Tangente

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Tangentengleichung)
Zur Navigation springen Zur Suche springen
Kreis mit Tangente, Sekante und Passante
Kreis mit Tangente, Sekante und Passante

Eine Tangente (von lateinisch: tangere ‚berühren‘) ist in der Geometrie eine Gerade, die eine gegebene Kurve in einem bestimmten Punkt berührt. Beispielsweise ist die Schiene für das Rad eine Tangente, da der Auflagepunkt des Rades ein Berührungspunkt der beiden geometrischen Objekte, Gerade und Kreis, ist. Tangente und Kurve haben im Berührungspunkt die gleiche Richtung. Die Tangente ist in diesem Punkt die beste lineare Näherungsfunktion für die Kurve.

Besonders einfach sind die Verhältnisse beim Kreis: Alle Geraden können bezüglich eines Kreises unterschieden werden in Sekanten, Tangenten und Passanten – je nachdem, ob sie mit dem Kreis zwei Punkte, einen oder gar keinen Punkt gemeinsam haben. Die Kreistangente trifft den Kreis also in genau einem Punkt. Sie steht dort senkrecht auf dem zu diesem Punkt gehörenden Berührungsradius.

Auch im allgemeinen Fall steht die Tangente senkrecht auf dem zum Berührungspunkt gehörenden Radius des Krümmungskreises, sofern dieser existiert. Sie kann aber mit der Ausgangskurve noch weitere Punkte gemeinsam haben. Ist ein weiterer Punkt (der Ausgangskurve oder einer anderen Kurve) ebenfalls Berührpunkt, so spricht man von einer Bitangente.

Tangente in der Analysis

[Bearbeiten | Quelltext bearbeiten]
Graph einer Funktion mit eingezeichneter Tangente an einem Punkt. Diese Abbildung zeigt, dass die Tangente mehr als einen gemeinsamen Punkt mit dem Graphen haben kann.
  • Graph der Funktion
  • Tangente
  • Funktion mit senkrechter Tangente (rot)

    Ist die gegebene Kurve der Graph einer reellen Funktion , dann ist die Tangente im Punkt die Gerade, die dort die gleiche Steigung wie die Kurve hat. Die Steigung der Tangente ist also gleich der ersten Ableitung von an der Stelle : . Die Gleichung der Tangente ist somit:.[1][2]

    (siehe auch: Punktsteigungsform).

    Die Tangente entspricht der besten linearen Näherung für die Funktion an der Stelle :

    für

    Eine Tangente kann in der Regel nur existieren, wenn die zugrunde liegende Funktion (oder die zugrunde liegenden Funktionen) an dieser Stelle differenzierbar ist/sind (vergleiche dazu aber auch Tangenten in der endlichen Geometrie).

    Ein einfaches Gegenbeispiel:

    Die Betragsfunktion ist an der Stelle nicht differenzierbar. Der zugehörige Funktionsgraph hat an dieser Stelle einen „Knick“, so dass es hier sinnlos ist, von der Tangente zu sprechen.

    Ist eine Funktion an einer Stelle ihres Definitionsbereichs zwar nicht differenzierbar, strebt der Wert der Ableitungsfunktion für betragsmäßig jedoch gegen Unendlich, so hat der Funktionsgraph an dieser Stelle eine senkrechte Tangente (eine Parallele zur y-Achse, also keine lineare Funktion, als Tangente).[1] Ein Beispiel hierfür ist die Funktion: .

    Diese ist zwar für alle reellen Zahlen definiert, aber an der Stelle nicht differenzierbar ist. Dort liegt eine senkrechte Tangente vor.

