0,331 e^{-\frac{\omega t}{0,377 }} ]
- v:es:Rectificación de media onda controlada con carga resistiva 217 I=\frac{1}{2\pi }\int_{0 }^{3,5}i(\omega t)d(\omega t)= \frac{1}{2\pi }\int_{0 }^{3,5} 0,936[ sen(\omega t-0,361 )+0,331 e^{-\frac{\omega t}{0,377 }}d(\omega t)= 0,308A
- v:es:Rectificación de media onda controlada con carga resistiva 235 I_{rms}= \sqrt{\frac{1}{2\pi }\int_{0}^{3,5 }[0,936 sen(\omega t-0,361 )+0,331 e^{-\frac{\omega t}{0,377 }}]^{2}d\left( \omega t \right)}= 0,473A
- v:es:Rectificación de media onda controlada con carga resistiva 317 \beta = \frac{\left( 11\cdot 2\cdot \pi \right)}{20} = 3,455 rad = 198^{\circ}
- v:es:Rectificación de media onda controlada con carga resistiva 351 \beta = 3,45576 rad =198^{\circ }
- v:es:Rectificación de media onda controlada con carga resistiva 365 I_{AVG}= \frac{( I_{max}+ I_{min} )}{2}=\frac{( 323,416 + 306,423 )}{2}
- v:es:Rectificación de media onda controlada con carga resistiva 371 I_{media}= 314,9195 ( mA )
- v:es:Rectificación de media onda controlada con carga resistiva 387 I_{AVG}= \frac{1}{2\pi }\int_{0}^{3,45576} \frac{100}{\sqrt{100^{2}+( 0.1\cdot 2\pi 50 )^{2}}}\left[sen(\omega t -arctg( \frac{0.1\cdot 2\pi 50}{100} ) )+ sen(arctg( \frac{0.1\cdot 2\pi 50}{100} ))e^{- \omega t/2\pi 50\frac{0,1}{100}} \right]d\omega t
- v:es:Rectificación de media onda controlada con carga resistiva 394 I_{AVG}= 0,311( A )= 311( mA )
- v:es:Rectificación de media onda controlada con carga resistiva 403 I_{AVG}=\frac{V_{o,AVG}}{R}=\frac{\frac{V_{m}}{2\pi } ( 1- cos\beta )}{100}=\frac{\frac{100}{2\pi } ( 1- cos(3,45576) )}{100}= 0,31052( A )= 310,52( mA )
- v:es:Rectificación de media onda controlada con carga resistiva 417 I_{RMS}= \frac{( I_{max}+ I_{min} )}{2}=\frac{( 488,994 + 474,713 )}{2}
- v:es:Rectificación de media onda controlada con carga resistiva 423 I_{RMS}= 481,8535 ( mA )
- v:es:Rectificación de media onda controlada con carga resistiva 439 I_{RMS}=\sqrt{ \frac{1}{2\pi }\int_{0}^{3,45576} \frac{100^{2}}{100^{2}+( 0.1\cdot 2\pi 50 )^{2}} \left[sen(\omega t -arctg( \frac{0.1\cdot 2\pi 50}{100} ) )+ sen(arctg( \frac{0.1\cdot 2\pi 50}{100} ))e^{- \omega t/2\pi 50\frac{0,1}{100}} \right]^{2}d\omega t}
- v:es:Rectificación de media onda controlada con carga resistiva 446 I_{RMS}= 0,480545( A )= 480,545( mA )
- v:es:Rectificación de media onda controlada con carga resistiva 455 I_{RMS}=\frac{V_{o,RMS}}{Z}=\frac{\frac{V_{m}}{\sqrt{2}}}{\sqrt{R^{2}+L^{2} \omega^{2} }}=\frac{\frac{100}{\sqrt{2}}}{\sqrt{100^{2}+0,1^{2} (2\cdot \pi \cdot 50)^{2}}}= 0,6746( A )= 674,6( mA )
- v:es:Rectificación de media onda controlada con carga resistiva 471 P_{absRL}= \frac{( P_{max}+ P_{min} )}{2}=\frac{( 23,968 + 22,541 )}{2}
- v:es:Rectificación de media onda controlada con carga resistiva 477 P_{absRL}= 23,2545 ( W )
- v:es:Rectificación de media onda controlada con carga resistiva 495 fp = \frac{P_{abs}}{V_{s,rms} \cdot I_{rms}}=\frac{P_{abs}}{( \frac{V_{m}}{\sqrt{2}} )\cdot I_{rms}}=\frac{23,2545}{( \frac{100}{\sqrt{2}} )\cdot 0,4818535}
- v:es:Rectificación de media onda controlada con carga resistiva 502 fp = 0,68251
- v:es:Rectificación trifásica simple no controlada positiva con carga resistiva 96 V_{dc}=\frac{1}{T}\int^{\frac{T}{2} }_0V_S(t)dt=\frac{1}{2\pi}\int^\pi_0V_{max}Sen\omega t\;d\omega t=\frac{V_{max} }{\pi}=0,318V_{max}
- v:es:Rectificación trifásica simple no controlada positiva con carga resistiva 113 FF=\frac{V_{rms} }{V_{dc} }=\frac{0,5V_{max} }{0,318V_{max} }=1,57
- v:es:Rectificación trifásica simple no controlada positiva con carga resistiva 133 P_\mathrm{ac}=\frac{(V_\mathrm{dc})^2}{R}=\frac{(0,318\,V_\mathrm{max})^2}{R}
- v:es:Rectificación trifásica simple no controlada positiva con carga resistiva 141 \eta=\frac{P_\mathrm{dc} }{P_\mathrm{ac} }=\frac{\dfrac{(V_\mathrm{dc})^2}{R} }{\dfrac{(V_\mathrm{rms})^2}{R} }=\frac{(0,318\,V_\mathrm{max})^2}{(0,5\,V_\mathrm{max})^2 }=\frac{0,101}{0,25}=0,404\rightarrow (40,4%)
- v:es:Rectificación trifásica simple no controlada positiva con carga resistiva 176 V_{de} = (0,318)\cdot V_{max} = 108 V
etwiki
[Bearbeiten | Quelltext bearbeiten]- w:et:Trinidadi ja Tobago lipp 28 l\cdot(3\sqrt{33}-5)/{240}\ \approx\ 0,0509737\, l,
- w:et:Tähesuurus 23 m=m_{0}-2,512\log E
- w:et:Tähesuurus 24 \frac{E_{1}}{E_{2}} = 10^{-0,4(m_{1}-m_{2})} \Longrightarrow m_{1}-m_{2} = 2,512 \log \frac{E_{2}}{E_{1}}
- w:et:Tähesuurus 26 m_{0}=2,512\log E_{m=0}
- w:et:E (arv) 19 e = \lim_{n\to\infty} \left( 1 + \frac{1}{n} \right)^n = 2,71828 18284 59045 23536...
