siehe Hilfe:TeX
S
a
t
u
r
n
α
Saturn
S
a
t
u
r
n
S
a
t
u
r
n
S
a
t
u
r
n
S
a
t
u
r
n
{\displaystyle Saturn\quad \alpha \ {\text{Saturn}}\qquad \mathbf {Saturn} \ {\mathtt {Saturn}}\ {\boldsymbol {Saturn}}\ {\mathfrak {Saturn}}}
ζ
=
2
⋅
arcsin
(
1
2
⋅
(
sin
(
ϕ
A
)
−
sin
(
ϕ
B
)
)
2
+
(
cos
(
ϕ
A
)
⋅
cos
(
λ
A
)
+
cos
(
ϕ
B
)
⋅
cos
(
λ
B
)
)
2
+
(
cos
(
ϕ
A
)
⋅
sin
(
λ
A
)
−
cos
(
ϕ
B
)
⋅
sin
(
λ
B
)
)
2
)
{\displaystyle \zeta =2\,\cdot \,\arcsin \left(\,{\frac {1}{2}}\cdot {\sqrt {{\Big (}\sin(\phi _{A})-\sin(\phi _{B}){\Big )}^{2}+{\Big (}\cos(\phi _{A})\cdot \cos(\lambda _{A})+\cos(\phi _{B})\cdot \cos(\lambda _{B}){\Big )}^{2}+{\Big (}\cos(\phi _{A})\cdot \sin(\lambda _{A})-\cos(\phi _{B})\cdot \sin(\lambda _{B}){\Big )}^{2}}}\ \right)}
ζ
=
2
⋅
arcsin
(
1
2
⋅
(
sin
(
ϕ
A
)
−
sin
(
ϕ
B
)
)
2
+
(
cos
(
ϕ
A
)
⋅
cos
(
λ
A
)
+
cos
(
ϕ
B
)
⋅
cos
(
λ
B
)
)
2
+
(
cos
(
ϕ
A
)
⋅
sin
(
λ
A
)
−
cos
(
ϕ
B
)
⋅
sin
(
λ
B
)
)
2
)
{\displaystyle \zeta =2\,\cdot \,\arcsin \left(\,{\frac {1}{2}}\cdot {\sqrt {{\Big (}\sin(\phi _{A})-\sin(\phi _{B}){\Big )}^{2}+{\Big (}\cos(\phi _{A})\cdot \cos(\lambda _{A})+\cos(\phi _{B})\cdot \cos(\lambda _{B}){\Big )}^{2}+{\Big (}\cos(\phi _{A})\cdot \sin(\lambda _{A})-\cos(\phi _{B})\cdot \sin(\lambda _{B}){\Big )}^{2}}}\ \right)}
w
i
t
h
:
x
=
cos
(
δ
)
⋅
cos
(
α
)
y
=
cos
(
δ
)
⋅
sin
(
α
)
z
=
sin
(
δ
)
α
′
=
arccos
(
cos
(
δ
)
⋅
cos
(
α
)
)
α
′
=
arctan
(
y
′
/
x
)
y
e
s
y
′
=
z
⋅
cos
(
23.5
∘
)
−
y
⋅
sin
(
23.5
∘
)
{\displaystyle {\begin{alignedat}{2}&with:\ &&x=\cos \left(\delta \right)\cdot \cos \left(\alpha \right)\\&&&y=\cos \left(\delta \right)\cdot \sin \left(\alpha \right)\\&&&z=\sin \left(\delta \right)\\{\begin{aligned}&\alpha '=\arccos \left(\cos \left(\delta \right)\cdot \cos \left(\alpha \right)\right)\\&\alpha '=\arctan \left(y'/x\right)\end{aligned}}&yes&&y'=z\cdot \cos \left(23.5^{\circ }\right)-y\cdot \sin \left(23.5^{\circ }\right)\end{alignedat}}}
α
′
=
arccos
(
cos
(
δ
)
⋅
cos
(
α
)
)
α
′
=
arctan
(
y
′
/
x
)
{\displaystyle {\begin{aligned}&\alpha '=\arccos \left(\cos \left(\delta \right)\cdot \cos \left(\alpha \right)\right)\\&\alpha '=\arctan \left(y'/x\right)\end{aligned}}}
w
i
t
h
:
x
=
cos
(
δ
)
⋅
cos
(
α
)
y
=
cos
(
δ
)
⋅
sin
(
α
)
z
=
sin
(
δ
)
y
′
=
z
⋅
cos
(
23.5
∘
)
−
y
⋅
sin
(
23.5
∘
)
{\displaystyle {\begin{alignedat}{2}&with:\ &&x=\cos \left(\delta \right)\cdot \cos \left(\alpha \right)\\&&&y=\cos \left(\delta \right)\cdot \sin \left(\alpha \right)\\&&&z=\sin \left(\delta \right)\\&&&y'=z\cdot \cos \left(23.5^{\circ }\right)-y\cdot \sin \left(23.5^{\circ }\right)\end{alignedat}}}
Exponentiation is a mathematical operation , written as
b
n
{\displaystyle b^{n}}
, scriptstyle:
b
n
{\displaystyle \scriptstyle b^{n}}
, displaystyle:
b
n
{\displaystyle \displaystyle b^{n}}
, textstyle:
b
n
{\displaystyle \textstyle b^{n}}
, involving two numbers, the base
b
{\displaystyle b}
and the exponent
n
{\displaystyle n}
. When
n
{\displaystyle n}
is a positive integer , exponentiation corresponds to repeated multiplication of the base: that is,
b
n
{\displaystyle b^{n}}
is the product of multiplying
n
{\displaystyle n}
bases:
b
n
=
b
×
⋯
×
b
⏟
n
{\displaystyle b^{n}=\underbrace {b\times \cdots \times b} _{n}}
, scriptstyle:
b
n
=
b
×
⋯
×
b
⏟
n
{\displaystyle \scriptstyle b^{n}=\underbrace {b\times \cdots \times b} _{n}}
, displaystyle:
b
n
=
b
×
⋯
×
b
⏟
n
{\displaystyle \displaystyle b^{n}=\underbrace {b\times \cdots \times b} _{n}}
, textstyle:
b
n
=
b
×
⋯
×
b
⏟
n
{\displaystyle \textstyle b^{n}=\underbrace {b\times \cdots \times b} _{n}}
b
n
=
b
×
⋯
×
b
⏟
n
{\displaystyle \displaystyle b^{n}=\underbrace {b\times \cdots \times b} _{n}}
2
+
1
/
2
+
5
3
5
3
2
3
{\displaystyle {\frac {2+{\frac {1/2+{\frac {5}{3}}}{5^{3}}}}{\sqrt {\frac {2}{3}}}}}
The exponent is usually shown as a superscript to the right of the base. In that case,
b
n
{\displaystyle \scriptstyle b^{n}}
is called “b raised to the n -th power”, b raised to the power of n , or the n-th power of b .
