Die Thomas-Reiche-Kuhn-Summenregel [ 1] (nach Willy Thomas , Fritz Reiche und Werner Kuhn ) ist ein mathematisches Hilfsmittel in der Quantenmechanik .
Sie besagt, dass für die Strahlungsübergänge eines Teilchens der Masse
m
0
{\displaystyle m_{0}}
zwischen einem bestimmten Zustand
|
m
⟩
{\displaystyle |m\rangle }
und allen anderen Zuständen
|
n
⟩
{\displaystyle |n\rangle }
gilt:
∑
n
(
E
n
−
E
m
)
|
⟨
n
|
x
^
|
m
⟩
|
2
=
ℏ
2
2
m
0
{\displaystyle \sum _{n}(E_{n}-E_{m})\left|\left\langle n|{\hat {x}}|m\right\rangle \right|^{2}={\frac {\hbar ^{2}}{2m_{0}}}}
ℏ
{\displaystyle \hbar }
… das reduzierte plancksche Wirkungsquantum
E
n
{\displaystyle E_{n}}
… die Energie des Zustands
|
n
⟩
{\displaystyle |n\rangle }
⟨
n
|
x
^
|
m
⟩
=
x
n
m
{\displaystyle \left\langle n|{\hat {x}}|m\right\rangle =x_{nm}}
… das Matrixelement des Ortsoperators , das direkt mit dem elektrischen Dipolmoment des Überganges verknüpft ist
Die Thomas-Reiche-Kuhn-Summenregel gilt nur für ausschließlich ortsabhängige Potentiale und kann somit in den meisten Fällen angewandt werden.
∑
n
(
E
n
−
E
m
)
|
⟨
n
|
x
^
|
m
⟩
|
2
=
∑
n
(
E
n
−
E
m
)
⟨
m
|
x
^
|
n
⟩
⟨
n
|
x
^
|
m
⟩
=
1
2
∑
n
(
⟨
m
|
x
^
H
^
−
H
^
x
^
|
n
⟩
⟨
n
|
x
^
|
m
⟩
+
⟨
m
|
x
^
|
n
⟩
⟨
n
|
H
^
x
^
−
x
^
H
^
|
m
⟩
)
=
1
2
∑
n
(
⟨
m
|
x
^
|
n
⟩
⟨
n
|
[
H
^
,
x
^
]
|
m
⟩
−
⟨
m
|
[
H
^
,
x
^
]
|
n
⟩
⟨
n
|
x
^
|
m
⟩
)
=
1
2
(
⟨
m
|
x
^
[
H
^
,
x
^
]
|
m
⟩
−
⟨
m
|
[
H
^
,
x
^
]
x
^
|
m
⟩
)
=
1
2
(
⟨
m
|
[
x
^
,
[
H
^
,
x
^
]
]
|
m
⟩
)
=
−
i
ℏ
2
m
0
⟨
m
|
[
x
^
,
p
^
]
|
m
⟩
=
ℏ
2
2
m
0
{\displaystyle {\begin{aligned}\sum _{n}(E_{n}-E_{m})\left|\left\langle n|{\hat {x}}|m\right\rangle \right|^{2}&=\sum _{n}(E_{n}-E_{m})\left\langle m\right|{\hat {x}}\left|n\right\rangle \left\langle n\right|{\hat {x}}\left|m\right\rangle \\&={\frac {1}{2}}\sum _{n}\left(\left\langle m\right|{\hat {x}}{\hat {H}}-{\hat {H}}{\hat {x}}\left|n\right\rangle \left\langle n\right|{\hat {x}}\left|m\right\rangle +\left\langle m\right|{\hat {x}}\left|n\right\rangle \left\langle n\right|{\hat {H}}{\hat {x}}-{\hat {x}}{\hat {H}}\left|m\right\rangle \right)\\&={\frac {1}{2}}\sum _{n}\left(\left\langle m\right|{\hat {x}}\left|n\right\rangle \left\langle n\right|[{\hat {H}},{\hat {x}}]\left|m\right\rangle -\left\langle m\right|[{\hat {H}},{\hat {x}}]\left|n\right\rangle \left\langle n\right|{\hat {x}}\left|m\right\rangle \right)\\&={\frac {1}{2}}\left(\left\langle m\right|{\hat {x}}[{\hat {H}},{\hat {x}}]\left|m\right\rangle -\left\langle m\right|[{\hat {H}},{\hat {x}}]{\hat {x}}\left|m\right\rangle \right)\\&={\frac {1}{2}}\left(\left\langle m\right|[{\hat {x}},[{\hat {H}},{\hat {x}}]]\left|m\right\rangle \right)\\&=-{\frac {i\hbar }{2m_{0}}}\left\langle m\right|[{\hat {x}},{\hat {p}}]\left|m\right\rangle \\&={\frac {\hbar ^{2}}{2m_{0}}}\end{aligned}}}
Dabei wurden folgende Beziehungen verwendet:
[
H
^
,
x
^
]
=
−
i
ℏ
m
0
p
^
{\displaystyle [{\hat {H}},{\hat {x}}]=-{\frac {i\hbar }{m_{0}}}{\hat {p}}}
[
x
^
,
p
^
]
=
i
ℏ
{\displaystyle [{\hat {x}},{\hat {p}}]=i\hbar }
↑ Jeremiah A. Cronin, David F. Greenberg, Valentine L. Telegdi: University of Chicago Graduate Problems in Physics with Solutions . University Of Chicago Press, 1979, ISBN 978-0-226-12109-3 .