Glaubwürdigkeitsintervall
In der Statistik ist ein Glaubwürdigkeitsintervall, auch Kredibilitätsintervall genannt, das bayessche Pendant zum Konfidenzintervall in der frequentistischen Statistik. Bayessche Intervallschätzer werden von der A-Posteriori-Verteilung abgeleitet. Um sie von den Konfidenzintervallen zu unterscheiden, die eine andere Interpretation haben, werden sie Glaubwürdigkeitsintervalle genannt. Das Glaubwürdigkeitsintervall besagt, dass der unbekannte Parameter mit Wahrscheinlichkeit in diesem Intervall liegt.
Definition
[Bearbeiten | Quelltext bearbeiten]Für ein fest vorgegebenes ist ein -Glaubwürdigkeitsintervall für zum Glaubwürdigkeitsniveau (auch: ein -Glaubwürdigkeitsintervall) durch zwei reelle Zahlen und definiert, welche[1]
erfüllen. Hierbei stellt die A-Posteriori-Verteilung dar.
Der einfachste Weg zur Konstruktion eines Glaubwürdigkeitsintervall besteht darin, die Gewichte in den Rändern der A-Posteriori-Verteilung symmetrisch zu konstruieren: als das -Quantil und als das -Quantil der A-Posteriori-Verteilung. Um solche Glaubwürdigkeitsintervalle zu berechnen, muss man die Quantile der A-Posteriori-Verteilung berechnen.
Interpretation
[Bearbeiten | Quelltext bearbeiten]Da der unbekannte Parameter eine Zufallsvariable ist, kann man sagen, dass in einem -Glaubwürdigkeitsintervall mit Wahrscheinlichkeit liegt.[1] Im Gegensatz zu dieser Interpretation besagt ein Konfidenzintervall, dass wenn man das Zufallsexperiment auf identische Art und Weise wiederholt, dann wird ein -Konfidenzintervall den unbekannten Parameter in aller Fälle überdecken.
Siehe auch
[Bearbeiten | Quelltext bearbeiten]Einzelnachweise
[Bearbeiten | Quelltext bearbeiten]- ↑ a b Leonhard Held, Daniel Sabanés Bové: Applied Statistical Inference: Likelihood and Bayes. Springer, Heidelberg / New York / Dordrecht / London 2014, ISBN 978-3-642-37886-7, S. 172.