When
n
{\displaystyle n}
is a positive integer and
n
{\displaystyle \textstyle n}
is not zero,
b
−
n
{\displaystyle \textstyle b^{-n}}
is naturally defined as
1
b
n
{\textstyle {\frac {1}{b^{n}}}}
or
1
/
b
n
{\displaystyle \textstyle 1/b^{n}}
, or
1
b
n
{\displaystyle \textstyle {\frac {1}{b^{n}}}}
preserving the property
b
n
×
b
m
=
b
n
+
m
{\displaystyle \scriptstyle b^{n}\times b^{m}=b^{n+m}}
. With exponent
−
1
{\displaystyle \scriptscriptstyle -1}
−
1
{\displaystyle \scriptstyle -1}
,
b
−
1
{\displaystyle \textstyle b^{-1}}
is equal to
1
/
b
{\displaystyle \scriptstyle 1/b}
, and is the reciprocal of
b
{\displaystyle \textstyle b}
.
∫
a
b
{\displaystyle \textstyle \int _{a}^{b}}
es sei
y
=
log
b
x
|
auf beiden Seiten
b
(
)
und mit
b
log
b
x
=
x
b
y
=
x
|
auf beiden Seiten
log
a
(
)
log
a
b
y
=
log
a
x
|
mit
log
b
y
=
y
⋅
log
a
y
log
a
b
=
log
a
x
|
auf beiden Seiten
÷
log
a
b
dann ist
y
=
log
b
x
=
log
a
x
log
a
b
{\displaystyle {\begin{alignedat}{2}{\text{es sei}}\\y&=\log _{b}x&\qquad &{\big |}\ {\text{auf beiden Seiten}}\ b^{(\ )}\ {\text{und mit}}\ b^{\log _{b}x}=x\\b^{y}&=x&&{\big |}\ {\text{auf beiden Seiten}}\log _{a}{(\ )}\\\log _{a}b^{y}&=\log _{a}x&&{\big |}\ {\text{mit}}\log b^{y}=y\cdot \log a\\y\log _{a}b&=\log _{a}x&&{\big |}\ {\text{auf beiden Seiten}}\div \log _{a}b\\{\text{dann ist}}\\y=\log _{b}x&={\frac {\log _{a}x}{\log _{a}b}}\end{alignedat}}}
Find the equation of the line that is tangent to the following curve at
x
=
1
{\displaystyle x=1}
:
y
=
x
3
−
12
x
2
−
42.
{\displaystyle y=x^{3}-12x^{2}-42.}
Begin by dividing the polynomial by
(
x
−
1
)
2
=
x
2
−
2
x
+
1
{\displaystyle (x-1)^{2}=x^{2}-2x+1}
:
x
3
−
12
x
2
+
21
x
−
42
÷
x
2
−
2
x
+
1
=
x
x
3
−
12
x
2
+
21
x
−
42
x
3
−
0
2
x
2
+
1
x
−
42
_
−
10
x
2
−
01
x
−
42
−
10
x
2
+
20
x
−
10
_
−
21
x
−
32
{\displaystyle {\begin{array}{rclcl}x^{3}-12x^{2}{\color {Red}\,+\,21x}-42&\div &x^{2}-2x+1&=&x\\x^{3}-12x^{2}+21x-42\\{\underline {x^{3}-{\color {Yellow}0}2x^{2}+{\color {Red}1}x\,{\color {Red}-\,42}}}\\-10x^{2}-{\color {White}01}x-42\\{\underline {-10x^{2}+20x-10}}\\-21x-32\end{array}}}
Drehung um die
x
{\displaystyle x}
-Achse:
R
x
(
α
)
=
(
1
0
0
0
cos
α
−
sin
α
0
sin
α
cos
α
)
{\displaystyle R_{x}(\alpha )={\begin{pmatrix}1&0&0\\0&\cos \alpha &-\sin \alpha \\0&\sin \alpha &\cos \alpha \end{pmatrix}}}
Drehung um die
y
{\displaystyle y}
- und die
z
{\displaystyle z}
-Achse:
R
y
(
α
)
=
(
cos
α
0
sin
α
0
1
0
−
sin
α
0
cos
α
)
;
R
z
(
α
)
=
(
cos
α
−
sin
α
0
sin
α
cos
α
0
0
0
1
)
{\displaystyle R_{y}(\alpha )={\begin{pmatrix}\cos \alpha &0&\sin \alpha \\0&1&0\\-\sin \alpha &0&\cos \alpha \end{pmatrix}};\quad R_{z}(\alpha )={\begin{pmatrix}\cos \alpha &-\sin \alpha &0\\\sin \alpha &\cos \alpha &0\\0&0&1\end{pmatrix}}}
a
(
i
)
=
[
i
k
A
]
⋅
a
(
k
)
a
(
k
)
=
[
i
k
A
]
−
1
⋅
a
(
i
)
{\displaystyle {\begin{aligned}&a^{(i)}=[{}_{i}^{k}A]\cdot a^{(k)}\\&a^{(k)}=[{}_{i}^{k}A]^{-1}\cdot a^{(i)}\end{aligned}}}
Inverse Drehmatrizen:
(
A
⋅
B
⋅
C
)
−
1
=
C
−
1
⋅
B
−
1
⋅
A
−
1
{\displaystyle (A\cdot B\cdot C)^{-1}=C^{-1}\cdot B^{-1}\cdot A^{-1}}
P
o
s
e
=
(
r
00
r
01
r
02
t
0
r
10
r
11
r
12
t
1
r
20
r
21
r
22
t
2
0
0
0
1
)
{\displaystyle Pose={\begin{pmatrix}r_{00}&r_{01}&r_{02}&t_{0}\\r_{10}&r_{11}&r_{12}&t_{1}\\r_{20}&r_{21}&r_{22}&t_{2}\\0&0&0&1\end{pmatrix}}}
