(Z)-3-Hexenolprimverosid

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Strukturformel
Strukturformel von Z-3-Hexenolprimverosid
Allgemeines
Name (Z)-3-Hexenolprimverosid
Andere Namen
  • (3Z)-3-Hexen-1-yl-6-O-β-D-xylopyranosyl-β-D-glucopyranosid (IUPAC)
Summenformel C17H30O10
Externe Identifikatoren/Datenbanken
CAS-Nummer 132278-37-6
PubChem 6444012
ChemSpider 4947961
Wikidata Q105186405
Eigenschaften
Molare Masse 394,4 g·mol−1
Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung
keine Einstufung verfügbar[1]
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet.
Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen (0 °C, 1000 hPa).

(Z)-3-Hexenolprimverosid ist ein natürlich vorkommendes Glycosid aus β-D-Primverose und (Z)-3-Hexenol.

(Z)-3-Hexenolprimverosid ist neben Benzylprimverosid, Phenethylprimverosid, Linalylprimverosid und Geranylprimverosid Bestandteil des Aromas von Tee.[2][3][4] Daneben kommt es auch in dem Hundsgiftgewächs Apocynum venetum[5] vor. Verschiedene Arten der Gattung Alangium aus der Familie der Hartriegelgewächse, darunter Alangium platanifolium[6] und Alangium chinense[7], enthalten ebenfalls (Z)-3-Hexenolprimverosid.

Die Biosynthese in Teepflanzen wurde untersucht. Dabei findet eine zweistufige Glycosylierung statt, zuerst mit Glucose, dann mit Xylose. Eine Glycosyltransferase bildet Glucoside von verschiedenen Alkoholen (neben (Z)-3-Hexenol auch 2-Phenylethanol, Linalool und Benzylalkohol). Eine zweite kann dann spezifisch diese Glucoside durch Übertragung von Xylose in Primveroside überführen.[4]

Mittels Umglycosylierung des Primverosids von p-Nitrophenol mittels Penicillium multicolor können diverse andere Primveroside, darunter auch (Z)-3-Hexenolprimverosid im Millimol-Maßstab hergestellt werden.[8]

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Dieser Stoff wurde in Bezug auf seine Gefährlichkeit entweder noch nicht eingestuft oder eine verlässliche und zitierfähige Quelle hierzu wurde noch nicht gefunden.
  2. Dongmei Wang, Eriko Kurasawa, Yuichi Yamaguchi, Kikue Kubota, Akio Kobayashi: Analysis of Glycosidically Bound Aroma Precursors in Tea Leaves. 2. Changes in Glycoside Contents and Glycosidase Activities in Tea Leaves during the Black Tea Manufacturing Process. In: Journal of Agricultural and Food Chemistry. Band 49, Nr. 4, 1. April 2001, S. 1900–1903, doi:10.1021/jf001077+.
  3. Dongmei Wang, Takako Yoshimura, Kikue Kubota, Akio Kobayashi: Analysis of Glycosidically Bound Aroma Precursors in Tea Leaves. 1. Qualitative and Quantitative Analyses of Glycosides with Aglycons as Aroma Compounds. In: Journal of Agricultural and Food Chemistry. Band 48, Nr. 11, 1. November 2000, S. 5411–5418, doi:10.1021/jf000443m.
  4. a b Shoji Ohgami, Eiichiro Ono, Manabu Horikawa, Jun Murata, Koujirou Totsuka, Hiromi Toyonaga, Yukie Ohba, Hideo Dohra, Tatsuo Asai, Kenji Matsui, Masaharu Mizutani, Naoharu Watanabe, Toshiyuki Ohnishi: Volatile Glycosylation in Tea Plants: Sequential Glycosylations for the Biosynthesis of Aroma β -Primeverosides Are Catalyzed by Two Camellia sinensis Glycosyltransferases. In: Plant Physiology. Band 168, Nr. 2, Juni 2015, S. 464–477, doi:10.1104/pp.15.00403, PMID 25922059, PMC 4453793 (freier Volltext).
  5. Toshiyuki Murakami, Akinobu Kishi, Hisashi Matsuda, Masao Hattori, Masayuki Yoshikawa: Medicinal Foodstuffs. XXIV. Chemical Constituents of the Processed Leaves of Apocynum venetum L.: Absolute Stereostructures of Apocynosides I and II. In: Chemical and Pharmaceutical Bulletin. Band 49, Nr. 7, 2001, S. 845–848, doi:10.1248/cpb.49.845.
  6. Hideaki Otsuka, Yasuyuki Takeda, Kazuo Yamasaki: Xyloglucosides of benzyl and phenethyl alcohols and Z-hex-3-en-1-ol from leaves of Alangium platanifolium var. trilobum. In: Phytochemistry. Band 29, Nr. 11, Januar 1990, S. 3681–3683, doi:10.1016/0031-9422(90)85306-Z.
  7. Atsuko Itoh, Takao Tanahashi, Naotaka Nagakura, Kenichiro Inoue, Hiroshi Kuwajima, Hua-Xin Wu: Glycosides of Benzyl and Salicyl Alcohols from Alangium chinense. In: Chemical and Pharmaceutical Bulletin. Band 49, Nr. 10, 2001, S. 1343–1345, doi:10.1248/cpb.49.1343.
  8. Kazutaka Tsuruhami, Shigeharu Mori, Kanzo Sakata, Satoshi Amarume, Shigetaka Saruwatari, Takeomi Murata, Taichi Usui: Efficient Synthesis of β‐Primeverosides as Aroma Precursors by Transglycosylation of β‐Diglycosidase from Penicillium multicolor. In: Journal of Carbohydrate Chemistry. Band 24, Nr. 8-9, 1. November 2005, S. 849–863, doi:10.1080/07328300500439413.