Schmerzempfinden von Tieren

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Schmerzempfinden bei Tieren)
Zur Navigation springen Zur Suche springen
Ein Galapagoshai wird mit einer Langleine fixiert.

Als Schmerzempfinden von Tieren kann in Anlehnung an Manfred Zimmermann ein aversives Sinneserlebnis bezeichnet werden,

„das durch tatsächliche oder drohende Verletzung ausgelöst wird, motorische und vegetative Schutzreaktionen hervorruft, zu erlernter Vermeidung führt und möglicherweise artspezifisches Verhalten ändert, einschließlich das Sozialverhalten.“

Zimmermann: [1][Anm. 1]

Diese Definition folgt jener für das Empfinden von Schmerz bei Menschen, was von der Internationalen Gesellschaft zur Erforschung des Schmerzes (IASP) beschrieben wird als „ein unangenehmes Sinnes- und Gefühlserlebnis, das mit einer tatsächlichen oder drohenden Gewebeschädigung verknüpft ist, oder mit Begriffen einer solchen Schädigung beschrieben wird.“[2] Herauszufinden, ob bei Tieren ebenfalls ein solches Gefühlserlebnis auftritt, ist allerdings nicht möglich. Daher wird der Verweis auf Gefühlserlebnisse in der Regel in den Definitionen von Schmerzempfinden bei Tieren ausgeschlossen.

Das Standardmaß von Schmerz bei einem Menschen ist dessen eigene Aussage, denn nur er kennt die Qualität und Intensität des Schmerzes und den Grad des Leidens. Tiere ohne Sprechvermögen können ihr Befinden nicht mitteilen. Ob sie sich bewusst und imstande sind zu leiden, war Gegenstand zahlreicher Erörterungen, nachdem bis in die 1980er Jahre Studenten gelehrt wurde, dass Tiere keinen Schmerz empfinden würden.[3]

Es bestehen zwei entscheidende Komponenten zum Schmerz: die sensorische Komponente (Nozizeptor) und der aversive, negativ affektive Zustand. Der Nozizeptor ermöglicht das Erkennen von schädlichen Reizen und die anschließende reflexartige Reaktion, den ganzen Körper oder einen Teil davon von der Reizquelle wegzubewegen. Diese Eigenschaft kann bei allen großen Taxa beobachtet werden.[4] Nozizeption kann mittels moderner bildgebender Verfahren beobachtet werden und es kann eine physiologische und verhaltensbezogene Reaktion auf Nozizeption nachgewiesen werden. Allerdings gibt es derzeit keine objektive Maßeinheit für Leiden.

Die Idee, dass Tiere möglicherweise nicht wie Menschen Schmerzen oder Leid erleben können, geht mindestens bis ins Frankreich des 17. Jahrhunderts zurück. Der französische Philosoph René Descartes unterstellte Tieren damals ein mangelndes Bewusstsein.[5][6][7]

Die Forscher waren sich noch in den 1980er Jahren unsicher darüber, ob Tiere Schmerz empfinden können. In den USA ausgebildeten Veterinären wurde vor 1989 noch beigebracht, dass Tiere keinen Schmerz empfinden können.[8] Während seiner Diskussionen mit anderen Wissenschaftlern und Tierärzten wurde Bernard Rollin (Colorado State University) regelmäßig aufgefordert zu beweisen, dass Tiere ein Bewusstsein haben und „wissenschaftlich akzeptable“ Grundlagen für die Behauptung zu liefern, Tiere besäßen ein Schmerzempfinden.[8] Einige Autoren sind der Ansicht, dass die Behauptung, Tiere empfänden Schmerz anders als Menschen, mittlerweile eine Mindermeinung darstelle.[5] Akademische Reviews zum Thema sind eher fragwürdig und dennoch ist es wahrscheinlich, dass einige Tiere zumindest einfache bewusste Gedanken und Gefühle haben.[9] Ein paar Autoren beschäftigen sich weiterhin mit der Frage, wie verlässlich die Befindlichkeit von Tieren bestimmt werden kann.[6][10] Viele Effektive Altruisten sehen die Reduzierung von Tierleid als eine wichtige moralische Priorität.[11]

Anhaltspunkte für Schmerzempfinden

[Bearbeiten | Quelltext bearbeiten]

Die Fähigkeit der Schmerzempfindung bei Tieren kann nicht direkt bestimmt werden. Allerdings kann sie mittels physiologischer und verhaltensbezogener Reaktionen abgeleitet werden.[12] Einige Anzeichen, die auf das Vorhandensein von Schmerzempfinden hinweisen können, sind folgende:[13]