Kombinierte, hintereinander ausgeführte (innere) Drehungen um die Achsen
x
{\displaystyle x}
,
y
{\displaystyle y}
und
z
{\displaystyle z}
:
(
r
00
r
01
r
02
r
10
r
11
r
12
r
20
r
21
r
22
)
=
(
cos
θ
y
⋅
cos
θ
z
−
cos
θ
y
⋅
sin
θ
z
sin
θ
y
sin
θ
x
⋅
sin
θ
y
⋅
cos
θ
z
+
cos
θ
x
⋅
sin
θ
z
−
sin
θ
x
⋅
sin
θ
y
⋅
sin
θ
z
+
cos
θ
x
⋅
cos
θ
z
−
sin
θ
x
⋅
cos
θ
y
−
cos
θ
x
⋅
sin
θ
y
⋅
cos
θ
z
+
sin
θ
x
⋅
sin
θ
z
cos
θ
x
⋅
sin
θ
y
⋅
sin
θ
z
+
sin
θ
x
⋅
cos
θ
z
cos
θ
x
⋅
cos
θ
y
)
{\displaystyle {\begin{pmatrix}r_{00}&r_{01}&r_{02}\\r_{10}&r_{11}&r_{12}\\r_{20}&r_{21}&r_{22}\end{pmatrix}}={\begin{pmatrix}\cos \theta _{y}\cdot \cos \theta _{z}&-\cos \theta _{y}\cdot \sin \theta _{z}&\sin \theta _{y}\\\sin \theta _{x}\cdot \sin \theta _{y}\cdot \cos \theta _{z}+\cos \theta _{x}\cdot \sin \theta _{z}&-\sin \theta _{x}\cdot \sin \theta _{y}\cdot \sin \theta _{z}+\cos \theta _{x}\cdot \cos \theta _{z}&-\sin \theta _{x}\cdot \cos \theta _{y}\\-\cos \theta _{x}\cdot \sin \theta _{y}\cdot \cos \theta _{z}+\sin \theta _{x}\cdot \sin \theta _{z}&\cos \theta _{x}\cdot \sin \theta _{y}\cdot \sin \theta _{z}+\sin \theta _{x}\cdot \cos \theta _{z}&\cos \theta _{x}\cdot \cos \theta _{y}\end{pmatrix}}}
r
02
=
sin
θ
y
⟹
θ
y
=
asin
(
r
02
)
{\displaystyle r_{02}=\sin \theta _{y}\quad \Longrightarrow \quad \theta _{y}={\text{asin}}(r_{02})}
(1) für
cos
θ
y
≠
0
⟹
θ
y
≠
90
∘
und
θ
y
≠
−
90
∘
{\displaystyle {\text{(1) für}}\quad \cos \theta _{y}\neq 0\quad \Longrightarrow \quad \theta _{y}\neq 90^{\circ }\quad {\text{und}}\quad \theta _{y}\neq -90^{\circ }}
⟹
sin
θ
x
=
−
r
12
cos
θ
y
und
cos
θ
x
=
r
22
cos
θ
y
;
sin
θ
z
=
−
r
01
cos
θ
y
und
cos
θ
z
=
r
00
cos
θ
y
{\displaystyle \Longrightarrow \quad \sin \theta _{x}={\frac {-r_{12}}{\cos \theta _{y}}}\quad {\text{und}}\quad \cos \theta _{x}={\frac {r_{22}}{\cos \theta _{y}}};\quad \sin \theta _{z}={\frac {-r_{01}}{\cos \theta _{y}}}\quad {\text{und}}\quad \cos \theta _{z}={\frac {r_{00}}{\cos \theta _{y}}}}
⟹
θ
x
=
atan2
(
−
r
12
,
r
22
)
;
θ
z
=
atan2
(
−
r
01
,
r
00
)
mit
θ
=
atan2
(
sin
θ
,
cos
θ
)
{\displaystyle \Longrightarrow \quad \theta _{x}={\text{atan2}}(-r_{12},r_{22});\quad \theta _{z}={\text{atan2}}(-r_{01},r_{00})\quad {\text{mit}}\quad \theta ={\text{atan2}}(\sin \theta ,\cos \theta )}
(2) für
θ
y
=
90
∘
⟹
sin
θ
y
=
1
;
cos
θ
y
=
0
⟹
r
00
=
0
;
r
01
=
0
;
r
02
=
1
;
r
12
=
0
;
r
22
=
0
{\displaystyle {\text{(2) für}}\quad \theta _{y}=90^{\circ }\quad \Longrightarrow \quad \sin \theta _{y}=1;\quad \cos \theta _{y}=0\quad \Longrightarrow \quad r_{00}=0;\quad r_{01}=0;\quad r_{02}=1;\quad r_{12}=0;\quad r_{22}=0}
r
10
=
r
21
=
sin
θ
x
⋅
cos
θ
z
+
cos
θ
x
⋅
sin
θ
z
⟹
r
10
=
r
21
=
sin
(
θ
x
+
θ
z
)
r
11
=
−
r
20
=
cos
θ
x
⋅
cos
θ
z
−
sin
θ
x
⋅
sin
θ
z
⟹
r
11
=
−
r
20
=
cos
(
θ
x
+
θ
z
)
{\displaystyle {\begin{alignedat}{3}&r_{10}=r_{21}&&=\sin \theta _{x}\cdot \cos \theta _{z}+\cos \theta _{x}\cdot \sin \theta _{z}\quad &&\Longrightarrow \quad r_{10}=r_{21}=\sin(\theta _{x}+\theta _{z})\\&r_{11}=-r_{20}&&=\cos \theta _{x}\cdot \cos \theta _{z}-\sin \theta _{x}\cdot \sin \theta _{z}\quad &&\Longrightarrow \quad r_{11}=-r_{20}=\cos(\theta _{x}+\theta _{z})\end{alignedat}}}
⟹
θ
x
+
θ
z
=
atan2
(
r
10
,
r
11
)
=
atan2
(
r
21
,
−
r
20
)
mit
θ
=
atan2
(
sin
θ
,
cos
θ
)
Lösung mit einem Freiheitsgrad,
θ
x
oder
θ
z
ist frei wählbar
