Thomsonsche Schwingungsgleichung

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Mit der Thomsonschen Schwingungsgleichung lässt sich die Resonanzfrequenz eines Schwingkreises (Reihenschwingkreis und idealer Parallelschwingkreis) mit der Kapazität C und der Induktivität L berechnen. Sie wurde 1853 von dem britischen Physiker William Thomson erstmals formuliert und lautet:

Oder umgeformt für die Periodendauer (Schwingungszeit):

Im Resonanzfall ist der Resonanzwiderstand so groß wie der Serienwiderstand. Der kapazitive Widerstand des Kondensators und der induktive Widerstand der Spule innerhalb des Schwingkreises kompensieren sich auf null:

, da gilt
, üblich ist auch die Form:

Nach dem Energieerhaltungssatz

[Bearbeiten | Quelltext bearbeiten]

Betrachten wir den elektrischen Schwingkreis als ein geschlossenes System, so ist die Summe aller Energieformen in diesem System zu jeder Zeit t konstant.

: magnetische Feldenergie der Spule
: elektrische Feldenergie des Kondensators
: Gesamtenergie des Systems (konstant)

Setzt man die entsprechenden Formeln ein, so kommt man auf folgende Differentialgleichung:

Aus

folgt:

Nun leitet man diese Gleichung nach der Zeit ab und erhält:

, da im Schwingkreis gilt: .

Um diese Gleichung zu lösen, müssen wir einen Zusammenhang zwischen und herstellen. Dazu verwenden wir eine Sinusfunktion als Lösungsansatz, da sie sich auf Grund ihrer Periodizität gut zur Beschreibung einer Schwingung eignet.

: maximale Ladung (Amplitude)
: Kreisfrequenz
: Phasenverschiebung

Durch Einsetzen ergibt sich:

, da im Schwingkreis gilt:

Daraus folgt mit :

Die thomsonsche Schwingungsgleichung gilt nur für Serienschwingkreise und ideale Parallelschwingkreise. Bei komplexeren Topologien muss, ausgehend von , die Frequenz abgeleitet werden.

Des Weiteren muss bei der Anwendung der thomsonschen Schwingungsgleichung darauf geachtet werden, dass sich das jeweilige System im Schwingfall befindet – die Dämpfung durch den ohmschen Widerstand also nicht zu groß ist. Bei nicht zu großer Dämpfung kann die beim Parallelschwingkreis veränderte Resonanzfrequenz mit dem Verlustwiderstand RL von L berechnet werden:

  • Lothar Papula: Mathematik für Ingenieure und Naturwissenschaftler. 12. Auflage. Band 1. Vieweg + Teubner, 2009, ISBN 978-3-8348-0545-4.