(79,13,2)-Blockplan

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Der (79,13,2)-Blockplan ist ein spezieller symmetrischer Blockplan. Um ihn konstruieren zu können, musste dieses kombinatorische Problem gelöst werden: eine leere 79 × 79 - Matrix wurde so mit Einsen gefüllt, dass jede Zeile der Matrix genau 13 Einsen enthält und je zwei beliebige Zeilen genau 2 Einsen in der gleichen Spalte besitzen (nicht mehr und nicht weniger). Das klingt relativ einfach, ist aber nicht trivial zu lösen. Es gibt nur gewisse Kombinationen von Parametern (wie hier v = 79, k = 13, λ = 2), für die eine solche Konstruktion überhaupt machbar ist. In dieser Übersicht sind die kleinsten solcher (v,k,λ) aufgeführt.

Dieser symmetrische 2-(79,13,2)-Blockplan wird Biplane der Ordnung 11 genannt.

Dieser symmetrische Blockplan hat die Parameter v = 79, k = 13, λ = 2 und damit folgende Eigenschaften:

  • Er besteht aus 79 Blöcken und 79 Punkten.
  • Jeder Block enthält genau 13 Punkte.
  • Je 2 Blöcke schneiden sich in genau 2 Punkten.
  • Jeder Punkt liegt auf genau 13 Blöcken.
  • Je 2 Punkte sind durch genau 2 Blöcke verbunden.

Existenz und Charakterisierung

[Bearbeiten | Quelltext bearbeiten]

Es existieren mindestens zwei nichtisomorphe 2-(79,13,2) - Blockpläne[1][2]. Diese Lösungen sind:

  • Lösung 1 (dual zur Lösung 2) mit der Signatur 2·11, 55·16, 22·31 und den λ-chains 1584·3, 605·4, 682·5, 825·6, 660·7, 330·8, 275·9, 748·10, 2695·13. Sie enthält 77 Ovale der Ordnung 7.
  • Lösung 2 (dual zur Lösung 1) mit der Signatur 11·1, 11·11, 55·24, 2·66 und den λ-chains 1584·3, 605·4, 682·5, 825·6, 660·7, 330·8, 275·9, 748·10, 2695·13. Sie enthält 77 Ovale der Ordnung 7.

Liste der Blöcke

[Bearbeiten | Quelltext bearbeiten]

Hier sind alle Blöcke dieses Blockplans aufgelistet; zum Verständnis dieser Liste siehe diese Veranschaulichung

