N-Bromsuccinimid
Strukturformel | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Allgemeines | |||||||||||||||||||
Name | N-Bromsuccinimid | ||||||||||||||||||
Andere Namen |
| ||||||||||||||||||
Summenformel | C4H4BrNO2 | ||||||||||||||||||
Kurzbeschreibung |
farblose, orthorhombische Kristalle[1] | ||||||||||||||||||
Externe Identifikatoren/Datenbanken | |||||||||||||||||||
| |||||||||||||||||||
Eigenschaften | |||||||||||||||||||
Molare Masse | 177,99 g·mol−1 | ||||||||||||||||||
Aggregatzustand |
fest[1] | ||||||||||||||||||
Dichte |
2,10 g·cm−3[2] | ||||||||||||||||||
Schmelzpunkt | |||||||||||||||||||
Dampfdruck | |||||||||||||||||||
Löslichkeit |
| ||||||||||||||||||
Sicherheitshinweise | |||||||||||||||||||
| |||||||||||||||||||
Thermodynamische Eigenschaften | |||||||||||||||||||
ΔHf0 |
−335,9 kJ/mol[5] | ||||||||||||||||||
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen (0 °C, 1000 hPa). |
N-Bromsuccinimid, meist kurz als NBS bezeichnet, ist das am Stickstoff bromierte Imid der Bernsteinsäure.
Gewinnung und Darstellung
[Bearbeiten | Quelltext bearbeiten]NBS kann durch Bromierung von Succinimid mit elementarem Brom in Gegenwart von einem Natronlauge/Eis Gemisch hergestellt werden. Die Ausbeute beträgt dabei bis zu 81 %.[6]
Eigenschaften
[Bearbeiten | Quelltext bearbeiten]N-Bromsuccinimid ist ein weißes, kristallines Pulver, das schwach bromartig riecht.[4] Es ist in Wasser wenig, aber in den meisten organischen Lösungsmitteln gut löslich.
Lösungsmittel | Löslichkeit (in Ma%) |
---|---|
Dichlormethan | 2 |
Ethylacetat | 3 |
N,N-Dimethylformamid | >30 |
Acetonitril | 16 |
Methylethylketon | 6 |
Tetrahydrofuran | 9 |
2-Methyltetrahydrofuran | 3 |
Einige Lösungsmittel, wie Tetrahydrofuran, N,N-Dimethylformamid, N,N-Dimethylacetamid, N,N-Dimethylpropionamid, N-Methyl-2-pyrrolidon und Ethylacetat sind gegenüber NBS nicht inert und gehen bei erhöhter Temperatur exotherme Reaktionen ein.[8][9] Mit 2-Methyltetrahydrofuran kann schon bei Temperaturen kurz oberhalb von Raumtemperatur eine Zersetzungsreaktion anlaufen.[10] NBS ist nicht stabil und sollte unter Lichtausschluss bei 2–8 °C gelagert werden. Bei starker mechanischer und/oder thermischer Beanspruchung kann NBS explosionsartig in Brom und nitrose Gase zerfallen. Eine DSC-Messung zeigt ab 252 °C eine stark exotherme Zersetzungsreaktion mit einer Wärmetönung von −393 kJ·kg−1 bzw. −70 kJ·mol−1.[10]
Aufgrund der relativ zum Brom höheren Elektronegativität des Stickstoffs, noch verstärkt durch die beiden nebenstehenden Carbonylgruppen, ist die N–Br-Bindung polarisiert. Dabei ist das Brom Träger einer partiell positiven Ladung und kann leicht abgespalten werden. Daher wird NBS in der organischen Chemie vielseitig verwendet.
Verwendung
[Bearbeiten | Quelltext bearbeiten]In der Fachliteratur werden im Wesentlichen drei Anwendungen beschrieben:
- Regioselektive Bromierung
NBS reagiert im Licht mit allylischen und benzylischen Protonen unter Substitution. Diese Reaktion ist als Wohl-Ziegler-Reaktion bekannt. Elementares Brom reagiert hingegen unter Addition mit den zugehörigen Alkenen oder unter Kernsubstitution mit den Aromaten.
- Oxidation
NBS in wässrigem Dioxan ist ein außerordentlich selektives Oxidationsmittel. Im Gegensatz zu Reagenzien wie dem Cornforth-Reagenz (PDC) und Pyridiniumchlorochromat (PCC) werden sekundäre Alkohole bevorzugt vor primären Alkoholen in sehr guten Ausbeuten oxidiert.