Einige Forschungen gehen davon aus, dass wenigstens echte Knochenfische vergleichbares Schmerzempfinden haben wie Landwirbeltiere.[14] Diese Studien sind aber umstritten[15], auch da sie allgemeinen Schwierigkeiten unterliegen, über Geisteszustände bei anderen Tieren und Schmerzempfinden wissenschaftliche Aussagen zu machen.[16]

Neben der bereits gesetzlich zuerkannten Leidensfähigkeit von Fischen wird von der Rechtsprechung ebenso anerkannt, dass Fische diese Fähigkeit auch tatsächlich besitzen. Sie stützt sich dabei auf die seit mehr als zwei Jahrzehnten durchgeführten sinnesphysiologischen Untersuchungen von Fischen und die einhellige Meinung von Fachwissenschaftlern.[17]

Experimente haben gezeigt, dass Froschfische gegrunzt haben, wenn sie elektrischen Reizen ausgesetzt waren. Mit der Zeit grunzten sie bei bloßem Sichtkontakt mit einer Elektrode.[18]

2003 haben Wissenschaftler der University of Edinburgh nach weiteren Forschungen mit Regenbogenforellen geschlussfolgert, dass Fische oft Verhalten zeigen, das mit Schmerz in Verbindung gebracht wird. Ebenso setze das Gehirn der Fische Neurotransmitter in derselben Weise wie bei Menschen frei, wenn Schmerz empfunden wird.[19][20] Die Forschung wurde jedoch kritisiert, die Reaktionen der Fische könnten auch andere Ursachen haben, vor allem unter dem Gesichtspunkt, dass ihre Gehirne anders funktionierten und sie womöglich nicht dasselbe Bewusstsein wie der Mensch besitzen.[21]

Eine Studie aus Norwegen aus dem Jahr 2009 schlussfolgert, dass Goldfische Schmerz empfinden können und dass ihre Reaktionen denen von Menschen ähneln.[22] Die Wissenschaftler führen aus, dass die Meinung vertreten wird, dass die Reaktionen von Fischen auf einen schmerzhaften Reiz lediglich eine reflexartige Handlung darstelle, jedoch kein Schmerzempfinden. Schwerpunkt der Forschung war es daher, herauszufinden, ob Fische auf Reize nur reflexartig oder doch auf raffiniertere Weise reagieren. Einer Gruppe von Fischen gab man daher Morphium, der anderen Kochsalzlösung. Anschließend wurden sie unangenehmen Temperaturen ausgesetzt, wobei die Fische mit Kochsalzlösung mit Verteidigungsverhalten reagierten, was als Angst und erhöhte Aufmerksamkeit gedeutet wird. Die Fische mit Morphium zeigten keine Reaktion. Die Wissenschaftler schlossen daraus, dass Fische auf schmerzhafte Reize sowohl mit reflexartigem, als auch mit bewusstem Schmerz reagierten.[23]

Nozizeption ist die unbewusst auftretende Erkenntnis des Nervensystems, dass irgendwo im Körper Schmerz auftritt. Nozizeptoren sind sensorische Rezeptoren, die auf mögliche schädigende Reize reagieren. Sie senden dazu Signale über die Nerven an Rückenmark und Gehirn. 2003 wurde durch Lynne Sneddon von der University of Chester die Präsenz von Nozizeptoren in Gesicht und Maul von Forellen nachgewiesen.[24]

Obwohl behauptet wurde, die meisten wirbellosen Tiere hätten kein Schmerzempfinden,[25][26][27] gibt es einige Hinweise darauf, dass Wirbellose, vor allem Krebstiere (z. B. Krabben und Hummer) und Kopffüßer (z. B. Tintenfische), entsprechende verhaltensbiologische und physiologische Reaktionen aufweisen. Dies weist darauf hin, dass sie möglicherweise einer solchen Empfindung fähig sind.[28][29][30] Nozizeptoren wurden in Fadenwürmern, Ringelwürmern und Weichtieren entdeckt.[31] Die meisten Insekten besitzen keine Nozizeptoren;[32][33][34] eine bekannte Ausnahme bildet die Fruchtfliege.[35] Bei Wirbeltieren werden zur Schmerzlinderung endogene Opioide ausgeschüttet, die mit Opiatrezeptoren interagieren. Opioidpeptide und Opiatrezeptoren sind von Natur aus in Fadenwürmern,[36][37] Weichtieren,[38][39] Insekten[40][41] und Krebstieren vorhanden.[42][43] Das Vorkommen von Opioiden bei Krebstieren wurde dahingehend interpretiert, dass Hummer möglicherweise die Fähigkeit besitzen, Schmerz zu erleben,[44][45] wenngleich behauptet wurde, dass momentan daraus noch keine Schlussfolgerung gezogen werden könne.[44]