- w:et:Kõlar 68 \eta_{0}=10^{\frac{90-112}{10}}=0,006,
- w:et:Kasutaja:Suwa/meetriklasside valemeid 117 5,500 meetrit => 0,9 \cdot \left( \frac {L \cdot \sqrt[2]{S}} {12 \cdot \sqrt[3]{D}} + \frac {L \cdot \sqrt[2]{S}} {4} \right)
- w:et:Kasutaja:Suwa/tonniklasside valemeid 38 R = 0,18 \times \left( \frac {L \times SA^{0,5}} {D^{0,333}} \right)
- w:et:Vedelik 97 \nu = \frac{0,0178 \cdot 10^{-4}}{1+0,0337t+0,000221t^2}
- w:et:Plancki konstant 29 h = 6,626\ 070\ 150(81)\times 10^{-34}\ \mbox{J s} = 4,135\ 667\ 662(25)\times 10^{-15}\ \mbox{eV s}.
- w:et:Plancki konstant 31 \hbar = {{h}\over{2\pi}} = 1,054\ 571\ 628(53)\times 10^{-34}\ \mbox{J s} = 6,582\ 118\ 99(16)\times 10^{-16}\ \mbox{eV s}.
- w:et:Gravitatsioonikonstant 16 G = 6,67384(80) \times 10^{-11} \ \mbox{m}^3 \ \mbox{kg}^{-1} \ \mbox{s}^{-2} = 6,67384(80) \times 10^{-11} \ {\rm N}\, {\rm (m/kg)^2}
- w:et:Magnetiline konstant 15 \mu_0 = \frac{1}{c^2\varepsilon_0} = 4 \pi \cdot 10^{-7}\approx 1,25663706144\cdot 10^{-6} \,\,\frac{\mathrm{H}}{\mathrm{m}},
- w:et:Elektriline konstant 17 \varepsilon_0 = \frac{1}{c^2\mu_0} = \frac{10^{-9}}{36\pi}\approx 8,85418781762\ldots \cdot 10^{-12}\,\,\frac{\mathrm{F}}{\mathrm{m}},
- w:et:Elementaarlaeng 15 e=(1,6021892 \pm 0,0000046) \cdot 10^{-19}
- w:et:Helirõhk 64 L_p = 20\, \log_{10}\left(\frac{ {100}}{0,00002}\right)=134 \, \mathrm{dB}.
- w:et:Helirõhk 68 p_{rms} = p_0 \cdot {10}^{\frac{L_{\text{p}}}{20}} = 0,00002\cdot {10}^{\frac{80}{20}} = 0.2 \;\text {Pa}.
- w:et:Elektrienergia 28 \frac{12 \cdot 4 \cdot 20}{60 \cdot 1000} = 0,016 \;\text{kWh}.
- w:et:Vedelike füüsikalised omadused 51 \nu = \frac{0,0178 \cdot 10^{-4}}{1+0,0337t+0,000221t^2}
- w:et:Eralduvate muutujatega esimest järku diferentsiaalvõrrand 109 150=100e^{10k} \Rightarrow e^{10k}=1,5 \Rightarrow 10k= \ln 1,5 \Rightarrow k= \frac{ln 1,5}{10} \approx 0,0405
- w:et:Eralduvate muutujatega esimest järku diferentsiaalvõrrand 109 N=100e^{0,0405t} \frac{}{}
- w:et:Eralduvate muutujatega esimest järku diferentsiaalvõrrand 113 N=100e^{0,0405 \cdot 30}=100e^{1,215} \approx 337
- w:et:Eralduvate muutujatega esimest järku diferentsiaalvõrrand 114 200=100e^{0,0405t} \Rightarrow e^{0,0405t}=2 \Rightarrow 0,0405t= \ln 2 \Rightarrow t= \frac{ \ln 2}{0,0405} \approx 17
- w:et:Liitintress 69 P' =1500\times \left(1 + \frac{0,043}{4}\right)^{4 \times 6}\approx 1,938.84
- w:et:Liitintress 81 P' = 1500\times \left(1 + (0,043\times 2)\right)^{\frac 6 2}\approx 1921,24
- w:et:Liitintress 108 P' = 1 \left(1 + \frac{1}{365}\right)^{365}\approx 2,715
- w:et:Liitintress 239 X=\frac{1}{2}IT=0,675
- w:et:Liitintress 245 P\approx P_0 \left(1 + X + \frac{1}{3}X^2 \right)=333,33 (1+0,675+0,675^2/3)=608,96
- w:et:ΛCDM-mudel 26 \tau = 0,079^{+0,029}_{-0,032}
- w:et:ΛCDM-mudel 27 A_s = 0,813^{+0,042}_{-0,052}
- w:et:ΛCDM-mudel 28 n_s = 0,948^{+0,015}_{-0,018}
- w:et:Brinelli kõvadus 21 HB= \frac{0,102F}{A}= \frac {0,204F}{ \pi D(D- \sqrt{D^2-d^2}}
- w:et:Kuldlõige 36 \varphi = \frac{1 + \sqrt{5}}{2}\approx 1,61803\,39887\,.
- w:et:Kuldlõige 60 \varphi = \frac{1}{2} + \frac{\sqrt{5}}{2} \approx 1,61803\,39887\, ...
- w:et:Kasutaja:Kruusamägi/Keemia tabelid 274 N_A = (6,022 \, 141 \, 5\pm 0.000 \, 001)\,\times\,10^{23}
- w:et:Heliintensiivsus 45 I = \dfrac{0,00002^{2}}{400} = 1 \cdot 10^{-12} \,\frac \text{W}{\text{m}^{2}}.
