Algorithmische Zahlentheorie
Die algorithmische Zahlentheorie ist ein Teilgebiet der Zahlentheorie, welche wiederum ein Teilgebiet der Mathematik ist. Sie beschäftigt sich mit der Frage nach effizienten algorithmischen Lösungen für zahlentheoretische Fragestellungen.
Wichtigste Bereiche der elementaren algorithmischen Zahlentheorie sind
- Primzahltests
- Verfahren zur Faktorisierung einer ganzen Zahl
- Berechnung des diskreten Logarithmus
Hierfür benötigt man weitere Verfahren, die ebenfalls untersucht werden:
- schnelle Multiplikation
- schnelles Potenzieren
- Berechnung des größten gemeinsamen Teilers mit Hilfe des Euklidischen Algorithmus
- Berechnung des Jacobi-Symbols mit Hilfe des quadratischen Reziprozitätsgesetzes
- Faktorisierung von Polynomen, insbesondere auch schnelles Wurzelziehen.
Neue Forschungsergebnisse zur algorithmischen Zahlentheorie werden unter anderem auf der seit 1994 zweijährlich stattfindenden Konferenz ANTS (Algorithmic Number Theory Symposium) präsentiert.
Anwendungen
[Bearbeiten | Quelltext bearbeiten]Die wichtigste Anwendung der algorithmischen Zahlentheorie ist die Kryptographie. Beispielsweise wird beim RSA-Verfahren ausgenutzt, dass die Primzahleigenschaft einer Zahl schnell überprüft werden kann, aber bislang keine ähnlich schnellen Verfahren bekannt sind, eine zusammengesetzte Zahl (das ist eine Zahl, die nicht prim ist), zu faktorisieren. Auf dieser Tatsache beruht insbesondere die Sicherheit der Datenübertragung im Internet. In diesem Zusammenhang hatte RSA Security größere Summen für diejenigen ausgelobt, denen es gelingt, bestimmte Zahlen zu faktorisieren[1]. Weiter Anwendung in der Kryptographie finden Algorithmen etwa bei der Berechnung von diskreten Logarithmen für andere Verschlüsselungs- und Signaturverfahren.
Ein viel untersuchtes Problem mit weitreichenden Anwendungen ist es, in einem Zahlengitter eine das Gitter erzeugende Basis zu finden, die aus möglichst kurzen und möglichst orthogonalen Basisvektoren besteht (Gitterbasenreduktion).
Personen
[Bearbeiten | Quelltext bearbeiten]- Leonard Adleman
- A. O. L. Atkin
- Daniel Bernstein
- Jonathan Borwein
- Peter Borwein
- Richard P. Brent
- John Brillhart
- Johannes Buchmann
- Henri Cohen
- Allan Joseph Champneys Cunningham
- Noam Elkies
- Maurice Kraitchik
- Jeffrey Lagarias
- Derrick Henry Lehmer[2][3]
- Emma Lehmer
- Arjen Lenstra
- Hendrik Lenstra (Jr.)[4]
- Édouard Lucas
- Mark S. Manasse
- Preda Mihăilescu
- Victor S. Miller
- Peter Montgomery
- François Morain
- Andrew Odlyzko
- Michael Pohst[5]
- John M. Pollard
- Carl Pomerance
- Hans Riesel
- René Schoof
- Richard Schroeppel
- John L. Selfridge[6]
- Daniel Shanks[7]
- Herman te Riele
- Samuel Wagstaff
- Hugh C. Williams[8]
- Marvin Wunderlich
- Don Zagier
- Hans Zassenhaus
Literatur
[Bearbeiten | Quelltext bearbeiten]- Willi Klösgen: Dokumentation über zahlentheoretische Probleme, die mit Hilfe elektronischer Datenverarbeitungsanlagen behandelt wurden. Mitteil. Ges. f. Math. u. Datenverarb. Nr. 3, Birlinghoven 1970
- Garrett Birkhoff, Marshall Hall Jr.: Computers in Algebra and Number Theory. (SIAM-AMS Proceedings IV) AMS, Providence 1971
- Horst-Günter Zimmer: Computers and computations in algebraic number theory. In: S. R. Petrick (Hrsg.): SYMSAC '71, Proc. second ACM symposium on symbolic and algebraic manipulation, Los Angeles 1971, S. 172–179
- H.-G. Zimmer: Computational Problems, Methods, and Results in Algebraic Number Theory. Lecture Notes Math. 262, Springer-Verlag 1972
- Hendrik W. Lenstra, Robert Tijdeman (Hrsg.): Computational methods in number theory I, II. Math. Centre Tracts 154/155, Math. Centrum Amsterdam, 1982
- Attila Pethő, Michael Pohst, Hugh Williams, Horst-Günter Zimmer (Hrsg.): Computational Number Theory. Proc. Coll. Debrecen 1989. Walter de Gruyter, 1991, ISBN 978-3-11-012394-4.
