Regel der Mittelzahlen
Die Regel der Mittelzahlen, französisch regle des nombres moyens, ist ein mathematischer Lehrsatz aus dem Gebiet der Analysis, welcher dem französischen Mathematiker Nicolas Chuquet zugerechnet wird. Der Satz beinhaltet zwei elementare Ungleichungen der Bruchrechnung über die Beziehung der so genannten Mediante zu ihren Ausgangsbrüchen.[1][2][3]
Formulierung der Regel
[Bearbeiten | Quelltext bearbeiten]Hat man auf der Zahlengeraden zwei Brüche mit positiven Nennern und bildet man dazu einen dritten Bruch, dessen Zähler gleich der Summe der Zähler und dessen Nenner gleich der Summe der Nenner der beiden gegebenen Brüche ist, so liegt dieser dritte Bruch stets zwischen den beiden gegebenen Brüchen.
Formelhaft ausgedrückt:
Für vier reelle Zahlen mit folgen aus der Ungleichung stets die Ungleichungen .[4]
Entsprechendes gilt auch, wenn anstelle des Kleinerzeichens das Kleiner-gleich-Zeichen vorliegt.
Geometrisch lässt sich die Regel folgendermaßen interpretieren:
Die Steigung der Strecke liegt stets zwischen der Steigung der Strecke und der Steigung der Strecke (Figur 1).[5][6]
Beispiel
[Bearbeiten | Quelltext bearbeiten]Für gilt und daher
- .
Erläuterungen und Anmerkungen
[Bearbeiten | Quelltext bearbeiten]- Man nennt den oben auftretenden mittleren Bruch die Mediante der beiden Ausgangsbrüche und .[3]
- Beginnend mit den beiden Brüchen und gelangt man durch sukzessive Bildung von Medianten zu einer typischen Farey-Folge.[3]
- Wie im Lexikon bedeutender Mathematiker ausdrücklich hervorgehoben wird, hat Nicolas Chuquet die Regel der Mittelzahlen als eigene Entdeckung beansprucht.[1]
Quellen
[Bearbeiten | Quelltext bearbeiten]- Howard Eves: An Introduction to the History of Mathematics (= The Saunders Series). 5. Auflage. Saunders College Publishing, Philadelphia et al. 1983, ISBN 0-03-062064-3, S. 214 (MR0684360).
- Siegfried Gottwald, Hans-Joachim Ilgauds und Karl-Heinz Schlote (Hrsg.): Lexikon bedeutender Mathematiker. Verlag Harri Deutsch, Thun 1990, ISBN 3-8171-1164-9, S. 103–104 (MR1089881).
- Guido Walz [Red.]: Lexikon der Mathematik in sechs Bänden. Dritter Band. Inp bis Mon. Spektrum Akademischer Verlag, Heidelberg, Berlin 2001, ISBN 3-8274-0436-3.
Einzelnachweise
[Bearbeiten | Quelltext bearbeiten]- ↑ a b Siegfried Gottwald et al. (Hrsg.): Lexikon bedeutender Mathematiker. 1990, S. 104
- ↑ Howard Eves: An Introduction to the History of Mathematics. 1983, S. 214
- ↑ a b c Guido Walz [Red.]: Lexikon der Mathematik. Dritter Band. 2001, S. 397
- ↑ In Eves Introduction to the History of Mathematics wird die Positivität der vier Zahlen vorausgesetzt, während im Lexikon bedeutender Mathematiker hierzu keine Voraussetzungen genannt sind. Jedenfalls muss der mögliche Fall ausgeschlossen werden. Unproblematisch ist der Sachverhalt dann, wenn als Konvention angenommen wird, dass das Vorzeichen eines Bruchs grundsätzlich Bestandteil des Zählers ist, also stets ein positiver Nenner vorliegt.
- ↑ Roger B. Nelsen: Beweise ohne Worte, Deutschsprachige Ausgabe herausgegeben von Nicola Oswald, Springer Spektrum, Springer-Verlag Berlin Heidelberg 2016, ISBN 978-3-662-50330-0, Seite 143
- ↑ Richard A. Gibbs: Proof without Words: The Mediant Property, Mathematics Magazine, Volume 63, Issue 3 (June 1990), Page 172, DOI:10.1080/0025570X.1990.11977511