- w:et:Heliintensiivsus 57 L_\text{I} = 20 \cdot \operatorname{log} \left(\frac{p}{p_0}\right) \qquad (p_0 = 0,00002 \;\text{Pa})
- w:et:Absoluutne niiskus 41 \alpha = \frac{1}{273} \approx 0,0037
- w:et:5.5mIC 30 5,500 meetrit \ge 0,9 \cdot \left( \frac {L \cdot \sqrt[2]{S}} {12 \cdot \sqrt[3]{D}} + \frac {L + \sqrt[2]{S}} {4} \right)
- w:et:Fibonacci jada 36 1/\varphi \approx 0,618
- w:et:Fibonacci jada 36 \varphi \approx 1,618
- w:et:Arutelu:Soojusjuhtivustegur 60 U_{sein-kokku} = 0,606 \frac{W}{m^2*K}
- w:et:Induktiivpool 65 L= \frac{0,001w^2D}{\frac{l_m}{D}+0,45},
- w:et:Induktiivpool 81 L=\frac{0,001w^2 D}{\frac{1,12l_m}{D}+\frac{1,25h_m}{D}+ 0,375},
- w:et:Geomeetriline keskmine 21 \sqrt[3]{8*5*2}=4,30886938
- w:et:Naturaallogaritm 13 2,71828
- w:et:Bernoulli valem 20 P_{5,3}=C_5^3 \cdot 0,5^3 \cdot 0,5^{5-3} = \frac{5!}{3! \cdot 2!} \cdot 0,5^5 = 10 \cdot 0,5^5 = 0,3125\ .
- w:et:Rooma nael 27 \ 1,024
- w:et:Rooma nael 27 \ 29,63392
- w:et:Rooma nael 27 \ 296,3392
- w:et:Rooma nael 27 \sqrt[3] {(1/18,82715) * 6165 * (4/3) * 64}
- w:et:Rooma nael 44 \ 29,62496
- w:et:Rooma nael 44 \ 296,2496
- w:et:Valgustustihedus 95 E \, = \, \frac{272}{0,75^2} \cdot 0,707\,=\,342 \, \mathrm{lx}.
- w:et:Reaktsiooni järk 181 {1,4*10^{-3} \over 7,0*10^{-4}}={k(0,020)^m \over k(0,010)^m }
- w:et:Helikiirus 95 c = 1449 + 4,6\,T + 0,055\,T^2 + 0,003\,T^3 + (1,39 - 0,012\,T)(S - 35) + 0,017\,d (8-11)
- w:et:Amdahli seadus 17 \frac{1}{(1 - P) + \frac{P}{N}}=\frac{1}{0,8+\frac{0,2}{4}}\approx1,176
- w:et:Galliumarseniid 38 E_k(T)=1,519-5,405\times10^{-4}\frac{T^2}{T+204}
- w:et:Kõvaduse mõõtmine 28 HB=\frac{F}{S}=0,102*\frac{2F}{\pi*D*(D-\sqrt{D^2-d^2})}
- w:et:Kõvaduse mõõtmine 74 HV=\frac{F}{S}=\frac{2F}{d^2}*sin\left ( \frac{\alpha}{2} \right )=1,8544\frac{F}{d^2}
- w:et:Automaatne võimenduse reguleerimine 96 ln (V_1)= 2,3 log(V_1) \cdot \frac{20}{20}=\frac{2,3}{20} V_1[dB]=0,115V_1[dB]
- w:et:BCS-teooria 51 \Delta(T=0)=1,764k_b T_c
- w:et:Spektrijoon 151 \eta = 1,36603 (f_L/f) - 0,47719 (f_L/f)^2 + 0,11116(f_L/f)^3,
- w:et:Spektrijoon 153 f = [f_G^5 + 2,69269 f_G^4 f_L + 2,42843 f_G^3 f_L^2 + 4,47163 f_G^2 f_L^3 + 0,07842 f_G f_L^4 + f_L^5]^{1/5},
- w:et:Tsükliline voltamperomeetria 53 n\cong\frac{0,059}{E_{pa}-E_{pk}}=\frac{0,059}{\Delta E_p}
- w:et:Ligandi sidumiskatse 34 pm = \frac{CPM/SA(CPM/fmol)}{Volume(ml)}\times {0,001(pmol/fmol)\over 0,001(liter/ml)}={(CPM/SA)\over (Vol)}
- w:et:Paberiformaat 20 \sqrt 2 \approx 1,4142
- w:et:Ülijuhtiv kvantinterferomeeter 30 \Phi_0 = \frac{2 \pi \hbar}{2e}\cong 2,0678\cdot 10^{-15}Tm^2 (Wb)
- w:et:Annuiteet 60 5000 = PMT \cdot \left(\frac{1-\frac {1}{(1+0,005)^{60}}}{0,005}\right) \Rightarrow PMT = 96,66
- w:et:Paraksiaalsete kiirte kimbud 21 {\alpha}=6^0{\cong}0,1047
- w:et:Allveeakustika 68 c = 1449 + 4,6\,T + 0,055\,T^2 + 0,003\,T^3 + (1,39 - 0,012\,T)(S - 35) + 0,017\,d (8-11)
- w:et:Kasutaja:TammepuuTP/liivakast 98 \Omega_0=1,037_{-0,044}^{+0,042}
- w:et:Kasutaja:TammepuuTP/liivakast 98 1,0027_{-0,0039}^{+0,0038}
- w:et:Kasutaja:TammepuuTP/liivakast 98 \Omega_0=1,0007_{-0,0019}^{+0,0019}
- w:et:Tasasuse probleem 96 \Omega_0=1,037_{-0,044}^{+0,042}
- w:et:Tasasuse probleem 96 1,0027_{-0,0039}^{+0,0038}
- w:et:Tasasuse probleem 96 \Omega_0=1,0007_{-0,0019}^{+0,0019}
etwikibooks
[Bearbeiten | Quelltext bearbeiten]- b:et:Füüsika:Konspekt 1 166 \begin{matrix}v=10-2*0,5*5,0=5,0 \frac{m}{s}; \\a_{k}=\sqrt{(-2*0,50)^2+(\frac{25}{50})^2}=\sqrt{1,25}=1,1180=1,1 \frac{m}{s^2};\end{matrix}
- b:et:Matemaatika:Gümnaasium/Kordamine eksamiks/Logaritm- ja eksponentfunktsioonid 43 x>\frac{log_{10}1000000}{log_{10}2} \Rightarrow x>\frac{6}{0,30102999566} \Rightarrow x>19,931568569324
- b:et:Matemaatika:Gümnaasium/Kordamine eksamiks/Tõenäosusteooria ja kirjeldav statistika 54 P(X=8)=P_{10,8}=C_{10}^8*0,42^8*0,42^{10-8}=0,0153721783095100416 \approx 1,537%
euwiki
[Bearbeiten | Quelltext bearbeiten]- w:eu:Eguzkia 44 1,000 \ \text{W}/{\text{m}^2}
- w:eu:Neptuno 117 1,0243\times10^{26}
- w:eu:Tetraedro 59 R= \frac{ \sqrt{6} }{4} \cdot a \approx 0,612 \cdot a
- w:eu:Tetraedro 62 r=\frac{ \sqrt{6} }{12} \cdot a \approx 0,204 \cdot a
- w:eu:Tetraedro 65 \rho = \frac{ \sqrt{2} }{4} \cdot a \approx 0,354 \cdot a
- w:eu:Tetraedro 74 B=\frac{1}{12} \sqrt{2} \cdot a^3 \approx 0,118 \cdot a^3
- w:eu:Tetraedro 85 \omega = \frac {A_c} {H^2} = \frac {\frac{\sqrt{3}}{4} \cdot a^2}{\left( \frac{\sqrt{6}}{3} \cdot a \right)^2} = \frac{3\sqrt{3}}{8}sr \approx 0,650 sr
- w:eu:Avogadroren zenbakia 15 6,02214199(47)\times 10^{23}
- w:eu:Avogadroren zenbakia 19 6,022\times 10^{23}
- w:eu:Integral 116 \sqrt {\frac {1} {5}} \left ( \frac {1} {5} - 0 \right ) + \sqrt {\frac {2} {5}} \left ( \frac {2} {5} - \frac {1} {5} \right ) + \ldots + \sqrt {\frac {5} {5}} \left ( \frac {5} {5} - \frac {4} {5} \right ) \approx 0,7497\,\!
