Benutzer:Debenben/dezimalkomma/j-p

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
a-cdefg-ij-pq-st-z
  • w:jv:Hassium 231 \, ^{238}_{92}\mathrm{U} + \, ^{34}_{16}\mathrm{S} \, \to\ \, ^{269,268,267}\mathrm{Hs}
  • w:jv:Hassium 234 \, ^{238}_{92}\mathrm{U} + \, ^{36}_{16}\mathrm{S} \, \to\ \, ^{271,270,269}\mathrm{Hs}
  • w:jv:Hassium 239 \, ^{244}_{94}\mathrm{Pu} + \, ^{30}_{14}\mathrm{Si} \, \to\ \, ^{271,270}\mathrm{Hs}
  • w:jv:Hassium 242 \, ^{226}_{88}\mathrm{Ra} + \, ^{48}_{20}\mathrm{Ca} \, \to\ \, ^{271,270}\mathrm{Hs}
  • w:jv:Ununpentium 36 \,^{48}_{20}\mathrm{Ca} + \,^{243}_{95}\mathrm{Am} \to \,^{291}_{115}\mathrm{Uup} ^{*} \to \,^{288,287}\mathrm{Uup}
  • w:jv:Ununtrium 41 \,^{48}_{20}\mathrm{Ca} + \,^{243}_{95}\mathrm{Am} \to \,^{288,287}\mathrm{Uup} \to \,^{284,283}\mathrm{Uut} \to\
  • w:jv:Roentgenium 142 \,^{231}_{91}\mathrm{Pa} + \,^{48}_{20}\mathrm{Ca} \,\to \,^{279}_{111}\mathrm{Rg}^{*}\to \,^{276,275,274}\mathrm{Rg}.
  • w:mg:Pi 54 3\times \frac{1}{57/60 + 36/3600} = 3 \times \frac{25}{24} = 3 + \frac 18 = 3,125
  • w:mg:Pi 60 \pi = \frac{A}{r^2}=\frac{64}{(9/2)^2} = \frac{256}{81}\approx 3,1605
  • w:mg:Lanjamasoandro 16 M_\odot=( 1,98855\ \pm\ 0,00025 )\ \times10^{30}\hbox{ kg}
  • w:min:Bumi 110 \begin{smallmatrix} \left ( \frac{1}{3 \cdot 332,946} \right )^{\frac{1}{3}} = 0.01 \end{smallmatrix}
  • w:nds:Gröttste gemeensame Deler 40 \operatorname{ggD}(3528,3780) = 2^{\color{OliveGreen}2} \cdot 3^{\color{Red}2} \cdot 5^{\color{Red}0} \cdot 7^{\color{OliveGreen}1} = 252
  • w:nds:Gröttste gemeensame Deler 44 \operatorname{lgV}(3528,3780) = 2^{\color{Red}3} \cdot 3^{\color{OliveGreen}3} \cdot 5^{\color{OliveGreen}1} \cdot 7^{\color{Red}2} = 52.920
  • w:nds:Uran 115 {}^{238}\mathrm{U}\ \stackrel{\alpha 4,468 Mrd. a}{\longrightarrow}\ {}^{234}\mathrm{Th}\ \stackrel{\beta^{-}24,10 d}{\longrightarrow}\ {}^{234}\mathrm{Pa}\ \stackrel{\beta^{-}70,2 s}{\longrightarrow}\ {}^{234}\mathrm{U}
  • w:nds:Uran 125 \mathrm{{}^{232}Th\ + n \longrightarrow {}^{233}Th \stackrel{\beta^- 22,3 min} \longrightarrow\ {}^{233}Pa \stackrel{\beta^- 26,967 d} \longrightarrow\ {}^{233}U}
  • w:nds:Venus (Planet) 292 365,256:243,019 = 2:3,006
  • w:nds:Thorium 98 \mathrm{^{232}_{\ 90}Th \ + \ ^{1}_{0}n \ \longrightarrow \ ^{233}_{\ 90}Th \ \xrightarrow[22,3 \ min]{\beta^-} \ ^{233}_{\ 91}Pa \ \xrightarrow[26,967 \ d]{\beta^-} \ ^{233}_{\ 92}U}
  • w:nds:Neptunium 56 \mathrm{^{238}_{\ 92}U\ +\ ^{1}_{0}n\ \longrightarrow \ ^{239}_{\ 92}U\ \xrightarrow[23 \ min]{\beta^-} \ ^{239}_{\ 93}Np\ \xrightarrow[2,355 \ d]{\beta^-} \ ^{239}_{\ 94}Pu}
  • w:nds:Neptunium 61 \mathrm{^{238}_{\ 92}U\ \xrightarrow[]{(n,\ 2n)} \ ^{237}_{\ 92}U\ \xrightarrow[7 \ d]{\beta^-} \ ^{237}_{\ 93}Np\ \xrightarrow[2,144\ x\ 10^6\ a]{\alpha} \ ^{233}_{\ 92}U}
  • w:nds:Neptunium 130 \mathrm{^{237}_{\ 93}Np\ +\ ^{1}_{0}n\ \longrightarrow \ ^{238}_{\ 93}Np\ \xrightarrow[2,117 \ d]{\beta^-} \ ^{238}_{\ 94}Pu}
  • w:nds:Physikaalsch Grött 127 l = (10{,}0072 \pm 0,0023) \, \mathrm{m}
  • w:nds:Physikaalsch Grött 195 \begin{array}{rl}\frac{\mathrm{WCT}}{^\circ\mathrm{C}}=13{,}12+0{,}6215\,\frac{T}{^\circ\mathrm{C}} -11{,}37\,(\frac{v}{\mathrm{km/h}})^{0,16}+0,3965\,\frac{T}{^\circ\mathrm{C}}\,(\frac{v}{\mathrm{km/h}})^{0{,}16}\end{array}
