Kolmogorow-Smirnow-Test

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Kolmogorov-Smirnov-Test)
Zur Navigation springen Zur Suche springen

Der Kolmogorow-Smirnow-Test (KS-Test) (nach Andrei Nikolajewitsch Kolmogorow und Nikolai Wassiljewitsch Smirnow) ist ein statistischer Test auf Übereinstimmung zweier Wahrscheinlichkeitsverteilungen.

Mit seiner Hilfe kann anhand von Zufallsstichproben geprüft werden, ob

  • zwei Zufallsvariablen eine identische Verteilung besitzen oder
  • eine Zufallsvariable einer zuvor angenommenen Wahrscheinlichkeitsverteilung folgt.

Im Rahmen des letzteren (Einstichproben-)Anwendungsproblems spricht man auch vom Kolmogorow-Smirnow-Anpassungstest (KSA-Test). Einige (parametrische) statistische Verfahren setzen voraus, dass die untersuchten Variablen in der Grundgesamtheit normalverteilt sind. Der KSA-Test kann genutzt werden, um zu testen, ob diese Annahme verworfen werden muss oder (unter Beachtung des -Fehlers) beibehalten werden kann.

Darstellung des Kolmogorow-Smirnow-Anpassungstest. Die rote Linie ist die Verteilungsfunktion der Nullhypothese, die blaue Linie ist die empirische Verteilungsfunktion der beobachteten Werte und der schwarze Pfeil illustriert den Wert der Teststatistik .

Das Konzept wird anhand des Kolmogorow-Smirnow-Anpassungstest erläutert, wobei der Vergleich zweier Merkmale analog ist. Man betrachtet ein statistisches Merkmal , dessen Verteilung in der Grundgesamtheit unbekannt ist und die eine stetige Verteilungsfunktion besitzt. Die zweiseitig formulierten Hypothesen lauten dann:

Nullhypothese:

Alternativhypothese:

Die Nullhypothese postuliert also, dass die Zufallsvariable die Verteilungsfunktion besitzt, während die Alternativhypothese besagt, dass eine andere Verteilungsfunktion besitzt.

Es liegen beobachtete Werte als Realisierungen von stochastisch unabhängigen und identisch verteilten Zufallsvariablen vor, die jeweils dieselbe stetige Verteilungsfunktion haben. Der Kolmogorow-Smirnow-Anpassungstest basiert auf der Abweichung der zufälligen empirischen Verteilungsfunktion

von der durch die Nullhypothese behaupteten Verteilungsfunktion . Dazu wird die Teststatistik

gebildet, wobei sup das Supremum bezeichnet. (Das Supremum anstelle des Maximums ist erforderlich, da der größte Abstand an einer Sprungstelle der empirischen Verteilungsfunktion auftreten kann, wobei der linksseitige Grenzwert der empirischen Verteilungsfunktion an der Sprungstelle zum größten Abstand führen kann, der durch Maximum nicht erreicht würde. Mithilfe der Supremumsnorm kann die Teststatistik in der Form geschrieben werden.) ist eine Zufallsvariable mit einer Wahrscheinlichkeitsverteilung, die im Allgemeinen von und von abhängt. Wenn die Nullhypothese richtig ist, hängt die Wahrscheinlichkeitsverteilung von nur von ab. Falls zusätzlich die Verteilungsfunktion stetig ist, hängt die Wahrscheinlichkeitsverteilung von nicht von ab. Die Teststatistik ist dann eine verteilungsfreie Statistik bezüglich der Klasse aller Wahrscheinlichkeitsverteilungen mit stetiger Verteilungsfunktion.

Testdurchführung

[Bearbeiten | Quelltext bearbeiten]

Aus den beobachteten Werten ergibt sich eine konkrete empirische Verteilungsfunktion

und mit dieser ein realisierter Wert der Teststatistik . Bei einer Verletzung der Nullhypothese rechnet man mit eher größeren Werten der Teststatistik als bei Richtigkeit der Nullhypothese. Daher wird die Nullhypothese für große Werte von abgelehnt. Genauer wird zu vorgegebenem Signifikanzniveau die Nullhypothese zugunsten der Alternativhypothese abgelehnt, falls der Wert größer als das -Quantil der Verteilung von ist. Das benötigte -Quantil kann numerisch ermittelt oder aus Tabellen abgelesen werden.

Anstelle der Teststatistik wird auch die Teststatistik verwendet. Dies ist eine mögliche Fehlerquelle bei der Testdurchführung, da in der Literatur sowohl Tabellen mit Quantilen der Verteilung von als auch von vorliegen.

