Diskussion:Wald-Test
Zum Archiv |
Wie wird ein Archiv angelegt? |
Auf dieser Seite werden Abschnitte ab Überschriftenebene 2 automatisch archiviert, die seit 7 Tagen mit dem Baustein {{Erledigt|1=--~~~~}} versehen sind. |
Multivariater Fall
[Quelltext bearbeiten]Also ich kenne mich zwar nicht gut aus, aber meiner Meinung nach fehlt im multivariaten Fall ein transponiert Zeichen und nach Lehmann, Elements of Large-Sample Theory ein n * die Teststatistik. (nicht signierter Beitrag von 192.44.85.22 (Diskussion) 19:49, 31. Mai 2012 (CEST))
- Das Transponiert habe ich ergänzt, aber ich sehe nicht, dass irgendwo ein n fehlt: Es gibt aber andere Formulierungen z.B. mit der Fisher-Information. -- HilberTraum (Diskussion) 21:23, 31. Mai 2012 (CEST)
Danke! Dann sollte man aber noch die alternative Definition mit n \sum_i \sum_j \mathcal{I}_{ij}(\theta_0) \left( \hat{\theta}_{in} - \theta_i^0 \right) \left( \hat{\theta}_{jn} - \theta_j^0 \right) aufnehmen, weil die für bei der Güte von Maximum-Likelihood-Schätzern extrem wichtig ist. Die Literaturquelle dazu ist Lehman, Elements of Large-Sample Theory, S. 534. (nicht signierter Beitrag von 188.194.255.115 (Diskussion) 23:08, 31. Mai 2012 (CEST))
- Formel lesbar gemacht: .--Sigma^2 (Diskussion) 14:12, 25. Okt. 2023 (CEST)
- Eine Darstellung mit der Fisher-Information hätte den Vorteil der Klarheit und Eindeutigkeit. Bei der jetzigen Darstellung ist von der asymptotischen Kovarianzmatrix des Maximum-Likelihood-Schätzers die Rede, ohne dass klar wird, was das eigentlich ist. --Sigma^2 (Diskussion) 15:38, 25. Okt. 2023 (CEST)
Äquivalenz von Wald, LR und LM test
[Quelltext bearbeiten]Im letzten Abschnitt steht über diese 3 Test: "Asymptotisch sind diese drei Tests jedoch identisch." Dies stimmt so nicht. Die Power bei nichtlokalen Alternativen kann sich drastisch unterscheiden. (nicht signierter Beitrag von 195.126.85.201 (Diskussion) 16:41, 8. Aug. 2013 (CEST))
- Ein bisschen mehr Ausführungen dazu wäre nützlich. Sowohl im Text, dazu was es heißt, dass zwei Test asymptotisch identisch sind, also auch durch IP, was sie mit sich asymptotisch unterscheidender Macht des Tests meint.--Sigma^2 (Diskussion) 14:29, 25. Okt. 2023 (CEST)
Grob fehlerhaft
[Quelltext bearbeiten]Der Artikel ist fehlerhaft und nicht einfach zu korrigieren, da er die Grundidee des Wald-Tests vollständig verfehlt. Bereits die Testgröße ist im einfachsten Fall falsch dargestellt und entspricht keiner Wald-Statistik. Das Typische der Waldstatistik ist, das im Nenner nicht der, in der Regel unbekannte, Standardfehler des Schätzers für einen Parameter verwendet wird, sondern ein konsistenter Schätzer dieses Parameters. Ohne eine Unterscheidung zwischen Standardfehler (Standardabweichung) des Schätzer und geschätztem Standardfehler des Schätzers ist keine korrekte Darstellung des Sachverhaltes möglich. Nicht der Gauß-Test ist ein Spezialfall des Wald-Tests, sondern eine asymptotische Variante des t-Tests. Der mathematische Hintergrund ist schon im Ansatz fehlerhaft: falscher Grenzwertbegriff, unsinnige Verwendung des Grenzwertes, da in der ersten Formel die rechte Seite ebenfalls den Stichprobenumfang n enthält. Sigma^2 (Diskussion) 10:34, 19. Dez. 2013 (CET)
- Sehe ich auch so. Die Formeln sind Bullshit.--Jonski (Diskussion) 20:44, 6. Dez. 2018 (CET)
- Inzwischen ist vieles überarbeitet, die verbleibenden Ungenauigkeiten würd ich nicht mehr als grob fehlerhaft bezeichnen. Den Gaußtest mit bekannter Varianz als Beispiel eines Wald-Tests zu präsentieren, geht aber an der Grundidee völlig vorbei.--Sigma^2 (Diskussion) 14:38, 25. Okt. 2023 (CEST)
- Sehe ich auch so. Die Formeln sind Bullshit.--Jonski (Diskussion) 20:44, 6. Dez. 2018 (CET)
Überarbeitung erforderlich
[Quelltext bearbeiten]Der Artikel enthält viele Unklarkeiten, falsche Aussagen und Vagheiten. Bei Darstellungen, in denen um Asymptotik für geht, sollten alle Größen, die von abhängen, den Index haben.
