Fünfzehneck

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Pentadekagon)
Zur Navigation springen Zur Suche springen
Regelmäßiges Fünfzehneck
Regelmäßiges Fünfzehneck

Das Fünfzehneck oder Pentadekagon (von altgriechisch πεντεκαίδεκα pentekaídeka, deutsch ‚fünfzehn‘ und γωνία gōnía, deutsch ‚Winkel, Ecke‘)[1] ist eine geometrische Figur und ein Vieleck (Polygon). Es ist bestimmt durch fünfzehn Eckpunkte und deren fünfzehn Verbindungen namens Strecken, Seiten oder Kanten.

Das Fünfzehneck ist darstellbar als:

  • konkaves Fünfzehneck, in dem mindestens ein Innenwinkel größer als 180° ist. Ein Fünfzehneck kann höchstens sieben solche Winkel haben.
  • konvexes Fünfzehneck, in dem alle Innenwinkel kleiner als 180° sind. Ein konvexes Fünfzehneck kann regelmäßig oder unregelmäßig sein.
  • Sehnenfünfzehneck, in dem alle Ecken auf einem gemeinsamen Umkreis liegen, aber die Seitenlängen möglicherweise ungleich sind.
  • regelmäßiges Fünfzehneck: Es ist bestimmt durch fünfzehn Punkte auf einem virtuellen oder realen Kreis. Die benachbarten Punkte haben zueinander stets den gleichen Abstand und sind mittels aneinandergereihten Strecken, auch Seiten oder Kanten genannt, verbunden.
  • regelmäßiges überschlagenes Fünfzehneck: Es ergibt sich, wenn beim Verbinden der fünfzehn Eckpunkte jedes Mal mindestens einer übersprungen wird und die somit erzeugten Sehnen gleich lang sind. Notiert werden solche regelmäßigen Sterne mit Schläfli-Symbolen , wobei die Anzahl der Eckpunkte angibt und jeder -te Punkt verbunden wird.
Es gibt nur drei regelmäßige Fünfzehnstrahlsterne.
Die „Sterne“ mit den Symbolen {15/3} und {15/12} sind regelmäßige Fünfecke, {15/5} und {15/10} gleichseitige Dreiecke und {15/6} und {15/9} regelmäßige Pentagramme.

Regelmäßiges Fünfzehneck

[Bearbeiten | Quelltext bearbeiten]

Das regelmäßige Fünfzehneck ist nach Carl Friedrich Gauß und Pierre-Laurent Wantzel ein konstruierbares Polygon, da die Anzahl seiner Seiten als Produkt paarweise voneinander verschiedener Fermatscher Primzahlen () darstellbar ist.[2] Wie beim regelmäßigen Fünfeck ist der Goldene Schnitt der maßgebende Baustein für eine Konstruktion mit Zirkel und Lineal.

Größen eines regelmäßigen Fünfzehnecks
Innenwinkel

Größen des Fünfzehnecks

Zentriwinkel

(Mittelpunktswinkel)

Seitenlänge
Umkreisradius
Inkreisradius
Höhe
Flächeninhalt

Mathematische Zusammenhänge

[Bearbeiten | Quelltext bearbeiten]

Die allgemeine Formel für Polygone liefert:

Dieser Wert lässt sich auch durch folgende Überlegungen herleiten:

Das Fünfzehneck lässt sich in fünfzehn Dreiecke teilen, deren Seiten jeweils eine Seite des Fünfzehnecks und die Verbindungsstrecken seines Mittelpunktes mit den zwei Endpunkten der Seite sind. Die Winkel am Mittelpunkt des Fünfzehnecks addieren sich zu sein Zentriwinkel beträgt also Da die Winkelsumme in einem Dreieck immer beträgt und das Dreieck gleichschenklig und damit symmetrisch zur Halbierenden des Zentriwinkels ist, schließen die beiden unbekannten Winkel jeweils ein. Da das für alle fünfzehn Dreiecke gilt, addieren sich die beiden Winkel an einem Eckpunkt zu .

Der Zentriwinkel oder Mittelpunktswinkel wird von zwei benachbarten Umkreisradien eingeschlossen. In der allgemeinen Formel ist für die Variable die Zahl einzusetzen.

Seitenlänge und Umkreisradius

[Bearbeiten | Quelltext bearbeiten]

Wieder wird das Fünfzehneck in 15 kongruente Dreiecke zerlegt. Nimmt man die Hälfte eines solchen Dreiecks, also ein rechtwinkliges Dreieck mit den Seiten , und sowie mit dem halben Zentriwinkel so gilt

Aus dieser Beziehung folgt

Löst man nach auf, so erhält man

Algebraische Ausdrücke für bzw. finden sich in den Abschnitten Berechnung der Seitenlänge und Berechnung des Umkreisradius.

Auch der Inkreisradius lässt sich mithilfe eines halbierten Bestimmungsdreiecks ermitteln. Es ergibt sich

.

