Benutzer:Elcap/Schwingquarz
Ein Schwingquarz (englisch oscillating crystal), abgekürzt oft auch nur als Quarz bezeichnet, ist ein ist ein elektromechanischen Resonator und dient der Erzeugung einer elektrischen Schwingung. Er besteht aus einem aus einem monokristallinen, schwingfähigen piezoelektrischen Quarzkristall, dessen Orientierung bezüglich der kristallographischen Achsen (Schnitt) und Abmessungen die Frequenz bestimmen. Der Quarzkristall wird beidseitig mit Elektroden versehen, an die ein von einem Oszillator erzeugtes Wechselfeld angelegt wird. Durch Rückkopplung wird die Frequenz des Wechselfeldes mit der mechanischen Eigenfrequenz des Quarzkristalls in Übereinstimmung gebracht. Dadurch wirkt der Schwingquarz wie ein elektrischer Resonanzkreis mit sehr geringer Dämpfung (= sehr hohem Gütefaktor). Schwingquarze können, wenn sie entsprechend eingesetzt werden, Frequenzgenauigkeiten erreichen, die weit über die meisten Anforderungen der Industrie hinaus gehen.
Gesellschaftliche Bedeutung
[Bearbeiten | Quelltext bearbeiten]Unsere Gesellschaft ist von der Elektronik geprägt. Elektronik, die heutzutage (2010) weitgehend in Fernost hergestellt wird. Kaum ein Gerät, das früher einmal ein rein mechanisches Werk war, kommt ohne Elektronik aus. Die Geschichte der Zeitmessung mit Uhren ist ein gutes Beispiel dafür.
Ursprünglich reichte den Menschen die grobe Zeiteinteilung eines Tages mit Hilfe einer Sonnenuhr aus. Vom späten Mittelalter an wurde eine genauere Zeitmessung für kirchliche Rituale wichtig. Mit der Pendeluhr von Huygens wurde die Stunde präzise messbar gemacht. Später, mit den Weltumsegelungen von James Cook und den Entdeckungsreisen von Alexander von Humbold war eine sekundengenaue Ganggenauigkeit über viele Monate unabdingbar, um die genaue Position zu bestimmen. Die „Längenuhr“ von Harrison erfüllte diese Voraussetzung. Mit der Industrialisierung begann dann auch die Notwendigkeit einer genaueren Zeitmessung im persönlichen und privaten Bereich. Pendeluhren in Wohnungen gehörten bald schon in jeden besseren Haushalt. Nach dem ersten Weltkrieg erlebten mechanische Armbanduhren ihren Siegeszug und machten die Zeitmessung auch ortsunabhängig.[1] [2]
Diese Entwicklung hatte eine wachsende Uhrenindustrie zur Folge, deren Fertigungen in Europa und den USA besonders nach dem Zweiten Weltkrieg viele Arbeitsplätze schufen. Parallel dazu entwickelte sich aber auch, getrieben von der Rundfunk- und Fernsehindustrie, eine große Anzahl von Herstellern von elektronischen Bauelementen, auch von Schwingquarzen. Die Entwicklung der Elektronik ließen den europäischen Markt boomen. Die boomende Entwicklung der europäischen und auch der US-Elektronikindustrie endete in etwa mit der Einführung der Quarz-Armbanduhren 1969 durch Seiko. Diese praktischen und genauen Uhren wurden 1967 von der CEH in der Schweiz entwickelt. [3] Die Japaner übernahmen diese Entwicklung und schufen durch Massenproduktion und globales Marketing die Grundvoraussetzung für die Entwicklung einer eigenen Elektronikindustrie. Der Schwingquarz bildete zunächst das Herzstück dieser neuen Industrie. Es war der Beginn einer rasanten Entwicklung von Industriebetrieben für elektronische Bauelemente und Geräte, zunächst in Japan und später auch in anderen fernöstlichen Ländern, begleitet mit dem Niedergang dieser Betriebe in den ursprünglichen Ländern. Der Erfolg der Japaner bekam eine solche Eigendynamik, dass schon 20 Jahre später von der Fertigung mechanischer Uhren aber auch von der Fertigung elektronischer Bauelemente in Europa und in den USA nur noch wenige Spezialisten übrig geblieben waren. Der Schwingquarz in der genauen und trotzdem preiswerten Quarz-Armbanduhr bildet in dieser Entwicklung einen Drehpunkt für die Verlagerung ganzer Industrien.