Eines der Argumente dafür, wirbellosen Tieren Schmerzempfinden abzusprechen, ist, dass deren Gehirne dafür zu klein seien. Allerdings entspricht die Größe des Gehirns nicht unbedingt der Komplexität.[46] Zudem ist das Gehirn des Kopffüßers im Verhältnis Gehirnmasse zu Körpergewicht genauso groß wie das von Wirbeltieren, kleiner als das von Vögeln und Säugetieren, aber ebenso groß wie oder größer als das der meisten Fische.[47][48]

Die Frage, ob Krebstiere Schmerz empfinden können oder nicht, ist noch nicht geklärt. Eine Veröffentlichung führt aus, dass die Opioide bei Hummern womöglich auf dieselbe Weise wie bei Wirbeltieren Schmerz unterdrücken.[45] Morphiuminjektionen bei Krabben verringerten bei diesen die Reaktion auf Elektroschocks. Dieser Effekt ließ bei geringerer Injektionsmenge und größeren Zeitabständen zwischen Injektion und Reiz nach.[42] Auch Hummer reagieren nach der Verabreichung von Schmerzmitteln abgeschwächt auf Reize.[49]

Medizin und Forschung

[Bearbeiten | Quelltext bearbeiten]

Veterinärmedizin

[Bearbeiten | Quelltext bearbeiten]

In der Veterinärmedizin werden den Tieren bei tatsächlichem oder drohendem Schmerz dieselben Analgetika und Anästhetika verabreicht wie dem Menschen.[50]

Dolorimetrie (dolor: lat. für Schmerz) bezeichnet eine Messmethode zur Schmerzreaktion bei Tieren und Menschen. In der Medizin wird sie gelegentlich zur Diagnose verwendet, in der Forschung regelmäßig zur Erforschung des Schmerzes und der Effizienz von Analgetika. Techniken zur Schmerzmessung bei nicht-menschlichen Tieren sind etwa der Randall-Selitto-Test, der Tail-Flick-Test und der hot plate test.

Tiere werden aus vielerlei Gründen zu Tierversuchen in Laboratorien gehalten. Dabei werden den Tieren in einigen Fällen Schmerz, Leid oder Qualen zugefügt. In anderen Fällen (z. B. einige, die mit Zucht zusammenhängen) nicht. Die Frage nach dem Ausmaß und danach, welche Versuche Labortieren Schmerz bereiten, ist Gegenstand zahlreicher Debatten.[51]

Marian Stamp Dawkins von der Universität von Oxford definiert Leid bei Labortieren als eine Erfahrung unter „einer breiten Palette an extrem unangenehmen subjektiven (mentalen) Zuständen.“[52] Das US-Landwirtschaftsministerium definiert „schmerzhafte Prozedur“ in einer Studie über Tiere als eine Prozedur, die „aller Voraussicht nach mehr als geringfügigen oder vorübergehenden Schmerz oder Leid bei einem Menschen, der dieser Prozedur unterzogen werden würde, auslösen würde.“[53] Ein paar Kritiker wenden ein, dass in der Zeit erhöhter Aufmerksamkeit gegenüber dem Tierschutz aufgewachsene Forscher dazu neigen, ein ähnliches Schmerzempfinden bei Tieren zu leugnen. Dies komme daher, weil sie nicht als diejenigen gelten wollen, die ihnen den Schaden zufügen.[54]

Belastungstabellen

[Bearbeiten | Quelltext bearbeiten]

2011 gab es in elf Ländern Belastungstabellen, um Schmerz und Leid von Tieren in der Forschung zu klassifizieren: Australien, Kanada, Finnland, Deutschland, Irland, Niederlande, Neuseeland, Polen, Schweden, Schweiz, und Großbritannien. In den USA gibt es ebenfalls auf nationaler Ebene ein solches Klassifizierungssystem, das sich jedoch merklich von den anderen unterscheidet, da es angibt, ob schmerzlindernde Mittel benötigt wurden und/oder verabreicht wurden.[55]

Die ersten Belastungstabellen wurden 1986 in Finnland und Großbritannien eingeführt. Der Grad an Schmerz wird in Kategorien zwischen drei (Schweden und Finnland) und 9 (Australien) bewertet. In Großbritannien werden Forschungsprojekte verbunden mit Tierleiden als mild („mild“), mäßig („moderate“) und erheblich („substantial“) eingestuft. Nicht klassifiziert („unclassified“) bildet eine vierte Kategorie und bedeutet, dass das Tier anästhesiert und getötet wurde, ohne das Bewusstsein wiedererlangt zu haben.