- w:eu:Saros 20 223*S=6585,3211 egun
- w:eu:Saros 24 242*D=6585,3567 egun
- w:eu:Saros 28 239*A=6585,5374 egun
- w:eu:Indar 99 1 \text { kp}= \text {9,806 65 N}.
- w:eu:Indar 100 \text {1 lb}_\text {f}= \text {4,448 222 N}.
- w:eu:Grabitazio 61 G = 6,674 \cdot 10^{-11} \text { N·m}^2 / \text {kg}^2
- w:eu:Bolumen (espazioa) 26 (\text {1 mL = 0,001 L})
- w:eu:Bolumen (espazioa) 28 (\text {0,4732 L}).
- w:eu:Bolumen (espazioa) 28 \text {1 gal = 3,783 L}.
- w:eu:Bolumen (espazioa) 28 (\text {0,5683 L})
- w:eu:Karga elektriko 46 e=\frac{1C}{6,241509\times10^{18}}=1,602176\times10^{-19}C
- w:eu:Potentzia 87 \text {1 kgm/s = 9,806215 W}
- w:eu:Potentzia 89 \text {1 kcal/h = 1000 cal/h = 1,1630556 W}
- w:eu:Potentzia 94 \text {1 W = 1,341} \times 10^{-3} \text {HP = 0.1019 kgm/s = 0,8598 kcal/h = 107 erg/s}.
- w:eu:Arkimedes 40 3,140845 \approx \frac{223}{71} < \pi < \frac{22}{7} \approx 3,1428571
- w:eu:Radian 42 1^0=\frac {2 \times \pi}{360}=\frac {\pi}{180}\approx 0,01745 \ rad
- w:eu:Prandtl zenbakia 47 \mathit{k_0}={0,169\frac{Nw}{s.K}}\,
- w:eu:Prandtl zenbakia 49 \mathit{Pr}={\frac{9,9.10^{-2}.2,01.10^{3}}{0,169}}={1177,46}\,
- w:eu:Abiadura angeluar 65 1 \text { rpm} = \frac {2 \pi \text { rad}} {60 \text { s}}= \frac {2\pi}{60}\text { rad/s} =\text {0,10471976 rad/s}.
- w:eu:Masa atomiko 25 M = \frac{92,41\cdot7,016 + 7,59\cdot6,015} {100}= 6,94
- w:eu:Masa molekular 21 2 \times 1,00797 + 15,9994 = 18,01534 u
- w:eu:Pentagono (geometria) 23 \simeq 1,720 a^2
- w:eu:Pentagono (geometria) 40 A = \frac{{a^2 \sqrt {25 + 10\sqrt 5 } }}{4} = \frac{5a^2 \tan(54^\circ)}{4} \approx 1,720477401 a^2
- w:eu:Eguzki erradio 19 r_\bigodot = 6,960\times 10^8\hbox{ m} = 0,00465247\hbox{ UA}
- w:eu:Ilargiaren aldi 46 \frac{1}{\frac{1}{27,322}-\frac{1}{365,25}}
- w:eu:Zenbaki hamartar periodiko 19 \begin{array}{l} 0,111111111111... = 1/9\\ 0,142857142857... = 1/7\\ 0,333333333333... = 1/3\\ 0,074074074074... = 2/27\\ 0,583333333333... = 7/12\end{array}
- w:eu:Zenbaki hamartar periodiko 31 \begin{array}{l} 0,111111111111... = 0,\overline{1}\\ 0.23455555...=0,234\overline{5}\\ 0,074074074074... = 0,\overline{074}\\ 0,6835353535... = 0,68\overline{35}\\\end{array}
- w:eu:Eguneratutako balio garbi 30 \frac{-100,000}{(1+0.10)^0}
- w:eu:Eguneratutako balio garbi 32 \frac{30,000 - 5,000}{(1+0.10)^1}
- w:eu:Eguneratutako balio garbi 34 \frac{30,000 - 5,000}{(1+0.10)^2}
- w:eu:Eguneratutako balio garbi 36 \frac{30,000 - 5,000}{(1+0.10)^3}
- w:eu:Eguneratutako balio garbi 38 \frac{30,000 - 5,000}{(1+0.10)^4}
- w:eu:Eguneratutako balio garbi 40 \frac{30,000 - 5,000}{(1+0.10)^5}
- w:eu:Eguneratutako balio garbi 42 \frac{30,000 - 5,000}{(1+0.10)^6}
- w:eu:Urrezko zenbaki 22 \varphi = \frac{1+\sqrt{5}}{2}\approx 1,61803\,39887\ldots\,
- w:eu:Urrezko zenbaki 76 \varphi = \frac{1 + \sqrt{5}}{2} \approx 1,61803\,39887\dots\,
- w:eu:Korronte alterno 44 V_\mathrm{ef}=\frac{V_\mathrm{max}}{\sqrt{2}}=0,707 V_\mathrm{max}
- w:eu:Eguzki masa 17 M_\bigodot=1,9891\times10^{30}\hbox{ kg}
- w:eu:Sinbolo matematikoen taula 401 e\approx 2,718
- w:eu:Sinbolo matematikoen taula 402 \pi \approx 3,1415926
- w:eu:Oktogono 20 \approx 4,828a^2
- w:eu:Oktogono 30 A = 2 \cot \frac{\pi}{8} a^2 = 2(1+\sqrt{2})a^2 \simeq 4,828427125\,a^2
- w:eu:Eneagono 23 \simeq 6,182 a^2
- w:eu:Eneagono 33 A = \frac{9}{4}a^2\cot\frac{\pi}{9}\simeq6,18182\,a^2.
