Benutzer:ArchibaldWagner/Entwurf Adiabat Zustands 20170428
Entwurf für Adiabatische_Zustandsänderung angefangen: 2017-04-28
älteres Material
[Bearbeiten | Quelltext bearbeiten]Reversible adiabatische Zustandsänderungen
[Bearbeiten | Quelltext bearbeiten]Bei reversiblen adiabatischen Zustandsänderungen ändert sich die Entropie nicht, sie sind daher auch isentrop. Als Adiabate wird eine Kurve im Zustandsraum bezeichnet, auf der sich ein thermodynamisches System bei reversiblen adiabatischen Zustandsänderungen bewegt.
Eine adiabatischen Zustandsänderung wird quasistatisch genannt, wenn sich bei der Zustandsänderung das System zu jedem Zeitpunkt nahezu im thermodynamischen Gleichgewicht befindet. In diesem Fall beschreiben die bei der Änderung eingenommen Gleichgewichtspunkte einen zusammenhängenden Weg im Zustandsraum. Dieser Weg wird Adiabate genannt. zu ...einfache Systeme ...
Ideales Gas / Adiabatengleichungen
[Bearbeiten | Quelltext bearbeiten]Die Gleichgewichtszustände eines Gases mit konstanter Stoffmenge in einem einzigen Behälter bilden einen zweidimensionalen Zustandsraum . Als Koordinaten wird im folgenden das Volumen des Gasbehälters und die Temperatur des Gases verwendet; jedem Punkt in ist eineindeutig ein 2-Tupel zugeordnet. Zu gehören nur Punkte mit und .
Bei einer Änderung des Volumens um wird von den äußeren Vorrichtungen die Arbeit
an dem System geleistet. Die letzte Gleichheit gilt nur für ein ideales Gas, bei ihm ist der Druck durch die Zustandsfunktion des idealen Gases gegeben, mit als Stoffmenge und der Gaskonstanten. Weiter ist bei einem idealen Gas die Änderung der inneren Energie unabhängig vom Volumen und proportional der Temperaturänderungen.
ist die Stoffmenge und die hier konstante molare Wärmekapazität für konstantes Volumen. Bei adiabatischen Prozessen gilt
- und damit bzw.
Bei einer reversiblen adiabatischen Zustandsänderung bewegt sich das System im Zustandsraum von einem Startpunkt längs eines Weges mit einem willkürlichen Kurvenparameter , dabei muss die obige Beziehung eingehalten werden. Dieses ist genau dann der Fall ist, wenn der Weg die folgende, auch Adiabatengleichung genannte, Differentialgleichung erfüllt.
Diese lässt sich umschreiben zu:
damit und mit der Stetigkeit am Anfang des Weges gilt
Diese Gleichung wird oft mit dem Adiabatenkoeffizienten wobei geschrieben.
- bzw.
Unter Ausnutzung der Zustandsgleichung für ideale Gase folgen hieraus analoge Beziehungen für die Variablenpaare und
- bzw.
und
- bzw.
In der Literatur werden diese Gleichungen Adiabatengleichungen oder Poisson-Gleichungen genannt (Gerthsen S 219, Wedler S54, Günter Ludwig Grundl der theor. Physik Bd 4). Für Gase wie Stickstoff und Sauerstoff gilt für den Adiabatenkoeffizient .
Hinweis: ist in der obigen Herleitung ein willkürlicher Kurvenparameter zur Beschreibung der Adiabate im Zustandsraum , ihm ist keine physikalische Variable zugeordnet, entsprechend lässt sich hier nur etwas über die Beziehung zwischen und aussagen, nicht aber über die Abhängigkeit der einzelnen Funktionen von .
Anmerkungen
[Bearbeiten | Quelltext bearbeiten]