Biegewelle

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Ebene Biegewelle

Biegewellen sind transversale Wellen, die sich in begrenzten Medien mit nichtverschwindender Schubspannung ausbreiten können, beispielsweise in Balken (Anwendungsfall: u. a. Triangel) und in Platten (Anwendungsfall: u. a. Glocken). Im Gegensatz zu Dehnwellen findet die periodische Auslenkung des Mediums senkrecht („transversal“) zur Ausbreitungsrichtung statt, so dass die Welle auch als periodische Änderung des Krümmungsradius beschrieben wird.

Wellengleichung

[Bearbeiten | Quelltext bearbeiten]

Die Wellengleichung einer Biegewelle auf einem Balken lautet in erster Ordnung nach der Euler-Bernoulli-Theorie:

mit

Für eine Dimension (Ortsvariable ) ergibt sich aus dem harmonischen Lösungsansatz

mit

die Dispersionsrelation:

Die Phasengeschwindigkeit ist damit stark von der Frequenz (und damit auch von ) abhängig:

.

Die entsprechende Gleichung für eine Biegewelle auf einer Platte lautet:

mit den zusätzlichen Bezeichnungen

Diese Gleichung führt auf die Dispersionsrelation

und die Phasengeschwindigkeit:

Gruppengeschwindigkeit

[Bearbeiten | Quelltext bearbeiten]

In beiden Fällen ist die Gruppengeschwindigkeit gerade doppelt so groß wie die Phasengeschwindigkeit:

.