- w:eu:Sierpinskiren tapiza 15 \log(8)/\log(3)\approx 1,892789...
- w:eu:Boltzmannen konstantea 16 k \approx 1,3806504 \times 10^{-23}\rm\ J/K
- w:eu:Boltzmannen konstantea 21 \sigma \approx 5,670400\times10^{-8}\ \rm\frac{W}{m^2 \cdot K^4}
- w:eu:Azpimultzo 41 \{ 46,189,1264\} \subseteq \{ 46,189,1264\}
- w:eu:Azpimultzo 42 \{ 46,189,1264\} \subset N
- w:eu:Heptagono 23 \simeq 3,634 a^2.
- w:eu:Heptagono 25 \simeq 128,571
- w:eu:Heptagono 34 A = \frac{7}{4}a^2 \cot \frac{\pi}{7} \simeq 3,633912444 a^2
- w:eu:Dekagono 23 \simeq 7,695 a^2
- w:eu:Dekagono 33 A = \frac{5}{2}a^2 \cot \frac{\pi}{10} = \frac{5a^2}{2} \sqrt{5+2\sqrt{5}} \simeq 7,694208843 a^2
- w:eu:Endekagono 23 \simeq 9,366 a^2
- w:eu:Endekagono 24 147,273
- w:eu:Endekagono 33 A = \frac{11}{4}a^2 \cot \frac{\pi}11 \simeq 9,36564\,a^2
- w:eu:Dodekagono 23 \simeq 11,196 a^2
- w:eu:Dodekagono 34 \begin{align} A & = 3 \cot\left(\frac{\pi}12 \right) a^2 = 3 \left(2+\sqrt{3} \right) a^2 \simeq 11,19615242\,a^2 \end{align}
- w:eu:Tridekagono 23 \simeq 13,186 a^2
- w:eu:Tridekagono 24 \simeq 152,308
- w:eu:Tridekagono 33 A = \frac{13}{4}a^2 \cot \frac{\pi}13 \simeq 13,1858\,a^2.
- w:eu:Tetradekagono 23 \simeq 15,335 a^2
- w:eu:Tetradekagono 24 \simeq 154,286^\circ
- w:eu:Tetradekagono 33 A = \frac{14}{4}a^2\cot\frac{\pi}{14}\simeq 15,3345a^2
- w:eu:Tetradekagono 35 \frac 2160^\circ14\simeq 154,286^\circ
- w:eu:Pentadekagono 23 \simeq 17,645 a^2
- w:eu:Pentadekagono 33 A = \frac{15}{4}a^2\cot\frac{\pi}{15}\simeq 17,6424a^2
- w:eu:Hexadekagono 23 \simeq 20,109 a^2
- w:eu:Heptadekagono 23 \simeq 22,735 a^2
- w:eu:Oktodekagono 23 \simeq 25,521 a^2
- w:eu:Oktodekagono 33 A = \frac{18}{4}a^2\cot\frac{\pi}{18}\simeq 25,5208a^2
- w:eu:Eneadekagono 23 \simeq 28,465 a^2
- w:eu:Eneadekagono 24 \simeq 161,052^\circ
- w:eu:Eneadekagono 33 A = \frac{19}{4}a^2\cot\frac{\pi}{19}\simeq 28,4652a^2
- w:eu:Eneadekagono 35 \frac Vorlage:3060^\circ19\simeq 161,052^\circ
- w:eu:Ikosagono 23 \simeq 31,569 a^2
- w:eu:Ikosagono 33 A = 5a^2 \cot \frac{\pi}20 \simeq 31,5688 a^2
- w:eu:Triakontagono 23 \simeq 71,358 a^2
- w:eu:Pentakontagono 23 \simeq 198,682 a^2
- w:eu:Pentakontagono 33 A = \frac{50}{4}a^2\cot\frac{\pi}{50}\simeq 198,682a^2
- w:eu:Vivianiren gorputz 20 V=\frac{2\pi}3-\frac89 \approx 1,2055,
- w:eu:Tetraedro moztu 63 A = 7\sqrt{3}a^2 \approx 12,124 a^2
- w:eu:Tetraedro moztu 66 V = \frac{23}{12}\sqrt{2}a^3 \approx 2,711 a^3
- w:eu:Tetraedro moztu 69 R = \frac{1}{4}\sqrt{22}a \approx 1,173 a
- w:eu:Tetraedro moztu 72 r = \frac{3}{4}\sqrt{2}a \approx 1,061 a
- w:eu:Kuboktaedro 63 A = \left(6+2\sqrt{3}\right)a^2 \approx 9,464 a^2
- w:eu:Kuboktaedro 66 V = \frac{5}{3}\sqrt{2}a^3 \approx 2,357 a^3
- w:eu:Kuboktaedro 72 r = \frac{1}{2}\sqrt{3}a \approx 0,866 a
- w:eu:Kubo moztu 63 A = 2\left(6+6\sqrt{2}+\sqrt{3}\right)a^2 \approx 32,435 a^2
- w:eu:Kubo moztu 69 R = \frac{1}{2}\sqrt{7+4\sqrt{2}}a \approx 1,779 a
- w:eu:Kubo moztu 72 r = \frac{1}{2}\left(2+\sqrt{2}\right)a \approx 1,707 a
- w:eu:Oktaedro moztu 63 A = \left(6+12\sqrt{3}\right)a^2 \approx 26,785 a^2
- w:eu:Oktaedro moztu 66 V = 8\sqrt{2}a^3 \approx 11,314 a^3
- w:eu:Oktaedro moztu 69 R = \frac{1}{2}\sqrt{10}a \approx 1,581 a
- w:eu:Erronbikuboktaedro 63 A = \left(18+2\sqrt{3}\right)a^2 \approx 21,464 a^2