- Michael Pohst, Hans Zassenhaus: Algorithmic Algebraic Number Theory. Cambridge University Press 1989, 1990, 1993, 1997, ISBN 0-521-59669-6.
- Carl Pomerance (Hrsg.): Cryptology and computational number theory. (Proc. Sympos. Appl. Math. vol. 42, short course lecture notes). AMS, Providence 1990, ISBN 0-8218-0155-4.
- Igor E. Shparlinski: Computational and algorithmic problems in finite fields. Reihe Mathematics and Its Applications vol. 88, Kluwer Academic Publishers, Dordrecht 1992; Softcover Springer 2012, ISBN 978-94-010-4796-8.
- Michael Pohst: Computational Algebraic Number Theory. DMV Seminar Bd. 21, Birkhäuser, Basel 1993, ISBN 3-7643-2913-0.
- Michel Waldschmidt, Pierre Moussa, Jean-Marie Luck, Claude Itzykson (Hrsg.): From number theory to physics. Winter school, Les Houches, 1989. Springer-Verlag 1992, 1995, ISBN 3-540-53342-7.
- Peter J. Giblin: Primes and programming: an introduction to number theory with computing. Cambridge University Press 1993, ISBN 0-521-40182-8, ISBN 0-521-40988-8.
- H. Krishna, B. Krishna, K.-Y. Lin, J.-D. Sun: Computational Number Theory and Digital Signal Processing. Fast Algorithms and Error Control Techniques. CRC Press 1994, ISBN 0-8493-7177-5.
- Alf van der Poorten, Wieb Bosma (Hrsg.): Computational algebra and number theory (Sydney, 1992) (Mathematics and its applications 325) Kluwer, Dordrecht, 1995, ISBN 0-7923-3501-5, Paperback, Springer 2010, ISBN 978-90-481-4560-7.
- Eric Bach, Jeffrey Shallit: Algorithmic Number Theory. Vol. I: Efficient Algorithms. MIT Press 1996, ISBN 0-262-02405-5.
- Otto Forster: Algorithmische Zahlentheorie. Vieweg, 1996, ISBN 3-528-06580-X
- Vgl. auch das zugehörige Programm ARIBAS
- Duncan A. Buell, Jeremy T. Teitelbaum (Hrsg.): Computational Perspectives on Number Theory: Proc. Conf. in Honor of A.O.L. Atkin, Chicago 1995. (AMS/IP Studies in Advanced Mathematics 7) AMS 1997, ISBN 0-8218-0880-X.
- Kálmán Győry, Attila Pethő, Vera T. Sós (Hrsg.): Number Theory: Diophantine, Computational and Algebraic Aspects - Proc. Conf. Eger 1996. de Gruyter 1998, ISBN 978-3-11-015364-4.
- Ramanujachary Kumanduri, Cristina Romero: Number theory with computer applications. Prentice Hall 1998, ISBN 0-13-801812-X.
- Nigel Smart: The algorithmic resolution of diophantine equations. (London Mathematical Society Student Texts 41) Cambridge University Press, 1998, ISBN 0-521-64156-X.
- B. Heinrich Matzat, Gert-Martin Greuel, Gerhard Hiss (Hrsg.): Algorithmic algebra and number theory. Selected papers from a conference held at the University of Heidelberg in October 1997. Springer 1999, ISBN 3-540-64670-1.
- Melvyn B. Nathanson (Hrsg.): Unusual applications of number theory: DIMACS Workshop, 2000. (DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 64) AMS 2004, ISBN 978-0-8218-2703-1.