Frequenzquelle | Gang-Genauigkeit (gerundet) |
---|---|
Kirchturmpendeluhr (Huygens, 1657)[4] | 10 s/d |
Navy-Chronometer (Harrison, 1759)[5] | < 1 s/Td |
Elektro-Mechanische Uhr, (1843) | 0,1 s/d |
Vakuum-Pendeluhr (Shortt, 1921) | 0,01 s/d |
Schwingquarz in einem temperaturkompensierten Quarzoszillator (Bell-Quarz-Frequenzstandard, 1930)[6]. |
0,001 s/d ≈ 0,3 s/a |
Mechanische Heim-Pendeluhr | < 10 s/d |
Preiswerte mechanische Armbanduhren (ab 1925) | < 10 s/d |
Preiswerte Quarz-Armbanduhren (ab 1975) | < 1 s/d |
Caesium-Frequenzstandard (Atomuhr 1952) [7] | 3,15×10−4 s/a ≈ 1 s in 10 Jahren |
Cäsium-Frequenzstandard, (Atomuhr 1999) | 3,15×10−8 s/a ≈ 0,03 s in 1 Million Jahren |
Grundlagen
[Bearbeiten | Quelltext bearbeiten]Eigenschaften des Qarzkristalls
[Bearbeiten | Quelltext bearbeiten]Das Basismaterial eines Schwingquarzes ist Quarz, die kristalline Form des Siliziumdioxids (SiO2), das als Bergkristall natürlicherweise vorkommt. Quarzkristalle treten in einem trigonalen Kristallsystem in zwei Arten auf, als „Rechts-„ oder als „Linksquarz“ [8] [9]. [10] Diese beiden Arten sind sich spiegelbildlich gleich. Der Querschnitt eines idealen Quarzkristalls ist sechseckig. Wie in der Kristallographie üblich, werden die 3 senkrecht aufeinander stehenden Achsen mit x, y und z definiert. Die z-Achse, auch optische Achse genannt, geht durch die Spitze des Kristalls. Die y-Achse verbindet zwei sich gegenüber liegende Seitenflächen des Kristalls miteinander und wird mechanische Achse genannt. Rechtwinklig zur y-Achse liegt die x-Achse, die sogenannte elektrische Achse, weil bei mechanischer Belastung des Kristalls in dieser Richtung eine elektrische Ladung auftritt. Allerdings treten bei Quarzkristallen zwei Kristallsysteme auf, das hexagonale Kristallsystem, das bei Temperaturen oberhalb 573 °C auftritt und das frei von piezoelektrischen Erscheinungen ist und das trigonale Kristallsystem unterhalb von 573 °C, die α-Modifikation des Quarzkristalls. Nur die α-Modifikation von Quarz hat piezoelektrische Eigenschaften.
Aus dem Quarzkristall wird nun ein Schwingquarz, wenn aus dem Kristall eine Scheibe oder ein quaderförmiges Plättchen in einer genau definierten kristallographischer Orientierung (Quarzschnitt) herausgeschnitten wird. Wird diese Scheibe oder das Plättchen mechanisch deformiert, so werden elektrische Ladungen auf seiner Oberfläche erzeugt. Dieser piezoelektrische Effekt, die Piezoelektrizität, ist auch umkehrbar, das heißt, wird ein elektrisches Feld an dieses Material gelegt, so verformt es sich (inverser Piezoeffekt). Sobald das elektrische Feld nicht mehr anliegt, nimmt das Material seine ursprüngliche Form wieder an, wobei eine elektrische Spannung erzeugt wird. Die einmal durch Anlegen einer Spannung hervorgerufene mechanische Verformung am piezoelektrischen Kristall eines Schwingquarzes erzeugt nach dem Ausschalten der Spannung ein elektrisches Signal. Mittels einer Rückkopplungsschaltung kann dieses Signal für die Erzeugung einer mechanischen Resonanzschwingung des Materials genutzt werden, wobei wegen der sehr guten physikalischen Parameter des Siliziumdioxids, wie zum Beispiel die geringe Dämpfung des kristallinen Materials, die außerordentliche gute mechanische und dynamische Stabilität und die geringe Temperaturabhängigkeit ein sehr stabiles Taktsignal mit genauer Frequenz und definierter Amplitude entsteht. Durch die Wahl der Quarzschnitte und die jeweils erregte mechanischer Schwingungsform ergeben sich darüber hinaus für bestimmte Frequenzbereiche typische elektrische Werte der Schwingquarze.
Schwingungsformen
[Bearbeiten | Quelltext bearbeiten]-
Schwingungsmodi von Quarzkristallen[11]
-
Deformationsschwingungen eines Dickenscherschwingers
Ein aus einem Quarzkristall herausgeschnittenes Quarzplättchen führt im elektrischen Wechselfeld Deformationsschwingungen aus, wenn die Frequenz des Wechselfeldes mit der Eigenfrequenz des Quarzplättchens übereinstimmt. Dieser Fall, die Resonanz, wird, wie bei allen mechanischen Schwingern, durch die Materialkonstanten und durch die mechanischen Abmessungen bestimmt. Die Deformationsschwingungen von Quarzresonatoren können in unterschiedlichen mechanischen Schwingungsformen auftreten.