- w:eu:Erronbikuboktaedro 66 V = \frac{1}{3}\left(12+10\sqrt{2}\right)a^3 \approx 8,714 a^3
- w:eu:Erronbikuboktaedro 69 R = \frac{1}{2}\sqrt{5+2\sqrt{2}}a \approx 1,399 a
- w:eu:Erronbikuboktaedro 72 r = \frac{1}{2}\sqrt{4+2\sqrt{2}}a \approx 1,307 a
- w:eu:Kuboktaedro moztu 64 A = 12\left(2+\sqrt{2}+\sqrt{3}\right)a^2 \approx 61,755 a^2
- w:eu:Kuboktaedro moztu 67 V = \left(22+14\sqrt{2}\right)a^3 \approx 41,799 a^3
- w:eu:Kuboktaedro moztu 70 R = \frac{1}{2}\sqrt{13+6\sqrt{2}}a \approx 2,318 a
- w:eu:Kuboktaedro moztu 73 r = \frac{1}{2}\sqrt{12+6\sqrt{2}}a \approx 2,263 a
- w:eu:Kubo kamuts 63 A = \left(6+8\sqrt{3}\right)a^2 \approx 19,856 a^2
- w:eu:Kubo kamuts 66 V = \sqrt{\frac{613t+203}{9(35t-62)}}a^3 \approx 7,889 a^3
- w:eu:Kubo kamuts 69 R = \sqrt{\frac{3-t}{4(2-t)}}a \approx 1,344 a
- w:eu:Kubo kamuts 72 r = \sqrt{\frac{1}{4(2-t)}}a \approx 1,247 a
- w:eu:Ikosidodekaedro 62 A = \left(5\sqrt{3}+3\sqrt{25+10\sqrt{5}}\right)a^2 \approx 29,306 a^2
- w:eu:Ikosidodekaedro 65 V = \frac{1}{6}\left(45+17\sqrt{5}\right)a^3 \approx 13,834 a^3
- w:eu:Ikosidodekaedro 68 R = {\phi}a \approx 1,618 a
- w:eu:Ikosidodekaedro 71 r = \frac{1}{2}\sqrt{5+2\sqrt{5}}a \approx 1,539 a
- w:eu:Ikosidodekaedro 76 \phi = \frac{1+\sqrt{5}}{2} \approx 1,6180339
- w:eu:Dodekaedro moztu 63 A = 5\left(\sqrt{3}+6\sqrt{5+2\sqrt{5}}\right)a^2 \approx 100,991 a^2
- w:eu:Dodekaedro moztu 69 R = \frac{1}{4}\sqrt{74+30\sqrt{5}}a \approx 2,969 a
- w:eu:Dodekaedro moztu 72 r = \frac{1}{4}\left(5+3\sqrt{5}\right)a \approx 2,927 a
- w:eu:Ikosaedro moztu 63 A = 3\left(10\sqrt{3}+\sqrt{5}\sqrt{5+2\sqrt{5}}\right)a^2 \approx 72,607 a^2
- w:eu:Ikosaedro moztu 66 V = \frac{1}{4}\left(125+43\sqrt{5}\right)a^3 \approx 55,288 a^3
- w:eu:Ikosaedro moztu 69 R = \frac{1}{2}\sqrt{9\phi+10}a \approx 2,478 a
- w:eu:Ikosaedro moztu 72 r = \frac{3}{4}\left(1+\sqrt{5}\right)a \approx 2,427 a
- w:eu:Erronbikosidodekaedro 63 A = \left(30+5\sqrt{3}+ 3\sqrt{25+10\sqrt{5}}\right)a^2 \approx 59,306 a^2
- w:eu:Erronbikosidodekaedro 66 V = \frac{1}{3}\left(60+29\sqrt{5}\right)a^3 \approx 41,615 a^3
- w:eu:Erronbikosidodekaedro 69 R = \frac{1}{2}\sqrt{11+4\sqrt{5}}a \approx 2,233 a
- w:eu:Erronbikosidodekaedro 72 r = \frac{1}{2}\sqrt{10+4\sqrt{5}}a \approx 2,176 a
- w:eu:Ikosidodekaedro moztu 62 A = 30\left(1+\sqrt{2\left(4+\sqrt{5}+\sqrt{15+6\sqrt{6}}\right)}\right)a^2 \approx 175,031 a^2
- w:eu:Ikosidodekaedro moztu 65 V = \left(95+50\sqrt{5}\right)a^3 \approx 206,803 a^3
- w:eu:Ikosidodekaedro moztu 68 R = \frac{1}{2}\sqrt{31+12\sqrt{5}}a \approx 3,802 a
- w:eu:Ikosidodekaedro moztu 71 r = \sqrt{\frac{15}{2}+3\sqrt{5}}a \approx 3,769 a
- w:eu:Dodekaedro kamuts 62 S = \left(20\sqrt{3}+3\sqrt{25+10\sqrt{5}}\right)a^2 \approx 55,287 a^2
- w:eu:Dodekaedro kamuts 65 V = \frac{12\xi^2(3\phi+1)-\xi(36\phi+7)-(53\phi+6)}{6\sqrt{3-\xi^2}^3}a^3 \approx 37,61665 a^3
- w:eu:Dodekaedro kamuts 68 R = \sqrt{\frac{3-t}{4(2-t)}}a \approx 1,344 a
- w:eu:Dodekaedro kamuts 71 r = \sqrt{\frac{1}{4(2-t)}}a \approx 1,247 a
- w:eu:Dodekaedro kamuts 76 \phi = \frac{1+\sqrt{5}}{2} \approx 1,6180339
- w:eu:Dodekaedro kamuts 78 \xi = \sqrt[3]{\frac{\phi}{2}+\frac{1}{2}\sqrt{\phi-\frac{5}{27}}}+\sqrt[3]{\frac{\phi}{2}-\frac{1}{2}\sqrt{\phi-\frac{5}{27}}} \approx 1,7155615.
- w:eu:Legendreren aieru 17 \theta = 23/42 = 0,547...