- Song Y. Yan: Number theory for computing. 2. Aufl., Springer-Verlag 2002, ISBN 3-540-43072-5.
- István Gaál: Diophantine equations and power integral bases: New computational methods. Birkhäuser 2002; Springer 2013, ISBN 0-8176-4271-4.
- Henri Cohen: A Course in Computational Algebraic Number Theory. 4. Auflage. Springer, Berlin 2003, ISBN 3-540-55640-0
- Alf van der Poorten, Andreas Stein, Hugh C. Williams (Hrsg.): High Primes and Misdemeanours: Lectures in Honour of the 60th Birthday of Hugh Cowie Williams. (Fields Institute Communications, Vol. 41) AMS 2004, ISBN 0-8218-3353-7.
- Richard E. Crandall, Carl Pomerance: Prime Numbers – A Computational Perspective. 2. Auflage. Springer, 2005, ISBN 0-387-25282-7.
- Victor Shoup: A computational introduction to number theory and algebra. Cambridge 2005, 2008, ISBN 0-521-85154-8.[9]
- David Bressoud, Stan Wagon: A course in computational number theory. John Wiley 2008, ISBN 0-470-41215-1.
- Harold M. Edwards: Higher Arithmetic: An algorithmic introduction to number theory. Student Mathematical Library vol. 45, American Mathematical Society 2008, ISBN 0-8218-4439-3.
- Abhijit Das: Computational number theory. Reihe Discrete Mathematics and Its Applications, Chapman and Hall/CRC Press 2013, ISBN 978-1-4398-6615-3.
- Samuel S. Wagstaff, Jr.: The joy of factoring. Student Mathematical Library vol. 68, American Mathematical Society 2013, ISBN 1-4704-1048-6.
Weblinks
[Bearbeiten | Quelltext bearbeiten]- 7th Algorithmic Number Theory Symposium – Webauftritt zur Konferenz 2006
- History of ANTS – Übersicht der bisher stattgefundenen ANTS-Konferenzen
- H. Lenstra, C. Pomerance, J. Pila: Future directions in algorithmic number theory. Workshop at the American Institute of Mathematics, Palo Alto 2003.
- Joseph P. Buhler, Peter Stevenhagen (Hrsg.): Algorithmic Number Theory, MSRI Publications Vol. 44, Cambridge University Press 2008, ISBN 978-0-521-80854-5.
Einzelnachweise
[Bearbeiten | Quelltext bearbeiten]- ↑ siehe RSA Challenge
- ↑ Nr. 129 von Mathematics of Computation, Band 29, wurde Lehmer im Januar 1975 anlässlich seines 70. Geburtstags gewidmet.
- ↑ Nr. 203 von Mathematics of Computation, Band 61, wurde im Juli 1993 dem Gedenken an Lehmer gewidmet.
- ↑ Anlässlich der Verabschiedung von Lenstra nach 17 Jahren an der Universität Berkeley fand im März 2003 eine wissenschaftliche Konferenz statt, das Lenstra Treurfeest – A Farewell Conference, March 21-23, 2003 ( vom 13. Februar 2003 im Internet Archive)
- ↑ Heft 3 von Band 18 (2006) des Journal de Théorie des Nombres de Bordeaux wurde Pohst anlässlich seines 60. Geburtstags gewidmet. Journal de théorie des nombres de Bordeaux Volume 18, number 3 (2006) ( vom 9. Oktober 2007 im Internet Archive)
- ↑ Band 12A (2012) der Zeitschrift Integers für kombinatorische Zahlentheorie und additive Kombinatorik ([1]) erschien als John Selfridge Memorial Volume.
- ↑ Nr. 177/178 von Mathematics of Computation, Band 48, wurde Shanks im Januar 1987 anlässlich seines 70. Geburtstags gewidmet.
- ↑ Zum 60. Geburtstag von Williams wurde 2003 in Banff (Canada) ihm zu Ehren eine wissenschaftliche Konferenz ausgerichtet (siehe Literatur). Fields Institute - Conference in Number Theory - 2003, Number Theory Conference in honour of Professor H. C. Williams | CISaC ( vom 24. Juli 2020 im Internet Archive)
- ↑ A Computational Introduction to Number Theory and Algebra. Shoup.net, abgerufen am 19. September 2010.