Hufeisenlemma

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Das Hufeisenlemma gehört zu den Grundlagen der homologischen Algebra. Es besagt, dass die drei Moduln in einer kurzen exakten Sequenz so aufgelöst werden können (projektiv oder injektiv), dass eine kurze exakte Folge von Auflösungen entsteht.

Das Ergebnis kommt – allerdings ohne Namen – bereits 1956 im Buch von Cartan und Eilenberg vor.[1]

Sei eine kurze exakte Folge von Moduln, oder allgemeiner von Objekten in einer abelschen Kategorie . Seien und projektive Auflösungen. Dann gibt es eine projektive Auflösung und Kettenhomomorphismen derart, dass

  1. ist eine kurze exakte Folge von Kettenkomplexen. Das heißt, in jedem Grad ist eine – aufgrund der Projektivität von notwendigerweise zerfallende – kurze exakte Sequenz.
  2. Das resultierende Diagram
    Das resultierende Diagramm
    Das resultierende Diagramm

    kommutiert. Das heißt, es ist und .

Die entsprechende Aussage für injektive Auflösungen gilt auch.

Das „Hufeisen“ (injektiver Fall)

Die Input-Daten ähneln einem Hufeisen, das Lemma füllt das Hufeisen aus.

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Henri Cartan, Samuel Eilenberg: Homological Algebra (= Princeton Mathematical Series. Nr. 19). Princeton University Press, 1956, LCCN 53-010148, S. 80, Proposition V.2.2.