Adjungierte Darstellung

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

In der Mathematik spielen die adjungierten Darstellungen von Lie-Gruppen und Lie-Algebren eine wichtige Rolle in Differentialgeometrie, Darstellungstheorie und Mathematischer Physik.

Lie-Gruppen und Lie-Algebren

[Bearbeiten | Quelltext bearbeiten]

Eine Lie-Gruppe ist eine differenzierbare Mannigfaltigkeit, die zusätzlich die Struktur einer Gruppe besitzt, so dass die Gruppenverknüpfung und die Inversion beliebig oft differenzierbar sind.

Die Lie-Algebra einer Lie-Gruppe ist der Vektorraum der links-invarianten Vektorfelder mit dem Kommutator als Lie-Klammer. Die Lie-Algebra kann auf kanonische Weise mit dem Tangentialraum im neutralen Element der Lie-Gruppe identifiziert werden:

.

Adjungierte Darstellungen

[Bearbeiten | Quelltext bearbeiten]

Sei eine Lie-Gruppe mit Lie-Algebra .

Definiere die Konjugation mit einem Element durch

und definiere außerdem

Definition Ad(g)

Für jedes definieren wir die Ableitung von im Punkt , dem neutralen Element der Gruppe, durch

bezeichnet den Differentialoperator an der Stelle .

Das ist eine lineare Abbildung vom Tangentialraum an der Stelle des neutralen Elementes in sich selber

da und somit ist ein Element aus .

Definition Ad

Die adjungierten Abbildungen definieren eine Darstellung der Gruppe

welche ein Lie-Gruppen-Homomorphismus ist und adjungierte Darstellung genannt wird.

Ebenfalls als adjungierte Darstellung bezeichnet wird die Ableitung von

welche ein Lie-Algebren-Homomorphismus ist. Dies entspricht dem Anwenden der Lie-Klammer

für alle .

Häufig nützt man auch folgende Notation

und

Weil es nach den Lie’schen Sätzen zu jeder endlich-dimensionalen reellen Lie-Algebra eine bis auf Isomorphismus eindeutige einfach zusammenhängende Lie-Gruppe mit gibt, lässt sich die adjungierte Darstellung für jede solche Lie-Algebra definieren.

Explizite Beschreibung

[Bearbeiten | Quelltext bearbeiten]

Für Matrizengruppen, d. h. abgeschlossene Untergruppen von , lässt sich auch die adjungierte Darstellung der Lie-Gruppe explizit beschreiben: nach der kanonischen Identifizierung von mit einer Teilmenge von gilt

für alle .

  • Arvanitoyeorgos, Andreas: An introduction to Lie groups and the geometry of homogeneous spaces. Translated from the 1999 Greek original and revised by the author. Student Mathematical Library, 22. American Mathematical Society, Providence, RI, 2003. ISBN 0-8218-2778-2
  • Hall, Brian C.: Lie groups, Lie algebras, and representations. An elementary introduction. Graduate Texts in Mathematics, 222. Springer-Verlag, New York, 2003. ISBN 0-387-40122-9
  • Knapp, Anthony W.: Lie groups beyond an introduction. Second edition. Progress in Mathematics, 140. Birkhäuser Boston, Inc., Boston, MA, 2002. ISBN 0-8176-4259-5