Das Charité-Krankenhaus in Berlin hält zur Kategorisierung ein ausführliches Merkblatt bereit. Darin wird Tierleid in vier Kategorien unterteilt: Keine Belastung, Geringe Belastung, Mäßige Belastung und Erhebliche Belastung.[56]

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. M. Zimmerman: Physiological mechanisms of pain and its treatment. In: Klinische Anaesthesiol Intensivether. 1986, S. 32: 1–19.
  2. Was ist eigentlich Schmerz. Übersetzung der Deutschen Gesellschaft zum Studium des Schmerzes. Abgerufen am 29. Februar 2012.
  3. Wie empfinden Tiere Schmerzen? (Memento vom 25. Juli 2018 im Internet Archive); Informationen zur Sendung W wie Wissen vom 24. November 2014
  4. L.U. Sneddon: Evolution of nociception in vertebrates: comparative analysis of lower vertebrates. In: Brain Research Reviews. 2004, S. 46: 123–130.
  5. a b Larry Carbone: What Animal Want: Expertise and Advocacy in Laboratory Animal Welfare Policy. Oxford University Press, 2004, S. 149.
  6. a b The Ethics of research involving animals. (PDF) Nuffield Council on Bioethics, archiviert vom Original am 27. Februar 2008; abgerufen am 29. Februar 2012.
  7. Talking Point on the use of animals in scientific research. In: EMBO reports. Nr. 6, 8, 2007, S. 521–525.
  8. a b Bernard Rollin: The Unheeded Cry: Animal Consciousness, Animal Pain, and Science. Oxford University Press, 1989, xii, S. 117–118.
  9. D. R. Griffin, G. B. Spech: New evidence of animal consciousness. In: Animal cognition. Band 7, 2004, S. 5–18, doi:10.1007/s10071-003-0203-x, PMID 14658059.
  10. C. Allen: Assessing animal cognition: ethological and philosophical perspectives. In: J. Anim. Sci. Band 76, Nr. 1, 1998, S. 42–47, PMID 9464883 (PDF [abgerufen am 29. Februar 2012]).
  11. Garrett M. Broad: Want to help animals? Don't forget the chickens. In: The Conversation. 9. Juni 2019, abgerufen am 3. Juni 2021 (englisch).
  12. F. V. Abbott, K. B. Franklin, R. F. Westbrook: The formalin test: scoring properties of the first and second phases of the pain response in rats. In: Pain. Band 60, Nr. 1, 1995, S. 91–102, doi:10.1016/0304-3959(94)00095-V.
  13. R. W. Elwood, S. Barr, L. Patterson: Pain and stress in crustaceans? In: Applied Animal Behaviour Science. 2009, S. 128–136, abgerufen am 29. Februar 2012.
  14. L.U. Sneddon, V.A. Braithwaite, M.J. Gentle: Do fishes have nociceptors? Evidence for the evolution of a vertebrate sensory system. In: Proceedings of the Royal Society of London. Series B: Biological Sciences. 270. Jahrgang, Nr. 1520, 2003, S. 1115.
    • KP Chandroo, IJH Duncan, RD Moccia: Can fish suffer?: perspectives on sentience, pain, fear and stress. In: Applied Animal Behaviour Science. 86. Jahrgang, Nr. 3–4, 2004, S. 225–250.
  15. J D Rose, R Arlinghaus, S J Cooke, B K Diggles, W Sawynok, E D Stevens, C D L Wynne: Can fish really feel pain? In: Fish and Fisheries. Band 15, Nr. 1, März 2014, ISSN 1467-2960, S. 97–133, doi:10.1111/faf.12010 (wiley.com [abgerufen am 9. Dezember 2023]).
  16. J.D. Rose: A critique of the paper: Do fish have nociceptors: Evidence for the evolution of a vertebrate sensory system published in Proceedings of the Royal Society: Biological Sciences. 270 (1520): 1115–1121, 2003 by Sneddon, Braithwaite and Gentle. In: Information Resources on Fish Welfare 1970–2003 (Animal Welfare Information Resources No. 20). 2003, S. 49–51.
  17. OLG Düsseldorf, NStZ 1994, 43.
  18. Joan Dunayer: Fish: Sensitivity Beyond the Captor’s Grasp. In: The Animals’ Agenda. (Juli/August), 1991, S. 12–18.
  19. BBC News: Fish do feel pain, scientists say. 2003, abgerufen am 5. Juli 2012.