Längenschwinger, auch Dehnungsschwinger genannt, sind plattenförmige Resonatoren, die in Richtung ihrer längeren Abmessung schwingen. Die Längenänderung wird durch ein elektrisches Wechselfeld, das senkrecht zur Schwingrichtung anliegt, hervorgerufen. Die auftretende Schwingung kann anschaulich auch mit einer akustischen Welle beschrieben werden, die im Zentrum des Resonators erzeugt wird. Diese Welle schreitet in Längsrichtung des Resonators fort. An den Enden des Resonators erfolgt eine Totalreflexion der Welle. Durch Überlagerung der hin- und rücklaufenden Welle entsteht im Resonanzfall eine stehende Welle, sofern die Resonatorlänge ein ganzes Vielfaches der halben Wellenlänge ist.
Biegeschwingungen in den Biegeschwingern können angeregt werden, indem Längenschwinger mit zwei gegenphasig angeschlossenen Elektroden versehen werden, so dass zwei entgegengesetzte Felder in x-Richtung auftreten. Hierdurch wird eine Biegung in z-Richtung erzwungen. Die Frequenzkonstante der meist quadratischen Kristallstäbe von Biegeschwingern wird von den Materialkonstanten und der Länge und der Breite des Resonators bestimmt, sodass für Biegeschwinger kein einheitlicher Zahlenwert angegeben werden kann. Längen- und Biegeschwinger werden zur Erzeugung von kleineren Frequenzen unterhalb 1 MHz eingesetzt.
Eine Sonderform der Biegeschwinger sind die Stimmgabelschwinger. Stimmgabelschwinger können mit dem Bild eines gebogenen Stabes erklärt werden, der Biegeschwingungen ausführt. Die Frequenz ist von Stimmgabelschwingern ist von der Zinkenlänge und Breite abhängig. Stimmgabelschwinger werden überwiegend zur Erzeugung von Uhrenfrequenzen eingesetzt.
Die Schwingungen in Dickenscherschwingern ergeben sich aus gegenläufigen Verschiebungen der beiden größeren Oberflächenbereiche zueinander. Der oder - bei Oberwellenquarzen – die Schwingungsknoten befinden sich innerhalb des Resonators. Durch ein ausgeklügeltes Verhältnis des Resonatordurchmessers zur Dicke des Kristalls sowie zur Größe der Elektroden kann die Schwingungsenergie auf die Resonatormitte konzentriert werden, so dass am Resonatorumfang eine Halterung des Kristalls ermöglicht wird. (Quelle: Briese) Dickenscherungsschwinger sind aufgrund der Resonanzart besonders stabil gegenüber äußeren Einflüssen. Sie werden in der Schnittform des AT-Schnittes am häufigsten in Schwingquarzen eingesetzt und kommen praktisch für alle Frequenzen ab 1 MHz aufwärts zur Anwendung. Bis etwa 20 bis 30 MHz werden die Resonatoren in ihrer Grundwelle betrieben. Oberhalb 30 MHz bis etwa 250 MHz werden Dickenscherschwinger mit ihrer ungeraden Oberwelle bis hin zur 9. Oberwelle angeregt.
Die Resonanzschwingung in Flächenscherschwingern ergibt sich aus gegenläufigen Verschiebungen von je zwei Seitenflächenbereichen gegeneinander. Die Resonanzfrequenz der Flächenscherschwinger wird durch die Abmessungen der Kantenlängen der meist quadratischen oder rechteckigen Resonatoren und den richtungsabhängigen elastischen Werten des Kristalls bestimmt. Hieraus resultieren vom Kristallschnitt abhängige Frequenzkonstanten mit bevorzugten Frequenzbereichen.
Kristallschnitte
[Bearbeiten | Quelltext bearbeiten]Die Eigenschaften von Schwingquarzen wie die thermische Stabilität der Resonanzfrequenz, die internen Verluste und die Ziehbarkeit werden vom Schnittwinkel, mit dem die Resonatorplättchen aus dem Quarzkristall herausgeschnitten werden, bestimmt. Durch den Schnittwinkel ist die Richtung der Kristallisation in einem Resonatorplättchen vorgegeben womit die mechanischen Eigenschaften des Piezokristalls beeinflusst werden. Dies gilt auch für weitere Bauelemente wie z. B. Oberflächenwellenfilter (surface acoustic wave, SAW), die mit Quarzkristallen als Basismaterial arbeiten.