Durch Multiplikation mit erhält man

und weiter

wegen

gilt auch

Algebraische Ausdrücke für bzw. finden sich im Abschnitt Berechnung des Inkreisradius.

Die Höhe h eines regelmäßigen Fünfzehneckes ist die Summe aus In- und Umkreisradius, da die Verlängerung der Höhe eines Teilstückes über den Mittelpunkt des Fünfzehnecks hinaus auf einen Eckpunkt trifft.

Der Flächeninhalt eines Dreiecks berechnet sich zu . Für eines der 15 Bestimmungsdreiecke ist die Höhe gleich dem Inkreisradius . Der Flächeninhalt des gesamten Fünfzehnecks beträgt also

Zusammen mit dem in Berechnung des Inkreisradius hergeleiteten Ausdruck für folgt daraus

Konstruktion mit Zirkel und Lineal bei gegebenem Umkreis

[Bearbeiten | Quelltext bearbeiten]

In der hier dargestellten Konstruktion werden ein gleichseitiges Dreieck (Schritte 1–3) und die ersten vier Punkte eines regelmäßigen Fünfecks (Schritte 4–6) in den gegebenen Umkreis eingepasst. ist dann die Seite eines regelmäßigen Fünfzehnecks im gegebenen Umkreis. Diese Art der Konstruktion beschrieb schon Euklid in seinem Werk Elemente (Die Stoicheia) im IV Buch; die Konstruktionsdetails des Dreiecks und Fünfecks weichen jedoch von seiner Konstruktion ab.[3] Das Bestimmen der ersten Seite des Fünfzehnecks entspricht der Darstellung von Johannes Kepler[4].

bezeichnet die Strecke zwischen den Punkten und

Konstruktionsskizze
Konstruktionsskizze
Animation der Skizze
Animation der Skizze

Ist ein Kreis (der Umkreis um das entstehende Fünfzehneck) um den Mittelpunkt gegeben, lässt sich ein regelmäßiges Fünfzehneck konstruieren durch:

  1. Zeichnen eines Durchmessers; Schnittpunkte mit sind und
  2. Konstruktion eines Radius, der orthogonal zu steht; Schnittpunkt mit ist
  3. Konstruktion eines Kreisbogens um mit dem Radius ; Schnittpunkte mit sind und
  4. Zeichnen von ; Schnittpunkt mit ist
  5. Zeichnen eines Kreisbogens um mit dem Radius ; Schnittpunkt mit ist
  6. viermaliges Abtragen der Strecke auf ab entgegen dem Uhrzeigersinn; Schnittpunkte mit sind , , , und ; die Verbindung der Eckpunkte mit ergibt die erste Seite des entstehenden Fünfzehnecks
  7. achtmaliges Abtragen der Sehne von auf ab entgegen dem Uhrzeigersinn; die Schnittpunkte mit sind die restlichen Eckpunkte , , , , , , und des Fünfzehnecks
  8. Verbinden der so gefundenen Punkte.

Berechnung der Seitenlänge

[Bearbeiten | Quelltext bearbeiten]

Die in obiger Tabelle angegebene Formel für die Seitenlänge leitet sich wie folgt her:

Gleichseitiges Dreieck

(Umkreisradius)
nach Konstruktion, Schritt 3

Rechtwinkliges Dreieck

Es gilt nach dem Satz des Pythagoras:

Rechtwinkliges Dreieck

Es gilt nach dem Satz des Pythagoras:
nach Konstruktion, Schritt 5

Rechtwinkliges Dreieck

bezeichnet den von und eingeschlossenen Winkel :
Nach dem Satz des Thales ist das Dreieck rechtwinklig, wieder gilt nach dem Satz des Pythagoras:

Gleichschenkliges Dreieck

(Seitenlänge)
aus (4.4)
aus (4.5)

Zur Berechnung der Seitenlänge benötigt man den Wert von , der sich mithilfe der Additionstheoreme berechnen lässt:

Damit ergibt sich für die Seitenlänge:

Berechnung des Inkreisradius

[Bearbeiten | Quelltext bearbeiten]

Die in obiger Tabelle angegebene Formel für den Inkreisradius leitet sich wie folgt her:

Rechtwinkliges Dreieck

aus Mathematische Zusammenhänge, Inkreisradius
aus Berechnung der Seitenlänge (6.1)

Zur Berechnung des Inkreisradius benötigt man für den Term zuerst den Wert von der sich mithilfe der Additionstheoreme berechnen lässt:

Die folgende hergeleitete Beziehung lässt sich zur Umformung von Rechenausdrücken verwenden.

  denn es gilt

Zur abschließenden Berechnung des Inkreisradius wird nun der Wert von ermittelt.

  • Aus Gründen der besseren Übersicht sind acht dazwischenliegende Berechnungsschritte nur im Bearbeitungsmodus sichtbar!

