Benutzer:Dittum/Folienlager
A foil bearing, also known as a foil-air bearing, is a type of air bearing. A shaft is supported by a compliant, spring-loaded foil journal lining. Once the shaft is spinning fast enough, the working fluid (usually air) pushes the foil away from the shaft so that no contact occurs. The shaft and foil are separated by the air's high pressure, which is generated by the rotation that pulls gas into the bearing via viscosity effects. The high speed of the shaft with respect to the foil is required to initiate the air gap, and once this has been achieved, no wear occurs. Unlike aerostatic or hydrostatic bearings, foil bearings require no external pressurisation system for the working fluid, so the hydrodynamic bearing is self-starting.
Development
[Bearbeiten | Quelltext bearbeiten]Foil bearings were first developed in the late 1950s by AiResearch Mfg. Co. of the Garrett Corporation using independent R&D funds to serve military and space applications.[1][2] They were first tested for commercial use in United Airlines Boeing 727 and Boeing 737 cooling turbines in the early and mid-1960s.[3] Garrett AiResearch air cycle machine foil bearings were first installed as original equipment in 1969 in the DC-10's environmental control systems. Garrett AiResearch foil bearings were installed on all US military aircraft to replace existing oil-lubricated rolling-contact bearings. The ability to operate at cryogenic gas temperatures and at very high temperatures gave foil bearings many other potential applications.[4]
Current-generation foil bearings with advanced coatings have greatly exceeded the limitations of earlier designs. Antiwear coatings exist that allow over 100,000 start/stop cycles for typical applications.[5]
Applications
[Bearbeiten | Quelltext bearbeiten]Turbomachinery is the most common application because foil bearings operate at high speed.[6] The main advantage of foil bearings is the elimination of the oil systems required by traditional bearing designs. Other advantages are:
- Higher efficiency, due to a lower heat loss to friction; instead of fluid friction, the main source of heat is parasitic drag
- Increased reliability
- Higher speed capability
- Quieter operation
- Wider operating temperature range (40–2,500 K)
- High vibration and shock load capacity
- No scheduled maintenance
- No external support system
- Truly oil free where contamination is an issue
- Capable of operating above critical speed
Areas of current research are:
- Higher load capacity
- Improved damping
- Improved coatings
The main disadvantages are:
- Lower capacity than roller or oil bearings
- Wear during start-up and stopping
- High speed required for operation
See also
[Bearbeiten | Quelltext bearbeiten]References
[Bearbeiten | Quelltext bearbeiten]External links
[Bearbeiten | Quelltext bearbeiten]- NASA Glenn Research Center "Creating a Turbomachinery Revolution"
- NASA Tribology & Mechanical Components Branch
- R&D Dynamics Corporation Foil bearing supported high speed turbomachinery
- Turbomachinery and Energy System Laboratory at UTA
- Mohawk Innovative Technology, Inc.
- Tribology Group at Texas A&M
- Korean Institute for Science and Technology KIST
- Center for Rotating Machinery at LSU
[[Category:Bearings (mechanical)]]
[[Category:Gas turbine technology]]
- ↑ Giri L. Agrawal: Foil Air/Gas Bearing Technology — An Overview. In: Publication 97-GT-347. American Society of Mechanical Engineers, 1997 (rddynamics.com [PDF]).
- ↑ Giri L. Agrawal: Foil Bearings Cleared to Land. 1978-1980. Jahrgang, Nr. 120, Juli 1998 (rddynamics.com ( des vom 15 April 2016 im Internet Archive)).
- ↑ Scholer Bangs: Foil Bearings Help Air Passengers Keep their Cool. In: Power Transmission Design. Februar 1973.
- ↑ Application of Air Bearings to High-Speed Turbomachinery. In: Technical Paper No. 700720. Society of Automotive Engineers, September 1970, 700720 (sae.org).
- ↑ Hooshang Heshmat: Major Breakthrough in Load Capacity, Speed and Operating Temperature of Foil Thrust Bearings. In: Technical Paper No. WT2005-63712. American Society of Mechanical Engineers, September 2005, WT2005-63712 (store.asme.org ( des vom 14. Februar 2008 im Internet Archive) [abgerufen am 25. September 2006]).
- ↑ The Quest for Oil-Free Gas Turbine Engines. In: SAE Technical Papers. SAE, 2006, 2006-01-3055 (sae.org ( des vom 30. September 2007 im Internet Archive) [abgerufen am 18. August 2007]).