-
Lage der Koordinaten im Quarzkristall mit Darstellung der Lage des X- und des Y-Schnittes
-
Lage des AT- und des BT-Schnittes im Quarzkristall[12]
-
Schnittwinkel verschiedener Kristallschnitte von Schwingquarzen
Die Lage der Schnitte im Quarzkristall wird mit Hilfe der geometrischen Achsen als Winkel zwischen X und Y und ggfs. auch noch Z definiert. Jeder spezielle Schnitt wird mit einer Buchstabenkombination gekennzeichnet wobei ein „T“ in dieser Kombination immer auf einen Temperatur-stabilisierten Schwingquarz hinweist. [13]
-
Frequenzänderungen in Abhängigkeit von der Temperatur bei verschiedenen Kristallschnitten
-
Frequenzänderungen in Abhängigkeit von der Temperatur beim AT-Schnitt mit leicht geänderten Schnittwinkeln
Hauptunterscheidungsmerkmal der verschiedenen Kristallschnitte ist die unterschiedliche Abhängigkeit der Resonanzfrequenz von der Temperatur. Dazu sind im linken oberen Bild die Frequenzänderungen im Temperaturbereich von −40 °C bis +120 °C bei verschiedenen Kristallschnitten aufgeführt. Es zeigt sich, dass die Kristallschnitte, bis auf den AT-Schnitt, die Kurvenform einer nach unten offenen Parabel bilden. Im Scheitelpunkt der Parabel besteht ein mehr oder weniger großer Temperaturbereich, in dem die Frequenzänderung verhältnismäßig gering ist. Der AT-Schnitt bildet dagegen einen sinus oder S-förmigen Kurvenverlauf der Frequenzänderung über die Temperatur. Er kann so gelegt werden, dass der Kurvenverlauf am Wendepunkt der Sinuskurve den Temperaturbereich von −40 °C bis + 100 °C in der Weise abdeckt, dass die Frequenzänderung Δf/f kleiner ± 30 ppm wird, wobei Bereich am Wendepunkt bei etwa 25 bis 35 °C liegt und dort im Idealfall so gut wie keine Frequenzänderung eintritt. Deshalb werden mehr als 90 % aller gefertigten Schwingquarze, mit Ausnahme der Stimmgabelquarze, mit Kristallen im AT-Schnitt hergestellt. [14]
Der Standard-AT-Schnitt hat für Frequenzen bis 10 MHz einen Steigungswinkel des Kristallschnittes von 35°15’ der X-Achse gegenüber der optischen Z-Achse auf (35°18’ für Frequenzen > 10 MHz). Wie das rechte obige Bild zeigt, kann mit einer geringen Änderung des Schnittwinkels der Kurvenverlauf deutlich beeinflusst werden. Damit kann der obere Wendepunkt der Frequenzänderungskurve in den höheren Temperaturbereich gelegt werden. Durch Aufheizen des Schwingquarzes kann der Arbeitspunkt in diesen Bereich gelegt werden, so dass die erzeugte Frequenz unabhängig von der Umgebungstemperatur wird. Dies wird bei den temperaturkompensierten Oszillatoren TCXO und OCXO ausgenutzt.
Die Frequenz eines Quarzkristalls in der Grundwelle hängt linear im umgekehrten Verhältnis zur Dicke des Plättchens ab. Das bedeutet, dass der mechanisch dünnste herstellbare Kristallschnitt die höchste Resonanzfrequenz bestimmt. Dieser Grenzwert liegt heutzutage (2010) bei etwa 50 µm. Die „Frequenzkonstante“, das ist die Dicke eines Plättchens, die eine Resonanzfrequenz von 1 MHz zur Folge hat, beträgt beispielsweise für AT-Schnitte 1,661 mm. Das heißt, dass mit einer Dicke des Quarzplättchens von 50 µm eine Resonanzfrequenz von etwa 30 MHz erzeugt werden kann. Allerdings kann durch Strukturätzen des geschnittenen Kristalls mit der Inverted-Mesa-Technik die Dicke eines Quarzplättchens noch bis auf etwa 30 µm verringert werden, so dass mit dieser speziellen Herstelltechnik eine obere Resonanzfrequenz der Grundwelle von 55,7 MHz erreicht werden kann. [11]
Neben der Dicke eines Resonators sind die äußeren Abmessungen des Quarzplättchens bzw. der Quarzscheibe eine wichtige Größe. Sie bestimmen die Güte des Schwingquarzes, je größer die Abmessungen des Resonators sind, desto höher ist der Gütefaktor. [11]
Neben den einfach gedrehten Schnitten durch den Kristall werden auch Schnitte durchgeführt, die doppelt gegenüber der X-Achse gedreht sind. Schnitte dieser Art sind oft für Sensoren bestimmt.