- w:eu:Piramide pentagonal 54 H = \sqrt{{\frac{5-\sqrt{5}}{10}}}\,a \approx 0,5257\,a
- w:eu:Piramide pentagonal 55 A = \left( \frac{\sqrt{25 + 10 \sqrt{5}}}{4} + 5\frac{\sqrt{3}}{4} \right) a^2 \approx 3,8855\,a^2
- w:eu:Piramide pentagonal 56 V = \frac{5 + \sqrt{5}}{24}\,a^3 \approx 0,3015\,a^3
- w:eu:Kupula triangeluar 54 A=\left(3+\frac{5\sqrt{3}}{2}\right)a^2\approx7,33013a^2
- w:eu:Kupula triangeluar 56 V=\left(\frac{5}{3\sqrt{2}}\right)a^3\approx1,17851a^3
- w:eu:Kupula karratu 54 A=\left(7+2\sqrt{2}+\sqrt{3}\right)a^2\approx11,5605a^2
- w:eu:Kupula karratu 56 V=\left(1+\frac{2\sqrt{2}}{3}\right)a^3\approx1,94281a^3
- w:eu:Kupula karratu 58 R=\left(\frac{1}{2}\sqrt{5+2\sqrt{2}}\right)a\approx1,39897a
- w:eu:Errotonda pentagonal 54 A\approx22,3472a^2
- w:eu:Errotonda pentagonal 56 V=(\frac{1}{12}(45+17\sqrt{5}))a^3\approx6,91776a^3
- w:eu:Errotonda pentagonal 58 R=(\frac{1}{2}(1+\sqrt{5}))a\approx1,61803a
- w:eu:Piramide triangeluar elongatu 54 A=(3+\sqrt{3})a^2\approx4,73205a^2
- w:eu:Piramide triangeluar elongatu 56 V=(\frac{1}{12}(\sqrt{2}+3\sqrt{3}))a^3\approx0,550864a^3
- w:eu:Bipiramide triangeluar elongatu 54 V=(\frac{1}{12}(2\sqrt{2}+3\sqrt{3}))a^3\approx0,668715a^3
- w:eu:Bipiramide triangeluar elongatu 56 A=(\frac{3}{2}(2+\sqrt{3}))a^2\approx5,59808a^2
- w:eu:Kupula triangeluar elongatu 54 A=(9+\frac{5\sqrt{3}}{2})a^2\approx13,3301a^2
- w:eu:Kupula triangeluar elongatu 56 V=(\frac{1}{6}(5\sqrt{2}+9\sqrt{3}))a^3\approx3,77659a^3
- w:eu:Kupula karratu elongatu 54 A=(15+2\sqrt{2}+\sqrt{3})a^2\approx19,5605a^2
- w:eu:Kupula karratu elongatu 56 V=(3+\frac{8\sqrt{2}}{3})a^3\approx6,77124a^3
- w:eu:Kupula karratu elongatu 58 R=(\frac{1}{2}\sqrt{5+2\sqrt{2}})a\approx1,39897a
- w:eu:Kupula pentagonal elongatu 54 A=(\frac{1}{4}(60+\sqrt{10(80+31\sqrt{5}+\sqrt{2175+930\sqrt{5}})}))a^2\approx26,5797a^2
- w:eu:Kupula pentagonal elongatu 56 V=(\frac{1}{6}(5+4\sqrt{5}+15\sqrt{5+2\sqrt{5}}))a^3\approx10,0183a^3
- w:eu:Errotonda pentagonal elongatu 54 A=\frac{1}{2}(20+\sqrt{5(145+58\sqrt{5}+2\sqrt{30(65+29\sqrt{5})})})a^2\approx32,3472a^2
- w:eu:Errotonda pentagonal elongatu 56 V=\frac{1}{12}(45+17\sqrt{5}+30\sqrt{5+2\sqrt{5}})a^3\approx14,612a^3
- w:eu:Kupula triangeluar giroelongatu 54 A=(3+\frac{11\sqrt{3}}{2})a^2\approx12,5263a^2
- w:eu:Kupula triangeluar giroelongatu 56 V=(\frac{1}{3}\sqrt{\frac{61}{2}+18\sqrt{3}+30\sqrt{1+\sqrt{3}}})a^3\approx3,51605a^3
- w:eu:Girobifastigio 54 A=(4+\sqrt{3})a^2\approx5,73205a^2
- w:eu:Girobifastigio 56 V=(\frac{\sqrt{3}}{2})a^3\approx0,866025a^3
- w:eu:Ortobikupula triangeluar 54 A=2(3+\sqrt{3})a^2\approx9,4641a^2
- w:eu:Ortobikupula triangeluar 56 V=\frac{5\sqrt{2}}{3}a^3\approx2,35702a^3
- w:eu:Girobikupula karratu 54 A=2(5+\sqrt{3})a^2\approx13,4641a^2
- w:eu:Girobikupula karratu 56 V=(2+\frac{4\sqrt{2}}{3})a^3\approx3,88562a^3
- w:eu:Ortobikupula pentagonal 56 A=(10+\sqrt{\frac{5}{2}(10+\sqrt{5}+\sqrt{75+30\sqrt{5})}})a^2\approx17,7711a^2
- w:eu:Ortobikupula pentagonal 58 V=\frac{1}{3}(5+4\sqrt{5})a^3\approx4,64809a^3
- w:eu:Girobikupula pentagonal 56 A=(10+\sqrt{\frac{5}{2}(10+\sqrt{5}+\sqrt{75+30\sqrt{5}})})a^2\approx17,7711a^2
- w:eu:Girobikupula pentagonal 58 V=\frac{1}{3}(5+4\sqrt{5})a^3\approx4,64809a^3
- w:eu:Ortokupularrotonda pentagonal 54 A\approx23,5385a^2
- w:eu:Ortokupularrotonda pentagonal 56 V=\frac{5}{12}(11+5\sqrt{5})a^3\approx9,24181a^3
- w:eu:Girokupularrotonda pentagonal 54 A= (5+\frac{15}{4}\sqrt{3}+\frac{7}{4}\sqrt{25+10\sqrt{5}}) a^2\approx23,5385a^2
- w:eu:Girokupularrotonda pentagonal 56 V=\frac{5}{12}(11+5\sqrt{5})a^3\approx9,24181a^3
- w:eu:Girobikupula triangeluar elongatu 54 A=2(6+\sqrt{3})a^2\approx15,4641a^2
- w:eu:Girobikupula triangeluar elongatu 56 V=(\frac{5\sqrt{2}}{3}+\frac{3\sqrt{3}}{2})a^3\approx4,9551a^3
- w:eu:Ortobikupula pentagonal elongatu 54 A=(20+\sqrt{\frac{5}{2}(10+\sqrt{5}+\sqrt{75+30\sqrt{5}})})a^2\approx27,7711a^2