{\displaystyle \Longrightarrow \quad \theta _{x}+\theta _{z}={\text{atan2}}(r_{10},r_{11})={\text{atan2}}(r_{21},-r_{20})\quad {\text{mit}}\quad \theta ={\text{atan2}}(\sin \theta ,\cos \theta )\quad {\text{Lösung mit einem Freiheitsgrad,}}\ \theta _{x}\ {\text{oder}}\ \theta _{z}\ {\text{ist frei wählbar}}}
(3) für
θ
y
=
−
90
∘
⟹
sin
θ
y
=
−
1
;
cos
θ
y
=
0
⟹
r
00
=
0
;
r
01
=
0
;
r
02
=
−
1
;
r
12
=
0
;
r
22
=
0
{\displaystyle {\text{(3) für}}\quad \theta _{y}=-90^{\circ }\quad \Longrightarrow \quad \sin \theta _{y}=-1;\quad \cos \theta _{y}=0\quad \Longrightarrow \quad r_{00}=0;\quad r_{01}=0;\quad r_{02}=-1;\quad r_{12}=0;\quad r_{22}=0}
−
r
10
=
r
21
=
sin
θ
x
⋅
cos
θ
z
−
cos
θ
x
⋅
sin
θ
z
⟹
−
r
10
=
r
21
=
sin
(
θ
x
−
θ
z
)
r
11
=
r
20
=
cos
θ
x
⋅
cos
θ
z
+
sin
θ
x
⋅
sin
θ
z
⟹
r
11
=
r
20
=
cos
(
θ
x
−
θ
z
)
{\displaystyle {\begin{alignedat}{5}-r_{10}&=r_{21}&&=\sin \theta _{x}\cdot \cos \theta _{z}-\cos \theta _{x}\cdot \sin \theta _{z}\quad &&\Longrightarrow \quad -r_{10}&&=r_{21}&&=\sin(\theta _{x}-\theta _{z})\\r_{11}&=r_{20}&&=\cos \theta _{x}\cdot \cos \theta _{z}+\sin \theta _{x}\cdot \sin \theta _{z}\quad &&\Longrightarrow \quad r_{11}&&=r_{20}&&=\cos(\theta _{x}-\theta _{z})\end{alignedat}}}
⟹
θ
x
−
θ
z
=
atan2
(
−
r
10
,
r
11
)
=
atan2
(
r
21
,
r
20
)
mit
θ
=
atan2
(
sin
θ
,
cos
θ
)
Lösung mit einem Freiheitsgrad,
θ
x
oder
θ
z
ist frei wählbar
{\displaystyle \Longrightarrow \quad \theta _{x}-\theta _{z}={\text{atan2}}(-r_{10},r_{11})={\text{atan2}}(r_{21},r_{20})\quad {\text{mit}}\quad \theta ={\text{atan2}}(\sin \theta ,\cos \theta )\quad {\text{Lösung mit einem Freiheitsgrad,}}\ \theta _{x}\ {\text{oder}}\ \theta _{z}\ {\text{ist frei wählbar}}}
Kombinierte, hintereinander ausgeführte (innere) Drehungen um die Achsen
z
{\displaystyle z}
,
y
{\displaystyle y}
und
x
{\displaystyle x}
:
(
r
00
r
01
r
02
r
10
r
11
r
12
r
20
r
21
r
22
)
=
(
cos
θ
y
⋅
cos
θ
z
sin
θ
x
⋅
sin
θ
y
⋅
cos
θ
z
−
cos
θ
x
⋅
sin
θ
z
cos
θ
x
⋅
sin
θ
y
⋅
cos
θ
z
+
sin
θ
x
⋅
sin
θ
z
cos
θ
y
⋅
sin
θ
z
sin
θ
x
⋅
sin
θ
y
⋅
sin
θ
z
+
cos
θ
x
⋅
cos
θ
z
cos
θ
x
⋅
sin
θ
y
⋅
sin
θ
z
−
sin
θ
x
⋅
cos
θ
z
−
sin
θ
y
sin
θ
x
⋅
cos
θ
y
cos
θ
x
⋅
cos
θ
y
)
{\displaystyle {\begin{pmatrix}r_{00}&r_{01}&r_{02}\\r_{10}&r_{11}&r_{12}\\r_{20}&r_{21}&r_{22}\end{pmatrix}}={\begin{pmatrix}\cos \theta _{y}\cdot \cos \theta _{z}&\sin \theta _{x}\cdot \sin \theta _{y}\cdot \cos \theta _{z}-\cos \theta _{x}\cdot \sin \theta _{z}&\cos \theta _{x}\cdot \sin \theta _{y}\cdot \cos \theta _{z}+\sin \theta _{x}\cdot \sin \theta _{z}\\\cos \theta _{y}\cdot \sin \theta _{z}&\sin \theta _{x}\cdot \sin \theta _{y}\cdot \sin \theta _{z}+\cos \theta _{x}\cdot \cos \theta _{z}&\cos \theta _{x}\cdot \sin \theta _{y}\cdot \sin \theta _{z}-\sin \theta _{x}\cdot \cos \theta _{z}\\-\sin \theta _{y}&\sin \theta _{x}\cdot \cos \theta _{y}&\cos \theta _{x}\cdot \cos \theta _{y}\end{pmatrix}}}
−
r
20
=
sin
θ
y
⟹
θ
y
=
asin
(
−
r
20
)
{\displaystyle -r_{20}=\sin \theta _{y}\quad \Longrightarrow \quad \theta _{y}={\text{asin}}(-r_{20})}
(1) für
cos
θ
y
≠
0
⟹
θ
y
≠
90
∘
und
θ
y
≠
−
90
∘
{\displaystyle {\text{(1) für}}\quad \cos \theta _{y}\neq 0\quad \Longrightarrow \quad \theta _{y}\neq 90^{\circ }\quad {\text{und}}\quad \theta _{y}\neq -90^{\circ }}
⟹
sin
θ
x
=
r
21
cos
θ
y
und
cos
θ
x
=
r
22
cos
θ
y
;
sin
θ
z
=
r
10
cos
θ