  • Lösung 1
  1   2   3   4   5   6   7   8   9  10  11  12  13
  1   2  14  15  16  17  18  19  20  21  22  23  24
  1   3  14  28  34  40  41  48  50  63  67  70  73
  1   4  15  29  35  41  42  49  51  64  68  71  74
  1   5  16  25  30  42  43  50  52  58  65  72  75
  1   6  17  26  31  43  44  51  53  59  66  73  76
  1   7  18  27  32  44  45  52  54  60  67  74  77
  1   8  19  28  33  45  46  53  55  61  68  75  78
  1   9  20  29  34  36  46  54  56  58  62  76  79
  1  10  21  30  35  36  37  55  57  59  63  69  77
  1  11  22  25  31  37  38  47  56  60  64  70  78
  1  12  23  26  32  38  39  48  57  61  65  71  79
  1  13  24  27  33  39  40  47  49  62  66  69  72
  2   3  14  27  33  42  43  55  57  60  64  76  79
  2   4  15  28  34  43  44  47  56  61  65  69  77
  2   5  16  29  35  44  45  48  57  62  66  70  78
  2   6  17  25  30  45  46  47  49  63  67  71  79
  2   7  18  26  31  36  46  48  50  64  68  69  72
  2   8  19  27  32  36  37  49  51  58  65  70  73
  2   9  20  28  33  37  38  50  52  59  66  71  74
  2  10  21  29  34  38  39  51  53  60  67  72  75
  2  11  22  30  35  39  40  52  54  61  68  73  76
  2  12  23  25  31  40  41  53  55  58  62  74  77
  2  13  24  26  32  41  42  54  56  59  63  75  78
  4  13  17  22  26  27  34  35  38  45  50  55  58
  3   5  18  23  25  27  28  35  39  46  51  56  59
  4   6  19  24  25  26  28  29  36  40  52  57  60
  5   7  14  20  26  27  29  30  37  41  47  53  61
  6   8  15  21  27  28  30  31  38  42  48  54  62
  7   9  16  22  28  29  31  32  39  43  49  55  63
  8  10  17  23  29  30  32  33  40  44  50  56  64
  9  11  18  24  30  31  33  34  41  45  51  57  65
 10  12  14  19  31  32  34  35  42  46  47  52  66
 11  13  15  20  25  32  33  35  36  43  48  53  67
  3  12  16  21  25  26  33  34  37  44  49  54  68
  5  12  19  20  38  40  43  45  51  54  63  64  69
  6  13  20  21  39  41  44  46  52  55  64  65  70
  3   7  21  22  36  40  42  45  53  56  65  66  71
  4   8  22  23  37  41  43  46  54  57  66  67  72
  5   9  23  24  36  38  42  44  47  55  67  68  73
  6  10  14  24  37  39  43  45  48  56  58  68  74
  7  11  14  15  38  40  44  46  49  57  58  59  75
  8  12  15  16  36  39  41  45  47  50  59  60  76
  9  13  16  17  37  40  42  46  48  51  60  61  77
  3  10  17  18  36  38  41  43  49  52  61  62  78
  4  11  18  19  37  39  42  44  50  53  62  63  79
  7  10  15  24  25  50  51  54  55  61  66  70  79
  8  11  14  16  26  51  52  55  56  62  67  69  71
  9  12  15  17  27  52  53  56  57  63  68  70  72
 10  13  16  18  28  47  53  54  57  58  64  71  73
  3  11  17  19  29  47  48  54  55  59  65  72  74
  4  12  18  20  30  48  49  55  56  60  66  73  75
  5  13  19  21  31  49  50  56  57  61  67  74  76
  3   6  20  22  32  47  50  51  57  62  68  75  77
  4   7  21  23  33  47  48  51  52  58  63  76  78
  5   8  22  24  34  48  49  52  53  59  64  77  79
  6   9  14  23  35  49  50  53  54  60  65  69  78
  6  11  16  23  27  34  36  61  63  64  66  74  75
  7  12  17  24  28  35  37  62  64  65  67  75  76
  8  13  14  18  25  29  38  63  65  66  68  76  77
  3   9  15  19  26  30  39  58  64  66  67  77  78
  4  10  16  20  27  31  40  59  65  67  68  78  79
  5  11  17  21  28  32  41  58  60  66  68  69  79
  6  12  18  22  29  33  42  58  59  61  67  69  70
  7  13  19  23  30  34  43  59  60  62  68  70  71
  3   8  20  24  31  35  44  58  60  61  63  71  72
  4   9  14  21  25  32  45  59  61  62  64  72  73
  5  10  15  22  26  33  46  60  62  63  65  73  74
  8   9  18  21  26  35  40  43  47  70  74  75  79
  9  10  19  22  25  27  41  44  48  69  71  75  76
 10  11  20  23  26  28  42  45  49  70  72  76  77
 11  12  21  24  27  29  43  46  50  71  73  77  78
 12  13  14  22  28  30  36  44  51  72  74  78  79
  3  13  15  23  29  31  37  45  52  69  73  75  79
  3   4  16  24  30  32  38  46  53  69  70  74  76
  4   5  14  17  31  33  36  39  54  70  71  75  77
  5   6  15  18  32  34  37  40  55  71  72  76  78
  6   7  16  19  33  35  38  41  56  72  73  77  79
  7   8  17  20  25  34  39  42  57  69  73  74  78
  • Lösung 2
  1   2   3   4   5   6   7   8   9  10  11  12  13
  1   2  14  15  16  17  18  19  20  21  22  23  24
  1   3  14  26  35  38  45  51  54  61  66  74  75
  1   4  15  25  27  39  46  52  55  62  67  75  76
  1   5  16  26  28  36  40  53  56  63  68  76  77
  1   6  17  27  29  37  41  54  57  58  64  77  78
  1   7  18  28  30  38  42  47  55  59  65  78  79