Tabelle der Kristallschnitte
[Bearbeiten | Quelltext bearbeiten]Schnitt | Frequenzbereich | Schwingungs- mode |
Schnittwinkel | Hinweise |
---|---|---|---|---|
AT | 0,5…30 MHz (Grundton) 15…75 MHz (3. Oberton) 50…150 MHz (5. Oberton) 100…200 MHz 7. Oberton) 150…300 MHz (9. Oberton) |
Dicken- scher- schwinger |
35°15', 0° ) (<25 MHz) 35°18', 0°) (>10 MHz) |
Vorteil des AT-Schnittes ist ein geringer und nahezu linearer Temperaturgang der Resonanzfrequenz bei etwa 25 bis 35 °C. Durch geringe Änderungen des Schnittwinkels können AT-Resonatoren mit nahezu lineare Temperaturabhängigkeit der Frequenz bei höheren Temperaturen für temperaturkompensierte Oszillatoren (TCXO, OCXO) hergestellt werden. [16]
AT-Quarze sind empfindlich gegenüber mechanischen Belastungen verursacht durch Vibration oder Stoß oder Temperaturwechsel. |
SC | 0,5…200 MHz | Dicken- scher- schwinger |
35°15', 21°54' Doppelt gedreht |
SC-Schnitt (SC = Stress Compensated)
Vorteile des SC-Schnittes sind geringes Phasenrauschen und geringe Alterung. Der Frequenzgang ist bei 95 °C nahezu linear. SC-Resonatoren sind gegenüber AT-Resonatoren weniger empfindlich gegenüber mechanischen Belastungen verursacht durch Vibration, Stoß oder Temperaturwechsel, haben im Vakuumbetrieb eine höhere Güte und sind weniger empfindlich gegenüber der Einwirkung der Schwerkraft. Sie werden in der Raumfahrt und in GPS-Systemen in temperaturkompensierten Oszillatoren (TCXO, OCXO) eingesetzt. [17] |
BT | 0,5…200 MHz | Dicken- scher- schwinger |
−49°8', 21°54’ | Der BT-Schnitt hat bei 25 °C ähnliche Eigenschaften wie der AT-Schnitt.
Wegen der gegenüber den AT- und SC-Schnitten dickeren Kristallplättchen können im BT-Schnitt Resonatoren für Frequenzen über 50 MHz im Grundton hergestellt werden. [14] |
IT | Dicken- scher- schwinger |
Doppelt gedreht | Der IT-Schnitt hat ähnliche Eigenschaften wie der SC-Schnitt.
Der Frequenzgang bei 78 °C ist nahezu linear. IT-Resonatoren werden in temperaturkompensierten Oszillatoren (TCXO, OCXO) eingesetzt. | |
FC | Dicken- scher- schwinger |
Doppelt gedreht | Der FC-Schnitt hat ähnliche Eigenschaften wie der SC-Schnitt.
Der Frequenzgang ist bei 52 °C nahezu linear. Weil diese Temperatur niedriger ist als bei SC- und IT-Schnitten, gilt der FC-Schnitt als Energie sparende Version für temperaturkompensierte Oszillatoren (TCXO, OCXO). [18] | |
AK | Dicken- scher- schwinger |
Doppelt gedreht | Der AK-Schnitt hat ein besseres Temperatur-Frequenzverhalten als AT- und BT-Schnitte mit einer höheren Toleranz gegenüber der Kristall-Orientation als die AT-, BT- und SC-Schnitte. [19] | |
CT | 300–900 kHz | Flächen- scher- schwinger |
38°, 0° | Die Parabelöffnungskonstante a zwischen 0…+90 °C liegt bei etwa −0,05 bis −0,06 ppm/K². [9]
Quarzkristalle im CT-Scnitt werden meist für niedrige Frequenzen im kHz-Bereich verwendet, am häufigsten für Uhrenquarze und Funkuhrenquarze. |
DT | 75–800 kHz | Flächen- scher- schwinger |
−52°, 0° | Die Parabelöffnungskonstante a zwischen −10…+60 °C liegt bei etwa −0,02 ppm/K². [9] |
SL | 400…800 kHz | Flächen- scher- schwinger |
−57°, 0° | Die Parabelöffnungskonstante a zwischen −10…+80 °C liegt bei etwa −0,04 ppm/K². [9] |
GT | 0,1…3 MHz | Längen- schwinger |
51°7' | Die Parabelöffnungskonstante a zwischen −25…+75 °C ist nahezu Null. |
E, 5°X | 50–250 kHz | Längen- schwinger |
Der E-Schnitt hat hat einen sehr geringen Temperaturkoeffizienten. Er wird für Quarzfilter im niedrigen Frequenzbereich eingesetzt. | |
MT | 40–200 kHz | |||
ET | 66°30' | |||
FT | −57° | |||
NT | 8–130 kHz | Biege- schwinger |
Die Parabelöffnungskonstante a zwischen 10…50 °C liegt bei etwa −0,05 ppm/K². ref>name="QuarzkochbuchKap2"/> | |
XY, | 3–85 kHz | Biege- schwinger, Stimmgabel- schwinger |
Der XY-Schnitt ist der am meisten verwendete Niederfrequenz-Schwingquarzschnitt. Er ist kleiner als andere Niederfrequenzschnitte, preiswerte herzustellen, hat eine niedrige Impedanz und ein geringes Co/C1 Verhältnis. Die Haupt-Applikation ist die Uhrenfrequenz 32,768 kHz. Die Parabelöffnungskonstante a zwischen 10…50 °C liegt bei etwa 0,04 ppm/K² . [9] | |
H | 8–130 kHz | Biege- schwinger |
Der H-Schnitt wird für Breitbandfilter verwendet. Er hat einen linearen Temperaturkoeffizienten. [14] | |
J | 1–12 kHz | Längen- Biege- schwinger |