  20. Temple Grandin, Catherine Johnson: Animals in Translation. New York 2005, S. 183–184.
  21. J.D. Rose: A Critique of the paper: „Do fish have nociceptors: Evidence for the evolution of a vertebrate sensory system“. In: Information Resources on Fish Welfare 1970–2003, Animal Welfare Information Resources. Nr. 20, 2003, S. 49–51.
  22. J. Nordgreen, P. Joseph, J. P. Garner, A. M. Janczak, B. Ranheim, W. M. Muir, T. E. Horsberg: Thermonociception in fish: Effects of two different doses of morphine on thermal threshold and post-test behaviour in goldfish (Carassius auratus). In: Applied Animal Behaviour Science. Nr. 119(1–2), 2009, S. 101–107.
  23. Purdue University: Fish may actually feel pain and react to it much like humans. 2009, archiviert vom Original (nicht mehr online verfügbar) am 5. Dezember 2022; abgerufen am 7. Mai 2012.  Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/news.uns.purdue.edu
  24. L.U. Sneddon: Trigeminal somatosensory innervation of the head of the rainbow trout with particular reference to nociception. In: Brain Research. Nr. 972, 2003, S. 44–52.
  25. C.H. Eisemann, W. K. Jorgensen, D. J. Merritt, M. J. Rice, B. W. Cribb, P. D. Webb, M. P. Zalucki: Do insects feel pain? – A biological view. In: Experientia. Nr. 40, 1984, S. 164–167.
  26. The Senate Standing Committee on Legal and Constitutional Affairs: Do Invertebrates Feel Pain? Das Parlament von Kanada, archiviert vom Original (nicht mehr online verfügbar) am 6. Januar 2010; abgerufen am 29. Februar 2012.  Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/www.parl.gc.ca
  27. Jane A. Smith: A Question of Pain in Invertebrates. In: ILAR Journal. Band 33, Nr. 1-2, 1991 (A Question of Pain in Invertebrates [abgerufen am 29. Februar 2012]).
  28. G. Fiorito: Is there „pain“ in invertebrates? In: Behavioural Processes. Band 12(4), 1986, S. 383–388.
  29. C. M. Sherwin: Can invertebrates suffer? Or, how robust is argument-by-analogy? In: Animal Welfare. Band 10, 2001, S. 103–118.
  30. R. W. Elwood: Pain and suffering in invertebrates? In: Institute of Laboratory Animal Resources Journal. Band 52(2), 2011, S. 175–184 (PDF).
  31. E. St John Smith, G. R. Lewin: Nociceptors: a phylogenetic view. In: Journal of Comparative Physiology A Neuroethology Sensory Neural and Behavioral Physiology. Nr. 195, 2009, S. 1089–1106.
  32. D. DeGrazia, A. Rowan: Pain, suffering, and anxiety in animals and humans. In: Theoretical Medicine and Bioethics. Band 12, Nr. 3, 1991, S. 193–211, PMID 1754965.
  33. J. A. Lockwood: The Moral Standing of Insects and the Ethics of Extinction. In: The Florida Entomologist. Band 70, Nr. 1, 1987, S. 70–89, doi:10.2307/3495093.
  34. C. H. Eisemann, W. K. Jorgensen, D. J. Merritt, M. J. Rice, B. W. Cribb, P. D. Webb, M. P. Zalucki: Do insects feel pain? – A biological view. In: Cellular and Molecular Life Sciences. Band 40, 1984, S. 1420–1423.
  35. , J., W. Daniel, R. I. Wilson, G. Laurent, S. Benzer: painless, a „Drosophila“ gene essential for nociception. In: Cell. Band 113, 2003, S. 261–273.
  36. Wittenburg, Baumeister: Thermal avoidance in Caenorhabditis elegans: an approach to the study of nociception. In: Proceedings of the National Academy of Sciences USA. Band 96, 1999, S. 10477–10482.
  37. S. C. Pryor, F. Nieto, S. Henry, J. Sarfo: The effect of opiates and opiate antagonists on heat latency response in the parasitic nematode Ascaris suum. In: Life Sciences. Band 80, 2007, S. 1650–1655.
  38. L. M. Dalton, P. S. Widdowson: The involvement of opioid peptides in stress-induced analgesia in the slug Arion ater. In: Peptides. Band 10, 1989, S. 9–13.