Damit ergibt sich für den Inkreisradius


Konstruktion mit Zirkel und Lineal bei gegebener Seitenlänge

[Bearbeiten | Quelltext bearbeiten]

Die Konstruktion ist nahezu gleich mit der des Fünfecks bei gegebener Seitenlänge, auch darin gelingt die Darstellung mittels Verlängerung der Seite und einer damit generierten Strecke, hier die nach dem Goldenen Schnitt, äußere Teilung geteilt ist.

bezeichnet die Strecke zwischen den Punkten und

Konstruktionsskizze
Konstruktionsskizze
Animation der Skizze
Animation der Skizze

Ist eine Seite eines Fünfzehnecks gegeben, lässt sich ein regelmäßiges Fünfzehneck konstruieren durch:

  1. Bezeichnen der Streckenenden mit und ; beide sind Eckpunkte des entstehenden Fünfzehnecks
  2. Verlängern der Strecke ab um ca. einer Länge dieser Strecke
  3. Zeichnen eines Kreisbogens um mit dem Radius
  4. Konstruktion einer Senkrechten zur Strecke ab ; Schnittpunkt mit dem Kreisbogen um ist
  5. Zeichnen eines Kreisbogens um mit dem Radius ; Schnittpunkte mit Kreisbogen um sind und
  6. Zeichnen einer geraden Linie ab durch (Mittelsenkrechte von ), die etwas mehr als dreimal so lang wie ist; Schnittpunkt mit ist
  7. Zeichnen eines Kreisbogens um mit dem Radius ; Schnittpunkt mit Verlängerung der Strecke ist
  8. Zeichnen eines Kreisbogens um mit dem Radius ; Schnittpunkt mit der geraden Linie (ab durch ) ist
  9. Zeichnen eines kurzen Kreisbogens um mit dem Radius ; Schnittpunkt mit Verlängerung der Strecke ist , der Mittelpunkt des Umkreises des entstehenden Fünfzehnecks
  10. Zeichnen des Umkreises um mit dem Radius ; Schnittpunkt mit dem Kreisbogen um ist Eckpunkt
  11. elfmaliges Abtragen der Sehne von auf ; Schnittpunkte mit sind die Eckpunkte des Fünfzehnecks
  12. Verbinden der so gefundenen Eckpunkte.

Berechnung des Umkreisradius

[Bearbeiten | Quelltext bearbeiten]

Die in obiger Tabelle angegebene Formel für den Umkreisradius leitet sich wie folgt her:

(Seitenlänge)

Rechtwinkliges Dreieck

Es gilt nach dem Satz des Pythagoras:
nach Konstruktion, Schritt 7

nach Konstruktion, Schritt 8

Rechtwinkliges Dreieck

Es gilt nach dem Satz des Pythagoras:

Rechtwinkliges Dreieck

Es gilt nach dem Satz des Pythagoras:

Nach Konstruktion, Schritt 9 gilt für den Umkreisradius

Der Goldene Schnitt im Fünfzehneck

[Bearbeiten | Quelltext bearbeiten]

Sowohl in der Konstruktion bei gegebenem Umkreis als auch in der bei gegebener Seitenlänge wird der Goldene Schnitt zur Bestimmung von Konstruktionselementen verwendet.

Teil der Konstruktionsskizze bei gegebenem Umkreis
Teil der Konstruktionsskizze bei gegebenem Umkreis
Teil der Konstruktionsskizze bei gegebener Seitenlänge
Teil der Konstruktionsskizze bei gegebener Seitenlänge
  • In der Konstruktion bei gegebenem Umkreis teilt der Punkt die Strecke im Verhältnis des Goldenen Schnittes:
  • In der Konstruktion bei gegebener Seitenlänge wird die Seite derart verlängert, dass sie die längere Strecke des Verhältnisses ist:

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Wilhelm Pape, Max Sengebusch (Bearb.): Handwörterbuch der griechischen Sprache. 3. Auflage, 6. Abdruck. Vieweg & Sohn, Braunschweig 1914 (zeno.org [abgerufen am 2. Juli 2024]).
  2. Jürgen Köller: Regelmäßiges Vieleck. In: Mathematische Basteleien. 2005, abgerufen am 4. Oktober 2015.
  3. Johann Karl Friedrich Hauff: EUKLIDS ELEMENTE. DAS ERSTE BIS ZUM SECHSTEN, SAMMT DEM EILFTEN UND ZWOELFTEN BUCHE. neue academische Buchhandlung, Marburg 1807, S. 129 f. (eingeschränkte Vorschau in der Google-Buchsuche).
  4. Johannes Kepler: WELT-HARMONIK. XLIV. Satz., Seite des Fünfzehnecks, Seite 44, aus dem Internet Archive regeneriert. In: Google Books. R. OLDENBURG VERLAG 2006, übersetzt und eingeleitet von MAX CASPAR 1939, S. 401, abgerufen am 19. Juli 2019.