Numerische Simulation

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Dynamische Simulation)
Zur Navigation springen Zur Suche springen
Beispiel, simulierte Umströmung eines Sport-Motorrads mit Fahrer
Wärmeverteilung in einem Kesselfeuerraum

Als numerische Simulation bezeichnet man allgemein Computersimulationen, welche mittels numerischer Methoden[1] wie zum Beispiel mit Turbulenzmodellen durchgeführt werden. Bekannte Beispiele sind Wetter- und Klimaprognosen, numerische Strömungssimulation[1] oder Festigkeits- und Steifigkeitsberechnungen.[2][3]

Numerische Simulationen lassen sich in folgende Schritte unterteilen:

In der Modellierung (Modellaufbau) werden die grundlegenden Eigenschaften einer Simulation in Form mathematischer Modelle formuliert.[4] Die Modelle werden in der Regel unabhängig von einer konkreten Aufgabenstellung entwickelt.

Parametrisierung

[Bearbeiten | Quelltext bearbeiten]

Bei der Parametrisierung werden Modelle ausgewählt, mit konkreten Rechenwerten ausgestattet und so miteinander verknüpft, dass das Gesamtmodell möglichst gut einen konkreten Anwendungsfall darstellt. Ungenaue Kenntnis der Modelle oder der Randbedingungen ist die häufigste Fehlerquelle bei Simulationen.

Bei den numerischen Methoden handelt es sich um besondere Rechenverfahren, die unter das Teilgebiet der numerischen Mathematik fallen.[4] Die eigentliche Berechnung erfolgt durch Starten eines Lösungsprogrammes, des so genannten Lösers. Dieses führt die eigentliche Berechnung durch und speichert die Berechnungsergebnisse. Da eine geschlossene Lösung der Systeme in der Regel nicht möglich ist, werden iterative Lösungsverfahren angewendet, um eine Näherungslösung zu finden. Bei nahezu allen Simulationsberechnungen müssen sehr große Datenmengen verarbeitet werden. Dennoch kann die Rechenzeit je nach Simulationsverfahren stark variieren. Daher werden in diesem Bereich häufig Parallelrechner, Vektorrechner oder PC-Cluster verwendet, bei denen viele Einzelrechner gleichzeitig an einem Ergebnis arbeiten.[5] Allerdings lässt sich die Geschwindigkeit solcher Berechnungen nicht beliebig steigern, da mit der Zahl der beteiligten Rechenkerne in der Regel auch der Kommunikationsaufwand steigt (Skalierbarkeit).

Auswertung und Darstellung

[Bearbeiten | Quelltext bearbeiten]

Die Ergebnisse der Berechnung bezeichnet man als Rohdaten. Diese liegen als digitale Ergebnisdateien vor, die nun so aufbereitet werden müssen, dass sie für Menschen verständlich sind. Die dazu erforderliche Auswertung ist ein elementarer Bestandteil der Simulation. Für die Auswertung kommen zum einen statistische Methoden zum Einsatz, die Daten zusammenfassen oder analysieren. Ein wichtiger Aspekt liegt aber auch in der Möglichkeit, Daten grafisch aufzubereiten.

Einsatzbereiche

[Bearbeiten | Quelltext bearbeiten]

Die mathematischen Probleme numerischer Simulationen lassen sich oft auf die Lösung von Differentialgleichungen, Lösung von Eigenwert- und Eigenvektor-Problemen, Lösung von linearen Gleichungssystemen oder Berechnung von Integralen zurückführen.[1] Aufgrund der Komplexität der Simulationsprogramme sowie der Unsicherheit der angesetzten Parameter und Randbedingungen werden zur Ergebniskontrolle oft parallel auch begleitende Verfahren, wie beispielsweise analytische Berechnungen, eingesetzt.[6]

Die Komplexität verschiedener numerischer Simulationen ist sehr unterschiedlich. Daher gehören Probleme wie Festigkeitsberechnungen[7] oder Schwingungsanalysen von Gebäuden (Teilsicherheitskonzept) und Maschinenteilen[3] mittlerweile zum Standardwerkzeug der Konstrukteure – bei anderen Vorgängen (Wettervorhersagen, Klimaberechnungen) bewegt man sich dagegen an den oder jenseits der Grenzen der Leistungsfähigkeit moderner Computer. Hinzu kommen noch grundsätzliche Probleme wie das chaotische Verhalten vieler dynamischer Systeme.