    Als Wendetangente bezeichnet man eine Tangente, die durch einen Wendepunkt einer Funktion verläuft. Dabei „durchdringt“ bzw. „durchsetzt“ sie den Funktionsgraphen, der von einer Halbebene (bezüglich der Tangente) in die andere Halbebene wechselt. Dennoch fasst man diesen Punkt als Berührpunkt und nicht als Schnittpunkt auf, da die Steigung von Funktion und Gerade übereinstimmen.[3]

    Differentialgeometrie

    [Bearbeiten | Quelltext bearbeiten]
    Raumkurve mit Tangente

    Eine (reguläre) Kurve im sei durch eine auf dem reellen Intervall definierte Funktion mit für alle gegeben. Ist (mit ) ein Kurvenpunkt, so nennt man die erste Ableitung von an der Stelle (also ) einen Tangentialvektor. Eine Kurventangente in diesem Punkt ist eine Gerade durch den Punkt , die die gleiche Richtung wie der Tangentialvektor hat.[1]

    Synthetische und endliche Geometrie

    [Bearbeiten | Quelltext bearbeiten]

    In der synthetischen Geometrie und der endlichen Geometrie kann der Begriff „Tangente“ für geeignete Mengen allein mit Begriffen der Inzidenz, also ohne Differenzierbarkeitsvoraussetzungen definiert werden:[4]

    1. Für eine quadratische Menge, in einer projektiven Ebene ist eine Tangente eine Gerade, die mit dieser Menge genau einen Punkt gemeinsam hat oder ganz in ihr enthalten ist.
    2. Mit dieser Definition existiert speziell für ein Oval in einer projektiven Ebene in jedem Punkt des Ovals genau eine Tangente. Keine Gerade hat mit dem Oval mehr als zwei Punkte gemein.
    3. Analytisch bedeutet dies für eine projektive Quadrik über einer papposschen projektiven Ebene, die dem Fano-Axiom genügt, dem wichtigsten Spezialfall einer quadratischen Menge: Eine projektive Gerade ist genau dann Tangente der Quadrik, wenn der Koeffizientenvektor der Geraden die homogene quadratische Gleichung erfüllt, die die Quadrik (als Punktmenge) definiert.

    Der dritte Fall ist für die reelle euklidische Ebene, wenn man sie als affinen Ausschnitt der reellen projektiven Ebene mit dem Standardskalarprodukt ansieht, gleichbedeutend dazu, dass der Gradient der Funktionsgleichung, die die Quadrik definiert, in dem Punkt, in der die Gerade die Quadrik berührt, ein Normalenvektor dieser Geraden ist. Insofern lässt sich ein, gegenüber dem reellen, durch Ableitung definierten verallgemeinerter, „algebraischer“ Tangentenbegriff auch durch formale Gradientenberechnung bilden.

    Vergleiche hierzu auch die Abbildung in der Einleitung: Der mit dem Rechter-Winkel-Symbol gekennzeichnete Radius des Kreises stellt gleichzeitig die Richtung eines Normalenvektors der eingezeichneten Tangente und (vom Mittelpunkt zum Berührpunkt orientiert) die Richtung des Gradienten der Kreisgleichung in deren Berührpunkt dar.

    Tangente an Parabel

    [Bearbeiten | Quelltext bearbeiten]
    Bild 2, Nachweis, Tangente an Parabel mittels zwei gleichen Kreisen
    Bild 1, Konstruktion Tangente an Parabel mittels zwei gleichen Kreisen

    Es beginnt mit dem Eintragen des Graphen, beispielsweise der Parabel (Bild 1) mit dem Abstand ; darin ist der Brennpunkt und der Scheitelpunkt. Der frei gewählte Punkt wird mit verbunden. Es folgen der Kreis um mit Radius und der Kreis um mit gleichem Radius; Schnittpunkt ist auf der Mittelachse. Abschließend wird eine Gerade durch die Punkte und gezogen. Aufgrund dessen, dass das Dreieck gleichschenklig und die Hälfte einer Raute ist (siehe Bild 2), wirkt die Gerade (rot) als Winkelhalbierende und liefert somit die Tangente im Punkt .

    Der Punkt ist – nach Definition – dann ein Punkt einer Parabel, wenn sein Abstand zur Leitlinie gleich dem Abstand zum Brennpunkt ist. Die Tangente ist die Winkelhalbierende der Winkelweite, die von den Winkelschenkeln und eingeschlossen ist.[5]

    Vergleicht man Bild 2 mit Bild 1, so ist erkennbar: Der Kreis im Bild 1 stellt, wegen , den Bezug zur nicht eingezeichneten Leitlinie her. Dagegen liefert der Kreis den Punkt . Wegen und den gleichen Innenwinkel der angedeuteten Raute, ist die Gerade (rot) durch und die gesuchte Winkelhalbierende und somit auch die Tangente im Punkt .