y
und
cos
θ
z
=
r
00
cos
θ
y
{\displaystyle \Longrightarrow \quad \sin \theta _{x}={\frac {r_{21}}{\cos \theta _{y}}}\quad {\text{und}}\quad \cos \theta _{x}={\frac {r_{22}}{\cos \theta _{y}}};\quad \sin \theta _{z}={\frac {r_{10}}{\cos \theta _{y}}}\quad {\text{und}}\quad \cos \theta _{z}={\frac {r_{00}}{\cos \theta _{y}}}}
⟹
θ
x
=
atan2
(
r
21
,
r
22
)
;
θ
z
=
atan2
(
r
10
,
r
00
)
mit
θ
=
atan2
(
sin
θ
,
cos
θ
)
{\displaystyle \Longrightarrow \quad \theta _{x}={\text{atan2}}(r_{21},r_{22});\quad \theta _{z}={\text{atan2}}(r_{10},r_{00})\quad {\text{mit}}\quad \theta ={\text{atan2}}(\sin \theta ,\cos \theta )}
(2) für
θ
y
=
90
∘
⟹
sin
θ
y
=
1
;
cos
θ
y
=
0
⟹
r
00
=
0
;
r
10
=
0
;
r
20
=
1
;
r
21
=
0
;
r
22
=
0
{\displaystyle {\text{(2) für}}\quad \theta _{y}=90^{\circ }\quad \Longrightarrow \quad \sin \theta _{y}=1;\quad \cos \theta _{y}=0\quad \Longrightarrow \quad r_{00}=0;\quad r_{10}=0;\quad r_{20}=1;\quad r_{21}=0;\quad r_{22}=0}
r
01
=
−
r
12
=
sin
θ
x
⋅
cos
θ
z
−
cos
θ
x
⋅
sin
θ
z
⟹
r
01
=
−
r
12
=
sin
(
θ
x
−
θ
z
)
r
11
=
r
02
=
cos
θ
x
⋅
cos
θ
z
+
sin
θ
x
⋅
sin
θ
z
⟹
r
11
=
r
02
=
cos
(
θ
x
−
θ
z
)
{\displaystyle {\begin{alignedat}{3}&r_{01}=-r_{12}&&=\sin \theta _{x}\cdot \cos \theta _{z}-\cos \theta _{x}\cdot \sin \theta _{z}\quad &&\Longrightarrow \quad r_{01}=-r_{12}=\sin(\theta _{x}-\theta _{z})\\&r_{11}=r_{02}&&=\cos \theta _{x}\cdot \cos \theta _{z}+\sin \theta _{x}\cdot \sin \theta _{z}\quad &&\Longrightarrow \quad r_{11}=r_{02}=\cos(\theta _{x}-\theta _{z})\end{alignedat}}}
⟹
θ
x
−
θ
z
=
atan2
(
r
01
,
r
11
)
=
atan2
(
−
r
12
,
r
02
)
mit
θ
=
atan2
(
sin
θ
,
cos
θ
)
Lösung mit einem Freiheitsgrad,
θ
x
oder
θ
z
ist frei wählbar
{\displaystyle \Longrightarrow \quad \theta _{x}-\theta _{z}={\text{atan2}}(r_{01},r_{11})={\text{atan2}}(-r_{12},r_{02})\quad {\text{mit}}\quad \theta ={\text{atan2}}(\sin \theta ,\cos \theta )\quad {\text{Lösung mit einem Freiheitsgrad,}}\ \theta _{x}\ {\text{oder}}\ \theta _{z}\ {\text{ist frei wählbar}}}
(3) für
θ
y
=
−
90
∘
⟹
sin
θ
y
=
−
1
;
cos
θ
y
=
0
⟹
r
00
=
0
;
r
10
=
0
;
r
20
=
−
1
;
r
21
=
0
;
r
22
=
0
{\displaystyle {\text{(3) für}}\quad \theta _{y}=-90^{\circ }\quad \Longrightarrow \quad \sin \theta _{y}=-1;\quad \cos \theta _{y}=0\quad \Longrightarrow \quad r_{00}=0;\quad r_{10}=0;\quad r_{20}=-1;\quad r_{21}=0;\quad r_{22}=0}
−
r
01
=
−
r
12
=
sin
θ
x
⋅
cos
θ
z
+
cos
θ
x
⋅
sin
θ
z
⟹
−
r
01
=
−
r
12
=
sin
(
θ
x
+
θ
z
)
r
11
=
−
r
02
=
cos
θ
x
⋅
cos
θ
z
−
sin
θ
x
⋅
sin
θ
z
⟹
r
11
=
−
r
02
=
cos
(
θ
x
+
θ
z
)
{\displaystyle {\begin{alignedat}{5}-r_{01}&=-r_{12}&&=\sin \theta _{x}\cdot \cos \theta _{z}+\cos \theta _{x}\cdot \sin \theta _{z}\quad &&\Longrightarrow \quad -r_{01}&&=-r_{12}&&=\sin(\theta _{x}+\theta _{z})\\r_{11}&=-r_{02}&&=\cos \theta _{x}\cdot \cos \theta _{z}-\sin \theta _{x}\cdot \sin \theta _{z}\quad &&\Longrightarrow \quad r_{11}&&=-r_{02}&&=\cos(\theta _{x}+\theta _{z})\end{alignedat}}}
⟹
θ
x
+
θ
z
=
atan2
(
−
r
01
,
r
11
)
=
atan2
(
−
r
12
,
−
r
02
)
mit
θ
=
atan2
(
sin
θ
,
cos
θ
)
Lösung mit einem Freiheitsgrad,
θ
x
oder
θ
z
ist frei wählbar
{\displaystyle \Longrightarrow \quad \theta _{x}+\theta _{z}={\text{atan2}}(-r_{01},r_{11})={\text{atan2}}(-r_{12},-r_{02})\quad {\text{mit}}\quad \theta ={\text{atan2}}(\sin \theta ,\cos \theta )\quad {\text{Lösung mit einem Freiheitsgrad,}}\ \theta _{x}\ {\text{oder}}\ \theta _{z}\ {\text{ist frei wählbar}}}