Die Einsatzgebiete von numerischen Simulationen sind vielfältig. Einige wichtige oder bekannte Beispiele sind:

Naturwissenschaften

[Bearbeiten | Quelltext bearbeiten]

Ingenieurwissenschaften

[Bearbeiten | Quelltext bearbeiten]
  • Architektur und Bauingenieurwesen:[10][11] Statische und dynamische Festigkeitsberechnungen (Gebäude, Brücken)[7]
Berechnete Temperaturen in einem IC samt Zuleitungen
  • Chemieingenieurwesen und Verfahrenstechnik:[12] Verbrennungsvorgänge und chemischen Reaktionen (Verbrennungsmotoren,[13] Ausbeute bei chemischen Synthesen)
  • Maschinenbau: Flugsimulatoren, Schwingungsanalyse an elektrischen Maschinen, Spannungen und Verformungen (elastisch und plastisch, z. B. virtuelle Crashtests mittels Finite-Elemente-Methoden)
  • Technische Physik: Halbleiterbauelemente, Wärmeleitvorgänge,[3] Optische Systeme (Linsensysteme, Laser, thermische Verformungen durch Absorption), Fusionsreaktoren,[5][14] Beschleuniger und Kernreaktionen
  • Verkehrsplanung[1]

Wirtschaftswissenschaften

[Bearbeiten | Quelltext bearbeiten]
  • Computerspiele (Berücksichtigung physikalischer Eigenschaften und Beleuchtung)
Rauchausbreitung U-Bahn

Ein Bereich, in dem numerische Simulationen eingesetzt werden, sind Strömungssimulationen. Luftströmungen werden durch ein Rechenmodell ermittelt, dessen Raum in ein Gitter bestehend aus Zellen oder Voxel eingeteilt ist (Diskretisierung).

Der Vorgang hat eine gewisse Ähnlichkeit mit der digitalen Darstellung von Fotos am Computer, die nun aus einzelnen Bildpunkten (Pixeln) bestehen. Jedes Pixel besitzt nur einen einzigen Farbwert, obwohl das reale Bild eigentlich kontinuierlich ist, d. h., es werden Bereiche zu gleichfarbigen Flächen zusammengefasst. Bei ausreichend großem Betrachtungsabstand fließen selbst dann die Farbwerte für das Auge scheinbar wieder zu einem kontinuierlichen Bild zusammen. Ist die Auflösung der digitalen Bilddarstellung zu gering, dann wirkt das Foto unscharf oder treppenartig.

Anders als bei einem Pixelbild, das nur zwei räumliche Dimensionen und eine Farbinformation hat, bestehen Strömungssimulationen normalerweise aus drei räumlichen Dimensionen. Für jeden der Punkte gibt es – je nach Problem – mehrere Kenngrößen, die ihrerseits voneinander abhängig sein können. Die physikalischen Größen (z. B. Druck oder Temperatur) benachbarter Gitterpunkte ändern sich im Verlauf der Berechnung durch gegenseitige Beeinflussung.

Bei der numerischen Simulation auf einem Gitter gelten für die Auflösung ähnliche Regeln wie bei der Darstellung von Fotos am Computer. Ist die räumliche Auflösung zu gering (große Zellen), dann wird die Physik nicht gut abgebildet und es kommt zu Ungenauigkeiten. Daher ist man an einer möglichst hohen räumlichen Auflösung interessiert. Andererseits ist bei einer hohen Auflösung die Rechenleistung oft nicht ausreichend, um in akzeptabler Zeit ein Ergebnis zu erhalten. Die Aufteilung in 100×100×100 Zellen ergibt beispielsweise eine Million Punkte. Halbiert man die Kantenlänge dieser Zellen, so erhöht sich die Zahl auf acht Millionen. Auch bei modernen Rechnern stößt die Auflösung daher sehr schnell an Grenzen der Rechenleistung.