    Tangente an Ellipse

    [Bearbeiten | Quelltext bearbeiten]
    Konstruktion, Tangente an Ellipse mittels drei gleichen Kreisen

    Auf einer gegebenen Ellipse mit den Brennpunkten und wird zuerst ein beliebiger Punkt bestimmt. Eine Halbgerade ab dem Punkt durch schließt sich an. Nach dem Verbinden des Punktes mit folgt ein Kreis um mit dem Radius ; Schnittpunkt mit der Halbgeraden ist . Nun zieht man den Kreis um mit gleichem Radius und ebenso den Kreis um ; dabei ergibt sich der Schnittpunkt . Abschließend wird eine Gerade (rot) – die gesuchte Tangente – durch die Punkte und gezogen.

    Der Punkt ist – nach Definition – nur dann ein Punkt einer Ellipse, wenn die Gerade, die durch ihn geht, die Winkelhalbierende des Winkels ist.[6]

    Da die beiden Kreise und mit dem Schnittpunkt die Halbierung des Außenwinkels der Brennstrahlen ( und ) vorbereitet haben, ist die Gerade (rot) eine Winkelhalbierende dieses Winkels und somit die Tangente im Punkt

    • Tangente. In: Schülerduden – Mathematik I. Bibliographisches Institut & F.A. Brockhaus, 2008, ISBN 978-3-411-04208-1, S. 443–444.
    • Tangente. In: Schülerduden – Mathematik II. Bibliographisches Institut & F.A. Brockhaus, 2004, ISBN 3-411-04275-3, S. 393–394.
    • Guido Walz: Lexikon der Mathematik – Band 5. Springer, 2. Auflage 2017, ISBN 978-3-662-53505-9, S. 173–176 (online auf spektrum.de)
    • Irl C. Bivens: What a Tangent Line Is When It Isn’t a Limit. In: The College Mathematics Journal. Band 17, Nr. 2, Mathematical Association of America, 1986, S. 133–43, (JSTOR)
    • Hugh Thurston: Tangents to Graphs. In: Mathematics Magazine. Band 61, Nr. 5, Mathematical Association of America, 1988, S. 292–94 (JSTOR)
    Wiktionary: Tangente – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
    Commons: Tangency – Sammlung von Bildern, Videos und Audiodateien

    Einzelnachweise

    [Bearbeiten | Quelltext bearbeiten]
    1. a b c Guido Walz: Lexikon der Mathematik – Band 5. Springer, 2. Auflage 2017, ISBN 978-3-662-53505-9, S. 173–176 (online auf spektrum.de)
    2. Tangente. In: Schülerduden – Mathematik II. Bibliographisches Institut & F.A. Brockhaus, 2004, ISBN 3-411-04275-3, S. 393–394.
    3. Wendetangente. In: Schülerduden – Mathematik II. Bibliographisches Institut & F.A. Brockhaus, 2004, ISBN 3-411-04275-3, S. 448.
    4. Albrecht Beutelspacher, Ute Rosenbaum: Projektive Geometrie. Von den Grundlagen bis zu den Anwendungen (= Vieweg Studium: Aufbaukurs Mathematik). 2., durchgesehene und erweiterte Auflage. Vieweg, Wiesbaden 2004, ISBN 3-528-17241-X, 4 Quadratische Mengen (Inhaltsverzeichnis [abgerufen am 31. Juli 2013]).
    5. Dieter Neßelmann: Tangente der Parabel. Vorkurs Mathematik Teil: Geometrie und lineare Algebra. Universität Rostock, 24. Juni 2014, abgerufen am 19. Oktober 2023.
    6. Peter Lesky: 5.2 Tangente in einem Ellipsenpunkt (mit Beweis). Kegelschnitte. Universität Stuttgart, 2020, S. 67–68, abgerufen am 20. Oktober 2023.