CFL-Zahl
(Weitergeleitet von Courant-Friedrichs-Lewy-Bedingung)
Die Courant-Friedrichs-Lewy-Zahl (CFL-Zahl oder auch Courant-Zahl) wird in der numerischen Strömungssimulation für die Diskretisierung zeitabhängiger partieller Differentialgleichungen verwendet.
Sie gibt an, um wie viele Zellen sich eine betrachtete Größe pro Zeitschritt maximal fortbewegt:
Dabei ist die Courant-Zahl, die Geschwindigkeit, der diskrete Zeitschritt und der diskrete Ortsschritt. Motiviert wird dies durch die CFL-Bedingung, die aussagt, dass das explizite Euler-Verfahren nur für stabil sein kann. Ähnliche Bedingungen gelten auch für andere Diskretisierungsschemata.
Die Courant-Zahl ist nach den Mathematikern Richard Courant, Kurt Friedrichs und Hans Lewy benannt, die sie 1928 definierten.
Literatur
[Bearbeiten | Quelltext bearbeiten]- Richard Courant, Kurt Friedrichs, Hans Lewy: Über die partiellen Differenzengleichungen der mathematischen Physik. In: Mathematische Annalen, Bd. 100 (1928), S. 32–74, Online, ISSN 0025-5831.