Kombinierte, hintereinander ausgeführte (innere) Drehungen um die Achsen
z
{\displaystyle z}
,
y
{\displaystyle y}
und
z
{\displaystyle z}
:
(
r
00
r
01
r
02
r
10
r
11
r
12
r
20
r
21
r
22
)
=
(
cos
θ
z
1
⋅
cos
θ
y
⋅
cos
θ
z
2
−
sin
θ
z
1
⋅
sin
θ
z
2
−
cos
θ
z
1
⋅
cos
θ
y
⋅
sin
θ
z
2
−
sin
θ
z
1
⋅
cos
θ
z
2
cos
θ
z
1
⋅
sin
θ
y
sin
θ
z
1
⋅
cos
θ
y
⋅
cos
θ
z
2
+
cos
θ
z
1
⋅
sin
θ
z
2
−
sin
θ
z
1
⋅
cos
θ
y
⋅
sin
θ
z
2
+
cos
θ
z
1
⋅
cos
θ
z
2
sin
θ
z
1
⋅
sin
θ
y
−
sin
θ
y
⋅
cos
θ
z
2
sin
θ
y
⋅
sin
θ
z
2
cos
θ
y
)
{\displaystyle {\begin{pmatrix}r_{00}&r_{01}&r_{02}\\r_{10}&r_{11}&r_{12}\\r_{20}&r_{21}&r_{22}\end{pmatrix}}={\begin{pmatrix}\cos \theta _{z_{1}}\cdot \cos \theta _{y}\cdot \cos \theta _{z_{2}}-\sin \theta _{z_{1}}\cdot \sin \theta _{z_{2}}&-\cos \theta _{z_{1}}\cdot \cos \theta _{y}\cdot \sin \theta _{z_{2}}-\sin \theta _{z_{1}}\cdot \cos \theta _{z_{2}}&\cos \theta _{z_{1}}\cdot \sin \theta _{y}\\\sin \theta _{z_{1}}\cdot \cos \theta _{y}\cdot \cos \theta _{z_{2}}+\cos \theta _{z_{1}}\cdot \sin \theta _{z_{2}}&-\sin \theta _{z_{1}}\cdot \cos \theta _{y}\cdot \sin \theta _{z_{2}}+\cos \theta _{z_{1}}\cdot \cos \theta _{z_{2}}&\sin \theta _{z_{1}}\cdot \sin \theta _{y}\\-\sin \theta _{y}\cdot \cos \theta _{z_{2}}&\sin \theta _{y}\cdot \sin \theta _{z_{2}}&\cos \theta _{y}\end{pmatrix}}}
r
22
=
cos
θ
y
⟹
θ
y
=
acos
(
r
22
)
{\displaystyle r_{22}=\cos \theta _{y}\quad \Longrightarrow \quad \theta _{y}={\text{acos}}(r_{22})}
(1) für
sin
θ
y
≠
0
⟹
θ
y
≠
0
∘
und
θ
y
≠
180
∘
{\displaystyle {\text{(1) für}}\quad \sin \theta _{y}\neq 0\quad \Longrightarrow \quad \theta _{y}\neq 0^{\circ }\quad {\text{und}}\quad \theta _{y}\neq 180^{\circ }}
⟹
sin
θ
z
1
=
r
12
sin
θ
y
und
cos
θ
z
1
=
r
02
sin
θ
y
;
sin
θ
z
2
=
r
21
sin
θ
y
und
cos
θ
z
2
=
−
r
20
sin
θ
y
{\displaystyle \Longrightarrow \quad \sin \theta _{z_{1}}={\frac {r_{12}}{\sin \theta _{y}}}\quad {\text{und}}\quad \cos \theta _{z_{1}}={\frac {r_{02}}{\sin \theta _{y}}};\quad \sin \theta _{z_{2}}={\frac {r_{21}}{\sin \theta _{y}}}\quad {\text{und}}\quad \cos \theta _{z_{2}}={\frac {-r_{20}}{\sin \theta _{y}}}}
⟹
θ
z
1
=
atan2
(
r
12
,
r
02
)
;
θ
z
2
=
atan2
(
r
21
,
−
r
20
)
mit
θ
=
atan2
(
sin
θ
,
cos
θ
)
{\displaystyle \Longrightarrow \quad \theta _{z_{1}}={\text{atan2}}(r_{12},r_{02});\quad \theta _{z_{2}}={\text{atan2}}(r_{21},-r_{20})\quad {\text{mit}}\quad \theta ={\text{atan2}}(\sin \theta ,\cos \theta )}
(2) für
θ
y
=
0
∘
⟹
sin
θ
y
=
0
;
cos
θ
y
=
1
⟹
r
02
=
0
;
r
12
=
0
;
r
22
=
1
;
r
20
=
0
;
r
21
=
0
{\displaystyle {\text{(2) für}}\quad \theta _{y}=0^{\circ }\quad \Longrightarrow \quad \sin \theta _{y}=0;\quad \cos \theta _{y}=1\quad \Longrightarrow \quad r_{02}=0;\quad r_{12}=0;\quad r_{22}=1;\quad r_{20}=0;\quad r_{21}=0}
−
r
01
=
r
10
=
sin
θ
z
1
⋅
cos
θ
z
2
+
cos
θ
z
1
⋅
sin
θ
z
2
⟹
−
r
01
=
r
10
=
sin
(
θ
z
1
+
θ
z
2
)
r
00
=
r
11
=
cos
θ
z
1
⋅
cos
θ
z
2
−
sin
θ
z
1
⋅
sin
θ
z
2
⟹
r
00
=
r
11
=
cos
(
θ
z
1
+
θ
z
2
)
{\displaystyle {\begin{alignedat}{8}-r_{01}&=r_{10}&&=\sin \theta _{z_{1}}\cdot \cos \theta _{z_{2}}+\cos \theta _{z_{1}}\cdot \sin \theta _{z_{2}}\quad &&\Longrightarrow \quad -r_{01}&&=r_{10}&&=\sin(\theta _{z_{1}}+\theta _{z_{2}})\\r_{00}&=r_{11}&&=\cos \theta _{z_{1}}\cdot \cos \theta _{z_{2}}-\sin \theta _{z_{1}}\cdot \sin \theta _{z_{2}}\quad &&\Longrightarrow \quad r_{00}&&=r_{11}&&=\cos(\theta _{z_{1}}+\theta _{z_{2}})\end{alignedat}}}
