s ( x ) = { 1 , wenn x ≥ 0 − 1 , wenn x < 0 {\displaystyle s(x)={\begin{cases}1,&{\mbox{wenn }}x\geq 0\\-1,&{\mbox{wenn }}x<0\end{cases}}}
f ( n + 1 ) = ( n + 1 ) 2 = n 2 + 2 n + 1 {\displaystyle {\begin{matrix}f(n+1)&=&(n+1)^{2}\\&=&n^{2}+2n+1\end{matrix}}}
x + 3 y + z = 1 ( 1 ) x − y + 2 z = 2 ( 2 ) 3 x + 5 y − z = 3 ( 3 ) y − 7 z = 42 ( 4 ) {\displaystyle {\begin{matrix}x&+&3y&+&z&=&1&\quad (1)\\x&-&y&+&2z&=&2&\quad (2)\\3x&+&5y&-&z&=&3&\quad (3)\\&&y&-&7z&=&42&\quad (4)\end{matrix}}}
Γ μ ν k = Γ ν μ k = 1 2 g k λ ( ∂ g ν λ ∂ x μ + ∂ g μ λ ∂ x ν − ∂ g ν μ ∂ x λ ) {\displaystyle \Gamma _{\mu \nu }^{k}=\Gamma _{\nu \mu }^{k}={\frac {1}{2}}g^{k\lambda }\left({\frac {\partial g_{\nu \lambda }}{\partial x^{\mu }}}+{\frac {\partial g_{\mu \lambda }}{\partial x^{\nu }}}-{\frac {\partial g_{\nu \mu }}{\partial x^{\lambda }}}\right)}
A → a A ( f u ¨ r r e c h t s r e g u l a ¨ r ) A → A a ( f u ¨ r l i n k s r e g u l a ¨ r ) A → a A ∈ N , a ∈ Σ {\displaystyle {\begin{matrix}A\rightarrow &aA&\quad \mathrm {(f{\ddot {u}}r\ rechtsregul{\ddot {a}}r)} \\A\rightarrow &Aa&\quad \mathrm {(f{\ddot {u}}r\ linksregul{\ddot {a}}r)} \\A\rightarrow &a&\quad A\in N,a\in \Sigma \end{matrix}}}