- Bromhydrin-Bildung
Alkene reagieren in wässrigem Dimethylsulfoxid (DMSO) mit NBS unter Bildung von Bromhydrinen (Dalton-Reaktion). Diese sind wichtige Edukte für die Bildung von Epoxiden. In wasserfreiem DMSO erhält man hingegen Bromketone. Aus Enolethern entstehen α-Bromcarbonsäureester, die Edukte für die wichtige Reformatzki-Reaktion sein können.
In der Literatur werden zahlreiche andere Verwendungen beschrieben.
Literatur
[Bearbeiten | Quelltext bearbeiten]- S. C. Virgil: Übersicht. In: Leo A. Paquette (Hrsg.): Encyclopedia of Reagents for Organic Synthesis. Band 1: A - Bru. Wiley, New York 1995, S. 768.
- V. Canibano u. a.: Mild Regioselective Halogenation of Activated Pyridines with N-Bromosuccinimide. In: Synthesis. Nr. 14, 2001, S. 2175. doi:10.1055/s-2001-18070.
- Übersicht: Jeffrey B. Arterburn: Selective oxidation of secondary alcohols. In: Tetrahedron. Band 57, Nr. 49, Dezember 2001, S. 9765–9788, doi:10.1016/S0040-4020(01)01009-2.
- A. Kamal, G. Chouhan: Mild and efficient chemoselective protection of aldehydes as dithioacetals employing Nbromosuccinimide. In: Synlett. Nr. 3, 2002, S. 474. doi:10.1055/s-2002-20469.
- Louis Frederick Fieser, Mary Fieser: Reagents for Organic Synthesis. Band 12, New York 1986, ISBN 0-471-83469-6, S. 79.
Einzelnachweise
[Bearbeiten | Quelltext bearbeiten]- ↑ a b c d Eintrag zu N-Bromsuccinimid. In: Römpp Online. Georg Thieme Verlag, abgerufen am 21. Mai 2014.
- ↑ a b c d e Eintrag zu N-Bromsuccinimid in der GESTIS-Stoffdatenbank des IFA, abgerufen am 20. Januar 2022. (JavaScript erforderlich)
- ↑ Registrierungsdossier zu N-bromosuccinimide (Abschnitt Vapour pressure) bei der Europäischen Chemikalienagentur (ECHA), abgerufen am 13. Juni 2017.
- ↑ a b e-EROS Encyclopedia of Reagents for Organic Synthesis, 1999–2023, John Wiley and Sons, Inc., Eintrag für N-Bromosuccinimide, abgerufen am 8. Oktober 2014.
- ↑ David R. Lide (Hrsg.): CRC Handbook of Chemistry and Physics. 90. Auflage. (Internet-Version: 2010), CRC Press / Taylor and Francis, Boca Raton FL, Standard Thermodynamic Properties of Chemical Substances, S. 5-25.
- ↑ Organikum. 24. Auflage. Wiley-VCH, Weinheim 2015, ISBN 978-3-527-33968-6, S. 756.
- ↑ Masahiro Hosoya; Kenichi Ishibashi; Takafumi Ohara; Atsunori Mori; Kentaro Okano: Catalytic Activity of Triphenylphosphine for Electrophilic Aromatic Bromination Using N-Bromosuccinimide and Process Safety Evaluation in Org. Process Res. Dev. 28 (2024) 3903–3912, supporting infomation, doi:10.1021/acs.oprd.4c00307.
- ↑ Sumio Shimizu, Yoshiaki Imamura, Tatsuo Ueki: Incompatibilities between N‑Bromosuccinimide and Solvents. In: Org. Process Res. Dev. Band 18, 2014, S. 354–358, doi:10.1021/op400360k.
- ↑ Elsa M. Gonçalves,* Nuno Lousa Pereira, Filipe Estanislau, Pedro Serra Carvalho: Hazards of a N‑Bromosuccinimide Solution in N,N–Dimethylformamide. In: Org. Process Res. Dev. Band 27, 2023, S. 1975–1983, doi:10.1021/acs.oprd.3c00104.
- ↑ a b Mingxing Guan; Yingtao Tian; Jibin Zhao; Xingxian Gu; Xigui Jiang; Xufan Wang; Yongbo Zhang; Xingmin Zhang: Safe Scale-Up of an N-Bromosuccinimide Involved Bromination Reaction in Org. Process Res. Dev. 25 (2021) 1375–1382, doi:10.1021/acs.oprd.1c00074.