⟹
θ
z
1
+
θ
z
2
=
atan2
(
−
r
01
,
r
00
)
=
atan2
(
r
10
,
r
11
)
mit
θ
=
atan2
(
sin
θ
,
cos
θ
)
Lösung mit einem Freiheitsgrad,
θ
x
oder
θ
z
ist frei wählbar
{\displaystyle \Longrightarrow \quad \theta _{z_{1}}+\theta _{z_{2}}={\text{atan2}}(-r_{01},r_{00})={\text{atan2}}(r_{10},r_{11})\quad {\text{mit}}\quad \theta ={\text{atan2}}(\sin \theta ,\cos \theta )\quad {\text{Lösung mit einem Freiheitsgrad,}}\ \theta _{x}\ {\text{oder}}\ \theta _{z}\ {\text{ist frei wählbar}}}
(3) für
θ
y
=
180
∘
⟹
sin
θ
y
=
0
;
cos
θ
y
=
−
1
⟹
r
02
=
0
;
r
12
=
0
;
r
22
=
−
1
;
r
20
=
0
;
r
21
=
0
{\displaystyle {\text{(3) für}}\quad \theta _{y}=180^{\circ }\quad \Longrightarrow \quad \sin \theta _{y}=0;\quad \cos \theta _{y}=-1\quad \Longrightarrow \quad r_{02}=0;\quad r_{12}=0;\quad r_{22}=-1;\quad r_{20}=0;\quad r_{21}=0}
−
r
01
=
−
r
10
=
sin
θ
z
1
⋅
cos
θ
z
2
−
cos
θ
z
1
⋅
sin
θ
z
2
⟹
−
r
01
=
−
r
10
=
sin
(
θ
z
1
−
θ
z
2
)
−
r
00
=
r
11
=
cos
θ
z
1
⋅
cos
θ
z
2
+
sin
θ
z
1
⋅
sin
θ
z
2
⟹
r
00
=
r
11
=
cos
(
θ
z
1
−
θ
z
2
)
{\displaystyle {\begin{alignedat}{8}-r_{01}&=-r_{10}&&=\sin \theta _{z_{1}}\cdot \cos \theta _{z_{2}}-\cos \theta _{z_{1}}\cdot \sin \theta _{z_{2}}\quad &&\Longrightarrow \quad -r_{01}&&=-r_{10}&&=\sin(\theta _{z_{1}}-\theta _{z_{2}})\\-r_{00}&=r_{11}&&=\cos \theta _{z_{1}}\cdot \cos \theta _{z_{2}}+\sin \theta _{z_{1}}\cdot \sin \theta _{z_{2}}\quad &&\Longrightarrow \quad r_{00}&&=r_{11}&&=\cos(\theta _{z_{1}}-\theta _{z_{2}})\end{alignedat}}}
⟹
θ
z
1
−
θ
z
2
=
atan2
(
−
r
01
,
r
00
)
=
atan2
(
−
r
10
,
r
11
)
mit
θ
=
atan2
(
sin
θ
,
cos
θ
)
Lösung mit einem Freiheitsgrad,
θ
x
oder
θ
z
ist frei wählbar
{\displaystyle \Longrightarrow \quad \theta _{z_{1}}-\theta _{z_{2}}={\text{atan2}}(-r_{01},r_{00})={\text{atan2}}(-r_{10},r_{11})\quad {\text{mit}}\quad \theta ={\text{atan2}}(\sin \theta ,\cos \theta )\quad {\text{Lösung mit einem Freiheitsgrad,}}\ \theta _{x}\ {\text{oder}}\ \theta _{z}\ {\text{ist frei wählbar}}}
(
(
25.4
mm
⏟
= 1 inch
×
2
⋅
2
⋅
3
=
304.8
mm
⏟
= 1 foot = 12 inch
)
×
3
=
914.4
mm
⏟
= 1 yard = 3 foot = 36 inch
)
×
5.5
⏟
= 1 rod = 5.5 yard
×
2
⋅
2
⏟
= 1 chain = 4 rod = 22 yard
×
2
⋅
5
⏟
= 1 furlong = 10 chain = 220 yard
×
2
⋅
2
⋅
2
=
1,609,344
mm
⏟
= 1 mile = 8 furlong = 80 chain = 1,760 yard = 5,280 foot = 63,360 inch
{\displaystyle (\,(\,\underbrace {\underbrace {\underbrace {\underbrace {\underbrace {\underbrace {\underbrace {25.4{\text{ mm}}} _{\text{= 1 inch}}\;\times \;2\cdot 2\cdot 3\;=304.8{\text{ mm}}} _{\text{= 1 foot = 12 inch}}\,)\;\times \;3\;=914.4{\text{ mm}}} _{\text{= 1 yard = 3 foot = 36 inch}}\,)\;\times \;5.5} _{\text{= 1 rod = 5.5 yard}}\;\times \;2\cdot 2} _{\text{= 1 chain = 4 rod = 22 yard}}\;\times \;2\cdot 5} _{\text{= 1 furlong = 10 chain = 220 yard}}\;\times \;2\cdot 2\cdot 2\;=1{,}609{,}344{\text{ mm}}} _{\text{= 1 mile = 8 furlong = 80 chain = 1,760 yard = 5,280 foot = 63,360 inch}}}
with
i
12
=
ω
1
ω
2
and
ω
3
=
0
⟹
i
23
=
1
−
1
i
12
;
with
i
23
=
ω
2
ω
3
and
ω
1
=
0
and
i
31
=
1
1
−
i
12
;
with
i
31
=
ω
3
ω
1
and
ω
2
=
0
with
i
12
=
n
m
⟹
i
23
=
n
−
m
n
and
i
31
=
m
m
−
n
i
12
⋅
i
23
⋅
i
31
=
i
12
⋅
−
(
1
−
i
12
)
i
12
⋅
1
1
−
i
12
=
n
m
⋅
