Quadratisches Mittel

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Root mean square)
Zur Navigation springen Zur Suche springen

Das quadratische Mittel (oder der quadratische Mittelwert QMW, englisch: root mean square RMS) ist derjenige Mittelwert, der berechnet ist als Quadratwurzel des Quotienten aus der Summe der Quadrate der beachteten Zahlen und ihrer Anzahl.

Die zwei Zahlen 1 und 2 haben z. B. den quadratischen Mittelwert [1] (arithmetisches Mittel = 1,5;  die größere Zahl 2 wird beim quadratischen Mittel stärker bewertet).

Wegen der Quadrierung wird das quadratische Mittel auch zweites (absolutes) Moment genannt. Das „dritte Moment“ wäre die Mittelung in der dritten Potenz (auch kubisches Mittel genannt) usw.

Für die Berechnung des QMW einer Zahlenreihe werden zunächst die Quadrate aller Zahlenwerte addiert und durch ihre Anzahl n dividiert. Die Quadratwurzel daraus ergibt den QMW:

.[2]

Aus geometrischer Sicht ermittelt man aus der Zahlenreihe Quadrate und aus ihnen ein Quadrat durchschnittlicher Fläche bzw. mittlerer Größe (der Radikand unter der Wurzel). Die Wurzel bzw. Seitenlänge dieses Quadrates ist das quadratische Mittel der Zahlenreihe bzw. der Seitenlängen aller Quadrate.

Für fortlaufend vorhandene Größen muss über den betrachteten Bereich integriert werden:

 ;[3]

bei periodischen Größen, beispielsweise dem sinusförmigen Wechselstrom, integriert man über eine Anzahl von Perioden.

In der Technik hat das quadratische Mittel große Bedeutung bei periodisch veränderlichen Größen wie dem Wechselstrom, dessen Leistungsumsatz an einem ohmschen Widerstand (Joulesche Wärme) mit dem Quadrat der Stromstärke ansteigt. Man spricht hier vom Effektivwert des Stromes. Der gleiche Zusammenhang gilt bei zeitlich veränderlichen elektrischen Spannungen.

Bei einer Wechselgröße mit Sinusform beträgt der QMW das -fache des Scheitelwerts, also ca. 70,7 %.

Weiß man nichts über den zeitlichen Verlauf der auftretenden Schwankungen, so sollte aus dem Zusammenhang, in dem die Mittelwertbildung vorzunehmen ist, bekannt sein, ob eher der Gleichwert (z. B. bei Elektrolyse) oder der Effektivwert (z. B. bei Licht und Wärme) aussagekräftig ist.

Veranschaulichung im Trapez

[Bearbeiten | Quelltext bearbeiten]
Figur 1
Figur 2
Figur 3

Eine Strecke der Länge sei parallel zur Grundseite eines Trapezes und teile dieses in zwei flächengleiche Teil-Trapeze (). Dann ist das quadratische Mittel aus den Längen seiner parallelen Grundseiten (Figur 1). Das quadratische Mittel kann konstruktiv einfach anhand der Darstellung des Bildes in der Einleitung bestimmt werden (Figur 2). Die Strecke verläuft parallel zu

Der Beweis verwendet Figur 3.

Aus dem Strahlensatz folgt

.

Wegen

erhält man

und damit

,

also

.

Folglich ist das quadratische Mittel von und .[4]

Ungleichung zwischen dem arithmetischen und dem quadratischen Mittel

[Bearbeiten | Quelltext bearbeiten]

Für

für

folgt aus dem Spezialfall

der Cauchy-Schwarzschen Ungleichung die Ungleichung

.

Nach einer elementaren algebraischen Umformung ergibt sich

und damit

Diese Ungleichung sagt aus, dass das arithmetische Mittel stets kleiner gleich dem quadratischen Mittel ist.[5]

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Horst Hirscher, Anselm Lambert: Was ist ein numerischer Mittelwert. Universität des Saarlandes, 2003, S. 28, abgerufen am 25. Mai 2022.
  2. K. Steffen: Mathematik für Wirtschaftswissenschaftler. 1.5 Mittelwerte. Heinrich-Heine-Universität Düsseldorf, 2006, S. 63, abgerufen am 25. Mai 2022.
  3. R. Brigola: Ein kleines Einmaleins über Mittelwertbildungen. Quadratische Mittel. Stiftung Studium Wissenschaft Kunst, S. 9, abgerufen am 9. August 2022.
  4. Mathezirkel der TU Darmstadt
  5. Claudi Alsina, Roger B. Nelsen: Perlen der Mathematik - 20 geometrische Figuren als Ausgangspunkte für mathematische Erkundungsreisen, Springer Spektrum, Springer-Verlag GmbH Berlin 2015, ISBN 978-3-662-45460-2, Seiten 20 und 262 (o. B. d. A. wird hier der Fall betrachtet.)