Asymptotik und approximativer Test

[Bearbeiten | Quelltext bearbeiten]

Wenn die Nullhypothese richtig ist, konvergiert für über alle Grenzen wachsenden Stichprobenumfang fast sicher gegen Null (Satz von Gliwenko-Cantelli). Dagegen konvergiert die modifizierte Teststatistik

für wachsenden Stichprobenumfang gegen die so genannte Kolmogorow-Verteilung, die von Kolmogorow im Jahr 1933 veröffentlicht wurde.[1] Für hinreichend große Stichprobenumfänge kann die Kolomogorow-Verteilung als Approximation der Verteilung von verwendet werden. Wenn man nun den Test mit Hilfe der -Quantile der Kolmogorow-Verteilung durchführt, erhält man einen Test mit approximativem Signifikanzniveau .

Vorgehensweise beim Einstichprobenproblem (Anpassungstest)

[Bearbeiten | Quelltext bearbeiten]

Von einer reellen Zufallsvariablen liegen Beobachtungswerte () vor, die bereits aufsteigend sortiert sind: . Von diesen Beobachtungen wird die relative Summenfunktion (Summenhäufigkeit, empirische Verteilungsfunktion) ermittelt. Diese empirische Verteilung wird nun mit der entsprechenden hypothetischen Verteilung der Grundgesamtheit verglichen: Es wird der Wert der Wahrscheinlichkeitsverteilung an der Stelle bestimmt: . Wenn tatsächlich dieser Verteilung gehorcht, müssten die beobachtete Häufigkeit und die erwartete Häufigkeit in etwa gleich sein.

Falls stetig ist, kann die Teststatistik auf folgende Weise berechnet werden: Es werden für jedes die absoluten Differenzen

und

berechnet („o“ für oben, „u“ für unten), wobei gesetzt wird. Es wird sodann die absolut größte Differenz aus allen Differenzen , ermittelt. Wenn einen kritischen Wert übersteigt, wird die Hypothese bei einem Signifikanzniveau abgelehnt.

Bis liegen die kritischen Werte tabelliert vor.[2] Für größere können sie näherungsweise mit Hilfe der Formel

bestimmt werden.[3] Aus dieser Näherungsformel ergeben sich die in der unten stehenden Tabelle aufgeführten Formeln für den Bereich .

Vorgehensweise beim Zweistichprobenproblem

[Bearbeiten | Quelltext bearbeiten]

Liegt nun zusätzlich zur obigen Zufallsvariablen eine entsprechende Zufallsvariable vor (mit geordneten Werten ), so kann durch den Zweistichprobentest überprüft werden, ob und derselben Verteilungsfunktion folgen. Die Hypothesen lauten:

Nullhypothese:

(Die Zufallsvariablen und besitzen die gleiche Wahrscheinlichkeitsverteilung.)

Alternativhypothese:

(Die Zufallsvariable besitzt eine andere Wahrscheinlichkeitsverteilung als .)

Der Kolmogorow-Smirnow-Test vergleicht die empirischen Verteilungsfunktionen (relativen Summenfunktionen) und analog zum Einstichprobentest anhand ihrer absoluten Differenzen mittels der Teststatistik

.

Die Nullhypothese wird bei einem Signifikanzniveau abgelehnt, falls den kritischen Wert überschreitet. Für kleine Werte von und liegen die kritischen Werte tabelliert vor.[4][5] Für große Werte von und wird die Nullhypothese abgelehnt, falls

,

wobei für große und näherungsweise als

berechnet werden kann.

Vergleich von empirischer und theoretischer Verteilung des Zahlenbeispiels: Links ein Histogramm mit Normalverteilungskurve, rechts die theoretische und die empirische Verteilungsfunktion

In einem Unternehmen, das hochwertige Parfüms herstellt, wurde im Rahmen der Qualitätssicherung an einer Abfüllanlage die abgefüllte Menge für Flakons gemessen. Es ist das Merkmal : Abgefüllte Menge in ml.

Es soll geprüft werden, ob noch die bekannten Parameter der Verteilung von gelten.

Zunächst soll bei einem Signifikanzniveau getestet werden, ob das Merkmal in der Grundgesamtheit überhaupt normalverteilt mit den bekannten Parametern und ist, also

mit als Normalverteilungssymbol. Es ergibt sich folgende Tabelle:

Hier bezeichnen die -te Beobachtung, den Wert der Summenfunktion der -ten Beobachtung und den Wert der Normalverteilungsfunktion an der Stelle mit den genannten Parametern. Die nächsten Spalten geben die oben angeführten Differenzen an. Der kritische Wert, der bei und zur Ablehnung führte, wäre der Betrag .[2] Die größte absolute Abweichung in der Tabelle ist in der 3. Zeile. Dieser Wert ist größer als der kritische Wert, daher wird die Hypothese abgelehnt. Es ist also zu vermuten, dass die Verteilungshypothese falsch ist. Das kann bedeuten, dass die abgefüllte Menge nicht mehr normalverteilt ist, dass sich die durchschnittliche Abfüllmenge verschoben hat oder auch, dass sich die Varianz der Abfüllmenge verändert hat.