  • w:nds:Aktivität (Physik) 26 \lambda = \frac {\ln 2}{T_{1/2}} = \frac {0,693...}{T_{1/2}}
  • w:nds:Protactinium 71 \mathrm{^{232}_{\ 90}Th \ + \ ^{1}_{0}n \ \longrightarrow \ ^{233}_{\ 90}Th \ \xrightarrow[22,3\ min]{\beta^-} \ ^{233}_{\ 91}Pa \ \xrightarrow[26,967\ d]{\beta^-} \ ^{233}_{\ 92}U}
  • wikt:nl:fijnstructuurconstante 24 \alpha\ =\ \frac{e^2}{\hbar c \ 4 \pi \epsilon_0}\ =\ \frac{e^2 c \mu_0}{2 h}\ =\ 7,297\,352\,570(5) \times 10^{-3}\ =\ \frac{1}{137,035\,999\,070(98)}
  • w:oc:Ajuda:Formulas TeX e LaTeX 197 \sqrt 2\approx 1,414
  • w:oc:Nombre 69 \sqrt{2} = 1,414\; 213\; 562\; 373\dots\;
  • w:oc:Nombre 70 \pi = 3,141\; 592\; 653\; 589\dots\;
  • w:oc:Densitat 77 d_{\rm H_{2}}=0,069
  • w:oc:Pi 247 \pi_{10,10} = 4 p_{10,10}=3,141592653\ldots\;
  • w:oc:Pi 491 \pi=[3;7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,2,1,84,\cdots]
  • w:oc:Nombre d'aur 101 \frac{\varphi^1}{\sqrt 5} \simeq 0,72\;\text{e} \;u_1 =1,\quad \frac{\varphi^5}{\sqrt 5} \simeq 4,96\;\text{e} \;u_5 =5,\quad \frac{\varphi^{10}}{\sqrt 5} \simeq 55,004\;\text{e} \;u_{10} = 55
  • w:oc:Parsec 44 [SP] = \frac{TS}{\tan 1^{\prime\prime}} \approx 206 \, 264,806 2 \! \ \mbox{ UA}
  • w:oc:Parsec 48 1,495 \,978\,706\,91\times 10^{11} \! \mbox{ m}
  • w:oc:Parsec 52 1 \mbox{ pc} \; \approx \; 206 \, 264,806 2 \times 1,495 \, 978 \, 706 \, 91 \times 10^{11} \! \mbox{ m}
  • w:oc:Parsec 56 1 \mbox{ pc} \; \approx \;\color{Red} 3,085 \, 677 \, 581 \, 282\times 10^{16} \! \mbox{ m}
  • w:oc:Lei de la gravitacion universala 29 G = \left(6,6742 \plusmn 0,001 \right) \times 10^{-11} \ \mbox{N} \ \mbox{m}^2 \ \mbox{kg}^{-2} \,
  • w:oc:Lei de la gravitacion universala 30 = \left(6,6742 \plusmn 0,001 \right) \times 10^{-11} \ \mbox{m}^3 \ \mbox{s}^{-2} \ \mbox{kg}^{-1} \,
  • w:oc:Leonardo de Pisa 125 \frac{\varphi^1}{\sqrt 5} \simeq 0,72\;\text{e} \;u_1 =1,\quad \frac{\varphi^5}{\sqrt 5} \simeq 4,96\;\text{e} \;u_5 =5,\quad \frac{\varphi^{10}}{\sqrt 5} \simeq 55,004\;\text{e} \;u_{10} = 55
  • w:oc:Fòrça de Coriolis 138 a = \frac{4\pi\cdot\sin(60^\circ)}{86164} \approx 0,0001 \ m \cdot s^{-2}
  • w:oc:Gravitat 73 \scriptstyle g=9{,}780\,327 \times \left (1 + 5,302\,4 \times 10^{-3} \times \sin^2(L)-5{,}8 \times 10^{-6} \times \sin^2(2 \times L)-3{,}086 \times 10^{-7} \times h\right )
  • w:oc:Fraccion (matematicas) 175 1,24545...= \frac{1245-12}{990}=137/110
  • w:oc:Théorie dels quanta 43 h \approx 6,626.10^{-34}
  • w:oc:Teoria dels quanta 43 h \approx 6,626.10^{-34}
  • w:pcd:Nombe d'Avogadro 20 N_A \simeq 6,022\ 141\ 79 \times 10^{23}\ \text{mol}^{-1}
  • w:pcd:Nombe d'Avogadro 28 \plusmn\ 0,000\ 000\ 30\times 10^{23}\ \text{mol}^{-1}
  • w:pcd:Nombe d'Avogadro 41 N_A \simeq 6,022\ 135\ 3 \times 10^{23} \ \text{mol}^{-1}
  • w:pcd:Utilisateur:Geoleplubo/Latex 72 L=K.\int\limits_{380~nm}^{780~nm} S(\lambda)\cdot\big(\overbrace{ 1\cdot\overline{r}(\lambda)+4,5907\cdot\overline{v}(\lambda)+0,0601\cdot \overline{b}(\lambda) }^{\overline{y}(\lambda)=V(\lambda)}\big)\cdot \mathrm d\lambda~.