y = r ⋅ sin ( ω ⋅ t ) {\displaystyle y=r\cdot \sin(\omega \cdot t)}
f = 1 2 π ⋅ k m {\displaystyle f={\frac {1}{2\pi }}\cdot {\sqrt {\frac {k}{m}}}}
T = 2 π ⋅ m k {\displaystyle T=2\pi \cdot {\sqrt {\frac {m}{k}}}}
f = 1 T {\displaystyle f={\frac {1}{T}}}
f = 15 30 s = 0.5 ( 1 s ) = 0.5 ( H z ) {\displaystyle f={\frac {15}{30s}}=0.5{\Bigl (}{\frac {1}{s}}{\Bigr )}=0.5(Hz)}
T = 1 f = 1 0.5 ( 1 s ) = 2 ( s ) {\displaystyle T={\frac {1}{f}}={\frac {1}{0.5({\frac {1}{s}})}}=2(s)}