  1   8  19  29  31  39  43  48  56  60  66  69  79
  1   9  20  30  32  40  44  49  57  61  67  69  70
  1  10  21  31  33  41  45  47  50  62  68  70  71
  1  11  22  32  34  42  46  48  51  58  63  71  72
  1  12  23  33  35  36  43  49  52  59  64  72  73
  1  13  24  25  34  37  44  50  53  60  65  73  74
  2   3  14  28  33  41  42  48  57  60  67  73  76
  2   4  15  29  34  42  43  47  49  61  68  74  77
  2   5  16  30  35  43  44  48  50  58  62  75  78
  2   6  17  25  31  44  45  49  51  59  63  76  79
  2   7  18  26  32  45  46  50  52  60  64  69  77
  2   8  19  27  33  36  46  51  53  61  65  70  78
  2   9  20  28  34  36  37  52  54  62  66  71  79
  2  10  21  29  35  37  38  53  55  63  67  69  72
  2  11  22  25  30  38  39  54  56  64  68  70  73
  2  12  23  26  31  39  40  55  57  58  65  71  74
  2  13  24  27  32  40  41  47  56  59  66  72  75
  5  11  17  23  26  27  34  35  47  60  67  70  79
  6  12  18  24  25  27  28  35  48  61  68  69  71
  7  13  14  19  25  26  28  29  49  58  62  70  72
  3   8  15  20  26  27  29  30  50  59  63  71  73
  4   9  16  21  27  28  30  31  51  60  64  72  74
  5  10  17  22  28  29  31  32  52  61  65  73  75
  6  11  18  23  29  30  32  33  53  62  66  74  76
  7  12  19  24  30  31  33  34  54  63  67  75  77
  8  13  14  20  31  32  34  35  55  64  68  76  78
  3   9  15  21  25  32  33  35  56  58  65  77  79
  4  10  16  22  25  26  33  34  57  59  66  69  78
  9  10  18  19  27  34  38  40  43  45  58  73  76
 10  11  19  20  28  35  39  41  44  46  59  74  77
 11  12  20  21  25  29  36  40  42  45  60  75  78
 12  13  21  22  26  30  37  41  43  46  61  76  79
  3  13  22  23  27  31  36  38  42  44  62  69  77
  3   4  23  24  28  32  37  39  43  45  63  70  78
  4   5  14  24  29  33  38  40  44  46  64  71  79
  5   6  14  15  30  34  36  39  41  45  65  69  72
  6   7  15  16  31  35  37  40  42  46  66  70  73
  7   8  16  17  25  32  36  38  41  43  67  71  74
  8   9  17  18  26  33  37  39  42  44  68  72  75
 11  13  15  17  28  33  40  43  50  51  54  55  69
  3  12  16  18  29  34  41  44  51  52  55  56  70
  4  13  17  19  30  35  42  45  52  53  56  57  71
  3   5  18  20  25  31  43  46  47  53  54  57  72
  4   6  19  21  26  32  36  44  47  48  54  55  73
  5   7  20  22  27  33  37  45  48  49  55  56  74
  6   8  21  23  28  34  38  46  49  50  56  57  75
  7   9  22  24  29  35  36  39  47  50  51  57  76
  8  10  14  23  25  30  37  40  47  48  51  52  77
  9  11  15  24  26  31  38  41  48  49  52  53  78
 10  12  14  16  27  32  39  42  49  50  53  54  79
  5   9  19  23  25  41  42  50  55  61  63  64  66
  6  10  20  24  26  42  43  51  56  62  64  65  67
  7  11  14  21  27  43  44  52  57  63  65  66  68
  8  12  15  22  28  44  45  47  53  58  64  66  67
  9  13  16  23  29  45  46  48  54  59  65  67  68
  3  10  17  24  30  36  46  49  55  58  60  66  68
  4  11  14  18  31  36  37  50  56  58  59  61  67
  5  12  15  19  32  37  38  51  57  59  60  62  68
  6  13  16  20  33  38  39  47  52  58  60  61  63
  3   7  17  21  34  39  40  48  53  59  61  62  64
  4   8  18  22  35  40  41  49  54  60  62  63  65
 10  13  15  18  36  48  57  63  64  70  74  75  79
  3  11  16  19  37  47  49  64  65  69  71  75  76
  4  12  17  20  38  48  50  65  66  70  72  76  77
  5  13  18  21  39  49  51  66  67  71  73  77  78
  3   6  19  22  40  50  52  67  68  72  74  78  79
  4   7  20  23  41  51  53  58  68  69  73  75  79
  5   8  21  24  42  52  54  58  59  69  70  74  76
  6   9  14  22  43  53  55  59  60  70  71  75  77
  7  10  15  23  44  54  56  60  61  71  72  76  78
  8  11  16  24  45  55  57  61  62  72  73  77  79
  9  12  14  17  46  47  56  62  63  69  73  74  78

Ein Oval des Blockplans ist eine Menge seiner Punkte, von welcher keine drei auf einem Block liegen. Hier ist ein Beispiel eines Ovals maximaler Ordnung für jede Lösung dieses Blockplans:

  • Lösung 1
  1   3  31  46  49  65  77
  • Lösung 2
  1   2  25  36  47  58  69

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Michael Aschbacher: On collineation groups of symmetric block designs. In: Journal of Combinatorial Theory, Series A. Bd. 11, Nr. 3, 1971, S. 272–281, doi:10.1016/0097-3165(71)90054-9.
  2. Rudolf Mathon, Alexander Rosa: 2-(ν, κ, λ) Designs of Small Order. In: Charles J. Colbourn, Jeffrey H. Dinitz (Hrsg.): Handbook of Combinatorial Designs. 2nd Edition. Chapman & Hall/CRC, Boca Raton FL u. a. 2007, ISBN 978-1-4200-1054-1, S. 25–57.