Der J-Schnitt besteht aus einer Zusammenschaltung zweier Quarzplättchen zu einem Resonator. Die einzelnen Resonatoren werden so ausgewählt, dass die beiden Resonatoren bei einem gegebenen elektrischen Feld unterschiedliche Resonanzfrequenzen ausweisen. Dadurch entsteht eine sehr niederfrequente überlagerte Resonanz. [14] | |
RT | Doppelt gedreht | - | ||
SBTC | Doppelt gedreht | - | ||
TS | Doppelt gedreht | - | ||
X 30° | Doppelt gedreht | -. | ||
LC | Dicken- scher- schwinger |
11,17°/9,39° Doppelt gedreht |
Der LC-Schnitt (LC = Linear Coeffizient) besitzt einen linearen Temperaturkoeffizienten. Er kann als Sensor in Quarz-Thermometern verwendet werden. [20] | |
AC | 31° | Der AC-Schnitt (Coupling = 0) zeichnet sich durch geringer Verkopplung zu anderen Schwingungsmoden aus und ist frei von Unstetigkeiten im Temperaturgang der Frequenz. Er kann als Sensor in Quarz-Thermometern verwendet werden. Der Temperaturkoeffizient beträgt 20 ppm/K. | ||
BC | −60° | Der BC-Schnitt kann als Sensor in Quarz-Thermometern verwendet werden [23] | ||
NLSC | Der NLSC-Schnitt kann als Sensor in Quarz-Thermometern verwendet werden Der Temperaturkoeffizient beträgt 14 ppm/K. [24] | |||
Y | Der Y-Schnitt kann als Sensor in Quarz-Thermometern verwendet werden. Der Temperaturkoeffizient beträgt 90 ppm/K. [25] [26] | |||
X | 10…100 kHz 40…200 kHz |
Biege- schwinger, Dehnungs- schwinger |
0 0 |
Der X-Schnitt wurde im ersten Ultraschall-Quarzoszillator 1921 von W. G. Cady und im ersten 50 kHz Oszillator für Uhren 1927 von Horton und Marrison verwendet. [27] [28] Die Parabelöffnungskonstante a zwischen 0…+45 °C liegt bei 0,04 ppm/K². [9] |
Frequenzkonstante
[Bearbeiten | Quelltext bearbeiten]Die Deformationsschwingungen, die ein Quarzkristall bei Resonanz im elektrischen Wechselfeld ausführt, wenn die Frequenz f des Wechselfeldes mit der Eigenfrequenz des Quarzplättchens übereinstimmt, wird, wie bei allen mechanischen Schwingern, durch die Materialkonstanten und durch die mechanischen Abmessungen bestimmt.
mit l = l(x, y, z) und E = E(x, y, z), worin l die Abmessung in Schwingungsrichtung, ρ die Dichte und E den Elastizitätsmodul bedeutet. Der Ausdruck
wird allgemein Frequenzkonstante oder auch Schwingungskoeffizient genannt und ist, wegen der Richtungsabhängigkeit des Elastizitätsmuduls, von der Schnittorientierung abhängig. Jeder Quarzschnitt hat eine bestimmte Frequenzkonstante, die Maβgebend für die Länge des Resonators in Schwingungsrichtung ist, oder anders ausgedrückt, die Frequenz eines Quarzkristalls in der Grundwelle hängt linear im umgekehrten Verhältnis zur Dicke des Plättchens ab. Das bedeutet, dass der mechanisch dünnste herstellbare Kristallschnitt die höchste Resonanzfrequenz bestimmt. Dieser Grenzwert liegt heutzutage (2010) bei etwa 50 µm.
Bei der Frequenzkonstante von 1661 kHz·mm beispielsweise für AT-Schnitte ergibt sich daraus, dass mit einer Dicke des Quarzplättchens von 50 µm eine Resonanzfrequenz von etwa 30 MHz erzeugt werden kann. Allerdings kann durch Strukturätzen des geschnittenen Kristalls mit der Inverted-Mesa-Technik die Dicke eines Quarzplättchens noch bis auf etwa 30 µm verringert werden, so dass mit dieser speziellen Herstelltechnik eine obere Resonanzfrequenz der Grundwelle von 55,7 MHz bei AT-Quarzen erreicht werden kann. Eine Uebersicht ueber die Frequenzkonstanten verschiedener Quarzschnitte gibt die folgende Tabelle:
Schwingungsform | Frequenzkonstante N = f · l [9] [14] | Frequenzbereich |
---|---|---|
Dickenscherschwinger, AT-Schnitt | 1661 kHz · mm | — |
Dickenscherschwinger, SC-Schnitt | 1797 kHz · mm | — |
Dickenscherschwinger, BT-Schnitt | 2536 kHz · mm | — |
Längenschwinger, GT-Schnitt | 2808 kHz · mm | — |
Flächenscherschwinger, DT-Schnitt | 2070 kHz · mm | 180 bis 350 kHz |
Flächenscherschwinger, CT-Schnitt | 3070 kHz · mm | 300 bis 1000 kHz |
Flächenscherschwinger, SL-Schnitt | 4600 kHz · mm | 400 bis 800 kHz |
Obertonfrequenzen
[Bearbeiten | Quelltext bearbeiten]in Vorbereitung
Nebenfrequenzen
[Bearbeiten | Quelltext bearbeiten]in Vorbereitung
Historie
[Bearbeiten | Quelltext bearbeiten]Der direkte Piezoeffekt wurde im Jahre 1880 von den Brüdern Jacques und Pierre Curie entdeckt. 1881 entdeckten sie ebenfalls den umgekehrten piezoelektrischen Effekt, die Längenänderung beim Anlegen eines elektrischen Feldes durch eine Spannung. Über 30 Jahre zählte dann der piezoelektrische Effekt eher zu den Kuriositäten der Wissenschaft.