- w:eu:Ortobikupula pentagonal elongatu 56 V=\frac{1}{6}(10+8\sqrt{5}+15\sqrt{5+2\sqrt{5}})a^3\approx12,3423a^3
- w:eu:Girobikupula pentagonal elongatu 54 A=(20+\sqrt{\frac{5}{2}(10+\sqrt{5}+\sqrt{75+30\sqrt{5}})})a^2\approx27,7711a^2
- w:eu:Girobikupula pentagonal elongatu 56 V=\frac{1}{6}(10+8\sqrt{5}+15\sqrt{5+2\sqrt{5}})a^3\approx12,3423a^3
- w:eu:Ortokupularrotonda pentagonal elongatu 54 A=\frac{1}{4}(60+\sqrt{10(190+49\sqrt{5}+21\sqrt{75+30\sqrt{5}}}))a^2\approx33,5385a^2
- w:eu:Ortokupularrotonda pentagonal elongatu 56 V=\frac{5}{12}(11+5\sqrt{5}+6\sqrt{5+2\sqrt{5}})a^3\approx16,936a^3
- w:eu:Girokupularrotonda pentagonal elongatu 54 A=\frac{1}{4}(60+\sqrt{10(190+49\sqrt{5}+21\sqrt{75+30\sqrt{5}})})a^2\approx33,5385a^2
- w:eu:Girokupularrotonda pentagonal elongatu 56 V=\frac{5}{12}(11+5\sqrt{5}+6\sqrt{5+2\sqrt{5}})a^3\approx16,936a^3
- w:eu:Ortobirrotonda pentagonal elongatu 54 A=10+\sqrt{30(10+3\sqrt{5}+\sqrt{75+30\sqrt{5}}})a^2\approx39,306a^2
- w:eu:Ortobirrotonda pentagonal elongatu 56 V=\frac{1}{6}(45+17\sqrt{5}+15\sqrt{5+2\sqrt{5}})a^3\approx21,5297a^3
- w:eu:Girobirrotonda pentagonal elongatu 54 A=10+\sqrt{30(10+3\sqrt{5}+\sqrt{75+30\sqrt{5}}})a^2 \approx 39,306a^2
- w:eu:Girobirrotonda pentagonal elongatu 56 V=\frac{1}{6}(45+17\sqrt{5}+15\sqrt{5+2\sqrt{5}})a^3 \approx 21,5297a^3
- w:eu:Bikupula triangeluar giroelongatu 54 A=(6+5\sqrt{3})a^2 \approx 14,6603a^2
- w:eu:Bikupula triangeluar giroelongatu 56 V= \sqrt{2} (\frac{5}{3}+\sqrt{1+\sqrt{3}}) a^3 \approx 4,69456a^3
- w:eu:Esfenokoroa 53 A=(2+3\sqrt{3})a^2\approx7,19615a^2
- w:eu:Esfenokoroa 55 V=(\frac{1}{2}\sqrt{1+3\sqrt{\frac{3}{2}}+\sqrt{13+3\sqrt{6}}})a^3\approx1,51535a^3
- w:eu:Energia elektrikoa garraiatzeko aireko linea 190 X_L = 1,256637.10^{-4}\ln { D \over GMR}
- w:eu:Ponpa 99 {(P_{I}-P_{A})_{aire} \over (P_{I}-P_{A})_{agua}} = {\rho_{aire} \over \rho_{agua}} = {1,29 \over 1000} =0,00129
- w:eu:Euklidesen algoritmo 121 zkh (2366, 273) = zkh (273,182)
- w:eu:Euklidesen algoritmo 214 zkh(93164,5826)
- w:eu:Trantsizio egoeraren teoria 114 k_B = {R \over N_A} ; k_B \simeq 1,3806504\cdot10^{-23} J/K
- w:eu:Trantsizio egoeraren teoria 116 h \simeq 6,626\cdot10^{-34} J\cdot s
- w:eu:Biderketarekiko alderantzizko modular 79 zkh(244,117)=1
- w:eu:Indar ionikoa 53 -\log\gamma_c =0,512(z_c)^2 \surd\mu
- w:eu:Indar ionikoa 56 -\log\gamma_c =\frac{0,512(z_c)^2 \surd\mu } {1+\surd\mu}
- w:eu:Rockwell saiakuntza 300 = 100-\frac{h}{0,002}
- w:eu:Rockwell saiakuntza 302 = 130 - \frac{h}{0,002}
- w:eu:Rockwell saiakuntza 303 = 100 -\frac{h}{0,001}
- w:eu:Bézouten identitate 45 zkh(502,110)=2
- w:eu:Elkarrekintza elektromagnetiko 47 \varepsilon_0 = 8,854\times {10^{-12}}\text { N}{^{-1}}\text {m}{^{-1}}\text {C}{^{-2}}
- w:eu:Oinarrizko elkarrekintza 23 6,67384(80)\times 10^{11} \text {Nm}^2/\text {kg}^2
- w:eu:Lankide:Alesander Bilbao/Proba orria 32 e=\frac{1C}{6,241509\times10^{18}}=1,602176\times10^{-19}C
- w:eu:Lankide:Irenee19/Proba orria 52 x= 100 g C \cdot {1 mol C \over 12,0107 g C} \cdot {1 mol O2 \over 1molC}\cdot {31,9988g O2 \over 1molO2}
- w:eu:Lankide:Ezuloaga/Proba orria 146 \pi = 3,1416
- w:eu:Fluktuazio kuantiko 31 h =\,\, 6,626\ 0693 (11) \times10^{-34}\ \mbox{J}\cdot\mbox{s} \,\, = \,\, 4,135\ 667\ 43(35) \times10^{-15}\ \mbox{eV}\cdot\mbox{s}
- w:eu:Fluktuazio kuantiko 102 2m_ec^2 = 2\times0,511 MeV = 1,022 MeV
- w:eu:Lankide:Vergaraasier201/Proba orria 31 h =\,\, 6,626\ 0693 (11) \times10^{-34}\ \mbox{J}\cdot\mbox{s} \,\, = \,\, 4,135\ 667\ 43(35) \times10^{-15}\ \mbox{eV}\cdot\mbox{s}
- w:eu:Lankide:Vergaraasier201/Proba orria 102 2m_ec^2 = 2\times0,511 MeV = 1,022 MeV
euwikibooks
[Bearbeiten | Quelltext bearbeiten]- b:eu:Bioestatistikako azterketa ebatziak 40 I_{\mu}^{0.99}:248.5 \pm 3.11 \frac{13.8}{\sqrt{12}}:248.5 \pm 12.39:236.11,250.89