  39. M. Kavaliers; Ossenkopp, K.-P.: Opioid systems and magnetic field effects in the land snail, Cepaea nemoralis. In: Biological Bulletin. Band 180, 1991, S. 301–309.
  40. V. E. Dyakonova, D. Schurmann, D. A. Sakharova: Effects of serotonergic and opioidergic drugs on escape behaviors and social status of male crickets. In: Naturwissenschaften. Band 86, 1999, S. 435–437.
  41. N. Zabala, M. Gomez: Morphine analgesia, tolerance and addiction in the cricket, Pteronemobius. In: Pharmacology, Biochemistry and Behaviour. Band 40, 1991, S. 887–891.
  42. a b M. Lozada, A. Romano, H. Maldonado: Effect of morphine and naloxone on a defensive response of the crab Chasmagnathus granulatus. In: Pharmacology, Biochemistry and Behavior. Band 30, 1988, S. 635–640.
  43. H. Maldonado, A. Miralto: Effects of morphine and naloxone on a defensive response of the mantis shrimp (Squilla mantis). In: Journal of Comparative Physiology. Band 147, 1982, S. 455–459.
  44. a b L. Sømme: Sentience and pain in invertebrates: Report to Norwegian Scientific Committee for Food Safety. Hrsg.: Norwegian University of Life Sciences. Oslo 2005.
  45. a b Adcovates for Animals: Cephalopods and decapod crustaceans: Their capacity to experience pain and suffering. 2005 (web.archive.org [PDF; 1,2 MB; abgerufen am 14. September 2021]).
  46. L. Chittka, J. Niven: Are Bigger Brains Better? In: Current Biology. Band 19(21), 2009, doi:10.1016/j.cub.2009.08.023.
  47. Cephalopod brain size (Memento vom 18. November 2011 im Internet Archive) aufgerufen am 29. Februar 2012
  48. A. Packard: Abstract cephalopods and fish: The limits of convergence. In: Biological Reviews. Band 47, S. 241–307, doi:10.1111/j.1469-185X.1972.tb00975.x.
  49. Europäische Behörde für Lebensmittelsicherheit (Hrsg.): Aspects of the biology and welfare of animals used for experimental and other scientific purposes. doi:10.2903/j.efsa.2005.292.
  50. I. Viñuela-Fernández, E. Jones, E. M. Welsh, S.M. Fleetwood-Walker: Pain mechanisms and their implication for the management of pain in farm and companion animals. In: Vet. J. Band 274, Nr. 2, 2007, S. 227–239, doi:10.1016/j.tvjl.2007.02.002, PMID 17553712.
  51. I. J. Duncan, J. C. Petherick: The implications of cognitive processes for animal welfare. In: J. Anim. Sci. Band 69, Nr. 12, 1991, S. 5001–5007, PMID 1808193.
  52. M. Stamp Dawkins: Scientific Basis for Assessing Suffering in Animals. In Peter Singer. In Defense of Animals: The Second Wave. Blackwell, 2006, S. 28.
  53. Animal Welfare; Definitions for and Reporting of Pain and Distress. In: Animal Welfare Information Center Bulletin, Summer 2000, Vol. 11 No. 1–2. US-Landwirtschaftsministerium, 2000, archiviert vom Original am 6. Oktober 2014; abgerufen am 1. März 2012.
  54. Larry Carbone: What Animal Want: Expertise and Advocacy in Laboratory Animal Welfare Policy. Oxford University Press, 2004, S. 151.
  55. N. Fenwick, E. Ormandy, C. Gauthier, G. Griffin: Classifying the severity of scientific animal use: a review of international systems. In: Animal Welfare. Nr. 20, 2011, S. 281–301.
  56. Charité: Orientierungshilfe des Arbeitskreises Berliner Tierschutzbeauftragter zur Einstufung der Belastungsgrade für genehmigungspflichtige Tierversuche (Memento des Originals vom 19. April 2021 im Internet Archive)  Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/www.gv-solas.de
  1. Originaldefinition: an aversive sensory experience caused by actual or potential injury that elicits protective motor and vegetative reactions, results in learned avoidance and may modify species-specific behaviour, including social behaviour.