Simulationen in anderen Einsatzbereichen verwenden Systeme, die nicht nur aus drei räumlichen Dimensionen, sondern beispielsweise aus drei räumlichen und einer zeitlichen Dimension bestehen. Für jeden der Gitterpunkte kann es zudem eine Vielzahl von Kenngrößen geben. Neben der beschriebenen kubischen Gitterform, die sich oft aus der Diskretisierung der Dimensionen ergibt, werden auch andere Gitterformen für die Simulation verwendet, beispielsweise bei der Finite-Elemente-Methode. Des Weiteren gibt es Simulationen, die keine Gitterstruktur nutzen, Teilchensystemen wie das einfache Modell harter Kugeln sind ein Beispiel hierfür.

  • Josef Stoer, Numerische Mathematik 1 und 2, Springer-Verlag (einige Auflagen)

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. a b c d e Numerische Simulation. Spektrum.de, Lexika, 2001, abgerufen am 31. Januar 2021.
  2. Numerische Simulation am Lehrstuhl Strömungsmechanik (2021). Universität Rostock, abgerufen am 31. Januar 2021.
  3. a b c Festigkeitsanalyse (FEM). Fachhochschule Dortmund, 29. Juni 2015, abgerufen am 31. Januar 2021.
  4. a b Universität Heidelberg, Einführung in die numerische Simulation, Kapitel 1, (PDF), abgerufen am 2. Februar 2021.
  5. a b Andreas Galonska: Entwicklung eines automatischen Validierungssystems für Simulations-codes der Fusionsforschung. insbesondere Kapitel 2(.2), Jülich Supercomputing Centre (JSC), März 2010, abgerufen am 2. Februar 2021.
  6. Dankert: Numerische Methoden. HAW Hamburg, 2014, archiviert vom Original am 4. November 2018; abgerufen am 31. Januar 2021.
  7. a b https://www.fem-berechnung-simulation.de/festigkeitsnachweise.html, abgerufen am 31. Januar 2021.
  8. Ruhr-Universität Bochum 12. Mai 2009, Ab initio Simulation: RUB-Chemiker veröffentlicht erstes Standardwerk, abgerufen am 31. Januar 2021.
  9. Physikalisch-Technische Bundesanstalt, Mathematische Modellierung und Simulation Arbeitsgruppe 8.41, abgerufen am 31. Januar 2021.
  10. bauen-aktuell.eu, Simulation, abgerufen am 31. Januar 2021.
  11. bauen-aktuell.eu vom 9. Dezember 2019, Wohnungslüftung nach erneuerter DIN 1946-6: Was auf Planer zukommt, abgerufen am 31. Januar 2021.
  12. Erwin Dieterich, Gheorge Sorescu und Gerhart Eigenberger: Numerische Methoden zur Simulation verfahrenstechnischer Prozesse (PDF). Chem.-Ing.-Tech. 64, 1992, abgerufen am 2. Februar 2021.
  13. Peter Gerlinger, Effiziente numerische Simulation turbulenter Verbrennung 2005, Springer, ISBN 978-3-540-27535-0
  14. Karlsruher Institut für Technologie, Institut für Angewandte und Numerische Mathematik 1, Mathematik schafft Energie, abgerufen am 2. Februar 2021.
  15. Virtuelle Tests für reale Bomben. Frankfurter Rundschau, 29. September 2009, abgerufen am 31. Januar 2021.
  16. Simulation zeigt Auswirkungen von Atombomben auf den eigenen Heimatort. Südkurier, 30. Juni 2016, abgerufen am 31. Januar 2021.
  17. Hiltmar Schubert: Explosivstoffe für militärische Anwendungen. Spektrum.de, 1. August 1996, abgerufen am 31. Januar 2021.