Paul Langevin wendete 1916 als erster die Piezoelektrizität von Quarzkristallen mit dem Bau der ersten Ultraschall-Objekterfassung (Sonar) technisch an und entwickelte für die französische Marine das erste Echolot-System. Er benutzte dabei eine Anordnung mehrerer parallel geschalteter gleicher X-Schnitt-Quarzelemente, die mit einem Gleichstromimpuls beaufschlagt wurden. Langewin beschreibt in diesem Zusammenhang das erste Mal das Phänomen der Resonanz. [29] Kurioserweise begann die Entwicklung der Schwingquarze nicht mit einem Quarzkristall. Denn der erste durch einen Kristall angesteuerte Oszillator wurde mit einem natürlichen Kristall aus Rocheller Salz (Seignettesalz) versehen. Er wurde 1918 in den Bell Telephone Laboratories von Alexander M. Nicholson entwickelt und zum Patent angemeldet. [30] Aber schon 1 Jahr später, 1919, wurde von W. G. Cady der Seignette-Kristall in einem Oszillator zur Stabilisierung einer Frequenz durch einen Quarzkristall ersetzt, weil hierin der Piezoeffekt stärker ausgebildet war. 1921 beschrieb Cady dann den ersten Schwingquarz-gesteuerten RF-Oszillator.
In den USA wurde ab 1923 mit der Gründung eines Quarzlabors bei den Bell Telephone Laboratories und 1924 eines weiteren Forschungslabors für Quarze bei General Electric die Entwicklung der Schwingquarze deutlich vorangetrieben. Aber sowohl in den USA als auch in Deutschland kamen in dieser Zeit, in der sich die Rundfunktechnik entwickelte, die maßgeblichen Impulse für neue Schaltungen oft von Funkamateuren. Die erste Veröffentlichung über den praktischen Aufbau von Quarzoszillatoren erschien 1924 in der Funkamateur-Zeitung QST. [31]
Ab 1926 wurden die Sendefrequenzen von Rundfunksendern mit Schwingquarzen stabilisiert. [32]. 1928 wurde durch Warren Marrison in den Bell Telephone Laboratories die erste quarzgesteuerte Uhr entwickelt. Diese Entwicklung ersetzte die bislang in Uhren benutzte mechanische Zeitsteuerung mit Pendeln oder Federn und verbesserte die Genauigkeit der Zeitmessung auf eine Abweichung von nur 30ms/Jahr, das sind etwa 60 ppm. [33]
Bis 1934 wurden Schwingquarze zur Frequenzstabilisierung nur im X-Schnitt gefertigt. In diesem Jahr wurde unanhängig voneinander von Koga in Japan, Bechman und Straubel in Deutschland und F. R. Lack, G. W. Willard und I. E. Fair der Bell Lab. in den USA, die AT- und BT-Schnitte mit sehr geringen Temperaturkoeffizienten entwickelt. Die Schnittwinkel der Quarzplättchen wurden mit polarisiertem Licht auf 1/6° genau realisiert. Erst ab 1942 wird die präzisere Messung der Schnittwinkel mit Röntgenstrahlen eingeführt. Mit dieser Methode konnte der Schnittwinkel auf 1/50° genau eingestellt werden. Allerdings war die Einhaltung der Frequenzstabilität auch eine Frage der Umhüllung der Quarze. Bis weit in die 1940er Jahre wurden die Schwingquarze in einer Kunststoffumhüllung mit dem Nachteil der Feuchte-Empfindlichkeit und der damit einhergehenden zeitlichen Inkonstanz der Frequenz gefertigt. Erst Anfang der 1950er Jahre wurden evakuierte und hermetisch geschlossene Metall-oder Glasgehäuse zur Verbesserung der zeitlichen Stabilität entwickelt.