n
−
m
n
⋅
m
−
(
n
−
m
)
=
−
1
{\displaystyle {\begin{alignedat}{4}{\text{with}}\quad &i_{12}={\frac {\omega _{1}}{\omega _{2}}}\ {\text{and}}\ \omega _{3}=0\ &&\Longrightarrow \ i_{23}=1-{\frac {1}{i_{12}}}\ ;\ \ {\text{with}}\ i_{23}={\frac {\omega _{2}}{\omega _{3}}}\ {\text{and}}\ \omega _{1}=0\qquad {\text{and}}\qquad i_{31}={\frac {1}{1-i_{12}}}\ ;\ \ {\text{with}}\ i_{31}={\frac {\omega _{3}}{\omega _{1}}}\ {\text{and}}\ \omega _{2}=0\\{\text{with}}\quad &i_{12}={\frac {n}{m}}&&\Longrightarrow \ i_{23}={\frac {n-m}{n}}\qquad {\text{and}}\qquad \ i_{31}={\frac {m}{m-n}}\\&\qquad \ i_{12}\ \cdot \ i_{23}\ \cdot \ i_{31}&&=\quad i_{12}\ \cdot \ {\frac {-(1-i_{12})}{i_{12}}}\ \cdot \ {\frac {1}{1-i_{12}}}\quad =\quad {\frac {n}{m}}\ \cdot \ {\frac {n-m}{n}}\ \cdot \ {\frac {m}{-(n-m)}}\quad =\quad -1\end{alignedat}}}
Konvergenz der geometrischen Reihe für
∑
k
=
0
∞
(
1
2
)
k
=
2
{\displaystyle \textstyle \sum _{k=0}^{\infty }({\tfrac {1}{2}})^{k}=2}
als Flächeninhalte dargestellt
Konvergenz der geometrischen Reihe
1
2
∑
k
=
0
∞
(
1
2
)
k
=
1
{\displaystyle \textstyle {\tfrac {1}{2}}\sum _{k=0}^{\infty }({\tfrac {1}{2}})^{k}=1}
auf einer Zahlengeraden dargestellt
Für
|
q
|
<
1
{\displaystyle |q|<1}
konvergiert die geometrische Reihe. Es gilt in diesem Fall
∑
k
=
0
∞
q
k
=
1
+
q
+
q
2
+
⋯
=
1
1
−
q
{\displaystyle \sum _{k=0}^{\infty }q^{k}=1+q+q^{2}+\dots ={\frac {1}{1-q}}}
Die Herleitung erfolgt über eine Betrachtung der Differenz von Partialsummen der Reihe
s
n
:=
∑
k
=
0
n
q
k
=
1
+
q
+
q
2
+
q
3
+
⋯
+
q
n
,
q
⋅
s
n
=
q
⋅
∑
k
=
0
n
q
k
=
q
+
q
2
+
q
3
+
q
4
+
⋯
+
q
n
+
1
,
s
n
−
q
⋅
s
n
=
(
1
−
q
)
⋅
s
n
=
1
−
q
n
+
1
,
s
n
=
1
−
q
n
+
1
1
−
q
{\displaystyle {\begin{alignedat}{4}s_{n}\ &&:=&&\sum _{k=0}^{n}q^{k}&=\ 1+q\;\;+&&\,q^{2}+q^{3}+\dots +q^{n},\\q\cdot s_{n}&&=&&q\cdot \sum _{k=0}^{n}q^{k}&=\ q+q^{2}\,+&&\,q^{3}+q^{4}+\dots +q^{n+1},\\s_{n}-q\cdot s_{n}&&=&&\ (1-q)\cdot s_{n}&=\ 1-q^{n+1},&&\\s_{n}&&=&&{\frac {1-q^{n+1}}{1-q}}\,&\end{alignedat}}}
Es ist
q
n
{\displaystyle q^{n}}
für
|
q
|
<
1
{\displaystyle |q|<1}
eine Nullfolge, also gilt
lim
n
→
∞
s
n
=
lim
n
→
∞
1
−
q
n
+
1
1
−
q
=
1
−
0
1
−
q
=
1
1
−
q
{\displaystyle \lim _{n\to \infty }s_{n}=\lim _{n\to \infty }{\frac {1-q^{n+1}}{1-q}}={\frac {1-0}{1-q}}={\frac {1}{1-q}}}
.
Es ist also
|
q
|
<
1
{\displaystyle |q|<1}
hinreichend für die Konvergenz der geometrischen Reihe. Zugleich ist dies jedoch auch notwendig : Für
|
q
|
≥
1
{\displaystyle |q|\geq 1}
folgt die Divergenz der Reihe
∑
n
=
0
∞
q
n
{\displaystyle \textstyle \sum _{n=0}^{\infty }q^{n}}
aus dem Nullfolgenkriterium , da
q
n
{\displaystyle q^{n}}
in diesem Fall für
n
→
∞
{\displaystyle n\to \infty }
nicht gegen 0 strebt.[ 1]
Ein Quotient
q
{\displaystyle q}
mit
|
q
|
≥
1
{\displaystyle |q|\geq 1}
ergibt eine divergente geometrische Reihe, z. B. für
q
=
2
{\displaystyle q=2}
und Startwert
1
{\displaystyle 1}
1
,
1
+
2
,
1
+
2
+
4
,
1
+
2
+
4
+
8
,
…
{\displaystyle 1,~1+2,~1+2+4,~1+2+4+8,\dots }
zusammengefasst also
1
,
3
,
7
,
15
,
…
{\displaystyle 1,~3,~7,~15,\dots }
.
Im Falle der hier abgebildeten Zweierpotenzen erscheinen stets die Mersenneschen Zahlen
s
n
=
2
n
+
1
−
1
{\displaystyle s_{n}=2^{n+1}-1}
als Werte der Summe.
↑ Herbert Amann, Joachim Escher : Analysis 1. 3. Auflage. Basel/Boston/Berlin 2006, S. 196–197.