Einleitung
[Quelltext bearbeiten]- Wald-Tests werden zwar auch in der Ökonometrie behandelt. Die Einleitung erweckt aber den falschen Eindruck, als handele es sich um eine spezifisch ökonometrische Methode.
- „Der Wald-Test basiert auf der Tatsache, dass der Maximum-Likelihood-Schätzer für den unbekannten Parameter für große Beobachtungszahlen in Verteilung gegen eine Normalverteilung strebt.“ Das ist vage bzw. falsch. Der Maximum-Likelihood-Schätzer strebt in Verteilung gegen eine Einpunktverteilung auf dem Parameter, der zu der Verteilung gehört, aus der die Beobachtungen kommen. Dass der Maximum-Likelihood-Schätzer asymptotisch normalverteilt ist, ist eine andere Aussage und kann so nicht verbalisiert werden.
Eindimensionaler Fall
[Quelltext bearbeiten]- [...] „weiß man, dass der Maximum-Likelihood-Schätzer des unbekannten Parameters in Verteilung für große Beobachtungszahlen gegen eine Normalverteilung strebt.“ ist so nicht richtig, siehe Kommentar zur Einleitung.
- Das Symbol ist nicht erklärt.
- Das Symbol ist nicht erklärt. Aus der Verlinkung auf Fisher-Information wird nicht klar, was ist.
- Das Symbol ist nicht erklärt. Es gibt einen Rotlink. Die Fisher-Information ist bereits ein Erwartungswert. Was soll eine erwartete Fisher-Information sein?--Sigma^2 (Diskussion) 12:26, 26. Okt. 2023 (CEST)
- Das Symbol ist nicht erklärt. Es ist unklar, welche Beziehung zu den zuvor verwendeten Symbolen und besteht.
- Wenn die Verteilungsaussagen approximativ oder asymptotisch nur bei Richtigkeit von , dann muss das auch gesagt werden.
- Die "Vertrauensintervalle" sind approximative Konfidenzintervalle.
Mehrdimensionaler Fall
[Quelltext bearbeiten]- Wie ist „ die asymptotische nichtsinguläre Kovarianzmatrix des Maximum-Likelihood-Schätzers“ definiert? Das ist weder erklärt noch verlinkt.
- Was soll „Restriktionsfunktion “ bedeuten? Soll eine reellwertige Funktion sein? Wie ist definiert? So wie es da steht, ist die Differenzierbarkeit trivial.
- was ist „vollständig differenzierbar“?
- Was heißt es, dass die Restriktionsfunktion „vollen Rang hat“?
Wald-Statistiken für allgemeine lineare Hypothesen
[Quelltext bearbeiten]- Hypothesenquadratsumme halte ich ohne Beleg für WP:TF.
- Was bedeutet es, dass W der F-Statistik entspricht. Sind die Statistiken identisch, habe sie dieselbe Verteilung oder sind sie asymptotisch äquivalent?
Beispiele
[Quelltext bearbeiten]- Das Beispiel des Gauß-Tests ist ungeeignet, da und das typische des Wald-Tests nicht getroffen wird.
- Im Beispiel globaler F-Test nur die Hypothesen angedeutet. Die Beziehung zum Wald-Test bleibt unklar.
Alternativen
[Quelltext bearbeiten]- Die Aussage „zeigt er in kleinen Stichproben jedoch auch bessere Eigenschaften“ ist unscharf (welche Eigenschaften sind gemeint) und unbelegt.