Eigenschaften des KS-Tests

[Bearbeiten | Quelltext bearbeiten]

Beim Einstichprobenproblem ist der KS-Test im Gegensatz etwa zum -Test auch für kleine Stichproben geeignet.[6]

Der Kolmogorow-Smirnow-Test ist als nichtparametrischer Test sehr stabil und unanfällig. Ursprünglich wurde der Test für stetig verteilte metrische Merkmale entwickelt; er kann aber auch für diskrete und sogar rangskalierte Merkmale verwendet werden. In diesen Fällen ist der Test etwas weniger trennscharf, d. h. die Nullhypothese wird seltener abgelehnt als im stetigen Fall.

Ein großer Vorteil besteht darin, dass die zugrundeliegende Zufallsvariable keiner Normalverteilung folgen muss. Dies macht den Test vielseitig einsetzbar, bedingt aber auch seinen Nachteil, denn der KS-Test hat allgemein eine geringe Teststärke.

Alternative Tests

[Bearbeiten | Quelltext bearbeiten]

Der Lilliefors-Test ist eine Anpassung des Kolmogorow-Smirnow-Tests für die Testung auf Normalverteilung mit unbekanntem Mittelwert und unbekannter Varianz. Mögliche Alternativen zum KS-Test sind der Cramér-von-Mises-Test, der für beide Anwendungsfälle geeignet ist, sowie der Anderson-Darling-Test für den Vergleich einer Stichprobe mit einer hypothetischen Wahrscheinlichkeitsverteilung.

Zum Kolmogorow-Smirnow-Anpassungstest

[Bearbeiten | Quelltext bearbeiten]
  • Jürgen Hedderich, Lothar Sachs: Angewandte Statistik. Methodensammlung mit R. 17., überarbeitete und ergänzte Auflage. Springer Spektrum, Berlin / Heidelberg 2018, ISBN 978-3-662-62293-3, 7.2.6 Kolmogoroff-Smirnoff Anpassungstest, S. 494–497, doi:10.1007/978-3-662-62294-0.
  • P. H. Müller (Hrsg.): Lexikon der Stochastik – Wahrscheinlichkeitsrechnung und mathematische Statistik. 5. Auflage. Akademie-Verlag, Berlin 1991, ISBN 978-3-05-500608-1, Kolmogorow-Test, S. 187–188.
  • Horst Rinne: Taschenbuch der Statistik. 4. Auflage. Harri Deutsch, Frankfurt am Main 2008, ISBN 978-3-8171-1827-4, 3.4.5.2 Kolmogorov-Smirnov-Anpassungstest, S. 577–579.

Zum Kolmogorow-Smirnow-Zweistichprobentest

[Bearbeiten | Quelltext bearbeiten]
  • Jürgen Hedderich, Lothar Sachs: Angewandte Statistik. Methodensammlung mit R. 17., überarbeitete und ergänzte Auflage. Springer Spektrum, Berlin / Heidelberg 2018, ISBN 978-3-662-62293-3, 7.4.9 Vergleich zweier unabhängiger Stichproben nach Kolmogoroff/Smirnoff, S. 592–594, doi:10.1007/978-3-662-62294-0.
  • P. H. Müller (Hrsg.): Lexikon der Stochastik – Wahrscheinlichkeitsrechnung und mathematische Statistik. 5. Auflage. Akademie-Verlag, Berlin 1991, ISBN 978-3-05-500608-1, Kolmogorow-Smirnow-Test, S. 185–186.
  • Horst Rinne: Taschenbuch der Statistik. 4. Auflage. Harri Deutsch, Frankfurt am Main 2008, ISBN 978-3-8171-1827-4, 3.4.4.2 Kolmogorov-Smirnov-Homogenitätstest, S. 573–575.

Einzelnachweise und Anmerkungen

[Bearbeiten | Quelltext bearbeiten]
  1. Sulla determinazione empirica di una legge di distribuzione. In: Giornale dell’Istituto italiano degli attuari. Band IV, Nr. 1, 1933, S. 83–91 (italienisch, sbn.it).
  2. a b Critical values for the Kolmogorov-Smirnov Test for goodness of fit. Archiviert vom Original am 18. August 2016; abgerufen am 18. Dezember 2016.
  3. Lothar Sachs, Jürgen Hedderich: Statistik: Angewandte Statistik. 12. Auflage. Springer, Berlin/ Heidelberg 2006, S. 338.
  4. Pearson E.S. and Hartley, H.O. (Hrsg.): Biometrika Tables for Statisticians. Band 2. Cambridge University Press, 1972, ISBN 0-521-06937-8, S. 117–123, Tables 54, 55 (englisch).
  5. Tabelle der kritischen Werte für den Zweistichprobentest (Memento vom 13. Juni 2013 im Internet Archive) (PDF; 177 kB)
  6. Jürgen Janssen, Wilfried Laatz: Statistische Datenanalyse mit SPSS für Windows. 6. Auflage. Springer, 2007, S. 569.