Benutzer:Leonry/Einbettungsproblem

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Das Skochorodsche Einbettungsproblem ist ein Problem im Bereich der Stochastischen Analysis und wurde von Anatolij Skorochod formuliert.

Problemstellung

[Bearbeiten | Quelltext bearbeiten]

Sei ein stochastischer Prozess auf einem filtrierten Wahrscheinlichkeitsraum mit die durch erzeugte Filtrierung. Sei der Zustandsraum von .

Gibt es für ein beliebiges Wahrscheinlichkeitsmaß eine Stoppzeit , sodass für den gestoppten Prozess gilt?

Eine Lösung zum Problem sollte gewisse Eigenschaften erfüllen. Diese Eigenschaften werden durch den Satz von Dambis-Dubin-Schwarz oder den Satz von Monroe formuliert.

Lösung nach Doob

[Bearbeiten | Quelltext bearbeiten]

Lösung nach Hall

[Bearbeiten | Quelltext bearbeiten]

Lösung nach Root

[Bearbeiten | Quelltext bearbeiten]

Die Lösung nach Root erfüllt eine Optimalitätsbedingung.[1]

Lösungsvariante nach Röst

[Bearbeiten | Quelltext bearbeiten]

Lösung nach Azéma und Yor

[Bearbeiten | Quelltext bearbeiten]

Lösung nach Perkins

[Bearbeiten | Quelltext bearbeiten]

Lösung nach Chacon und Walsh

[Bearbeiten | Quelltext bearbeiten]

Die Lösung von Chacon und Walsh bedient sich der Potentialtheorie.

Lösung nach Bass

[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Ralf Stoiber: The Skorokhod embedding problem and its financial applications. 2024, doi:10.25365/THESIS.75466 (univie.ac.at [abgerufen am 1. Dezember 2024]).