In den Jahren zwischen 1930 bis 1950 war es üblich, nicht nur für Amateure, die Resonanzfrequenz eines Schwingquarzes durch manuelles Nachschleifen der Anforderung anzupassen. Durch Schleifen mit einem feinen Scheuermittel oder einfach mit Zahnpasta konnte die Resonanzfrequenz erhöht werden. Eine Verringerung der Resonanzfrequenz um 1 bis 2 kHz konnte durch „Beschriften“ des Kristallplättchens mit einem Bleistift erreicht werden, allerdings verringerte sich dabei dann der Gütefaktor Q. [34]
Während des 2. Weltkrieges wurde, vor allem in den USA, die Produktion von Schwingquarzen aufgrund des Bedarfes für militärische Zwecke enorm ausgeweitet. Natürliche Quarzkristalle, die zum größten Teil aus Brasilien kamen, wurden knapp und zu kriegswichtigen Rohmaterialen erklärt.[35] Die Lösung dieses Problems kam aus der Chemie. 1944 erfolgen in Deutschland die ersten Versuche, das Rohmaterial Quarz (Bergkristall) industriell zu synthetisieren. 1948 beginnen bei Brush (USA), Sawyer (USA) und Nihon Dempa Kogyo (NDK) in Japan Entwicklungen zur Herstellung von synthetischem Siliziumdioxidkristalle im technischen Maßstab.
Der Transistor wurde 1948 erfunden. Die bei den Schwingquarzen entwickelte Fähigkeit, künstliche Siliziumeinkristalle züchten zu können, hat sicherlich auch mit dazu beigetragen, dass die sich danach entwickelnde Halbleitertechnik stürmisch weiter entwickeln konnte. Auch wegen der miteinander verwandten Grundmaterialien lag es nahe, die neuen Transistoren mit den Schwingquarzen zu kombinieren. 1954 wurden die durch eine Steuerspannung in der Frequenz modulierbaren Transistor-Quarzoszillatoren, VCXO, entwickelt und auf den Markt gebracht. Später, als die integrierten Techniken weite Teile der Elektronik erfasst hatten, kam die Frage auf: Warum kann auf dem Siliziumkristall des Schwingquarzes neben der Anschlussmetallisierung nicht auch noch die Elektronik für einen Oszillator integriert werden? Die Antwort eines holländischen Herstellers wurde berühmt: Man baut nicht im Deichvorland! Oder übersetzt: Die Resonanzfrequenz und das gesamte Verhalten des Quarzes kann dann nicht mehr eindeutig definiert werden.[36]
Die Entwicklung der Schwingquarze in den 1950er Jahren, wobei wieder die Bell Telephone Laboratories maßgebend waren, (1952, Warner, Dimensionierung und Herstelldetails für Schwingquarze hoher Schwingungsgüte und geringer Alterung für Primärfrequenzstandards) ist durch die Erweiterung der Resonanz auf die 3., 5., 7. und 9. Oberwelle von Quarzresonatoren gekennzeichnet, deren Frequenzen geeignet waren, auch sehr hohe Frequenzbereiche steuern zu können.
Eine neue Herstelltechnik bei den Schwingquarzen wurde 1968 durch J. Staudte entwickelt. Er entwickelte Miniatur-Quarz-Stimmgabelschwinger, die mit der aus der Halbleitertechnologie bekannten Wafer-Foto-Ätztechnik hergestellt wurden.
In den letzten 40 Jahren wurden auf dem Gebiet der Schwingquarze eine ganze Reihe von Detailverbesserungen durchgeführt. Miniaturisierung und SMD-Versionen folgen dem allgemeinen Trend der Elektronik. Auch heutzutage (2010) werden Schwingquarze noch in großen Stückzahlen hergestellt und bieten für die Elektronik die entscheidenden Bauelemente für frequenzgenaue und temperatur- und zeitstabile Taktgeberschaltungen. Jedoch ist den Schwingquarzen Konkurrenz entstanden. Mit den Keramikresonatoren werden Bauelemente angeboten, bei denen preiswerte Schaltungslösungen realisiert werden können, die jedoch meist nicht großen Wert auf Frequenzgenauigkeit gelegt wird. Bei gleichen Anforderungen an die Genauigkeit wie bei den Schwingquarzen kommen in den letzten Jahren aber verstärkt neue MEMS-Resonatoren verstärkt auf den Markt, die möglicherweise aufgrund ihrer Programmierbarkeit eine echte Alternative zu den altbewährten Quarzresonatoren bilden können.
Herstellung
[Bearbeiten | Quelltext bearbeiten]Die Herstellung von Schwingquarzen erfolgt mehreren nachfolgend beschriebenen Schritten, die zusammengefasst werden können in:
- Synthetische Herstellung des Quarzkristalls
- Herstellen der Blanks
- Kontaktieren und Montage
Synthetische Herstellung des Quarzkristalls
[Bearbeiten | Quelltext bearbeiten]Ursprünglich wurden Schwingquarze aus natürlich vorkommenden Quarzkristallen, auch Bergkristall genannt, hergestellt. Aber das natürliche Material bildet oft keinen idealen Kristall. Es treten Verzwillungen auf, das sind Verwachsungen innerhalb des Kristalls, deren Hauptachsen nicht übereinstimmen. Weiterhin können solche Kristalle Wachstumsunterbrechungen, Gas- und Flüssigkeitseinschlüsse aufweisen, so dass in der Industrie mit den natürlich vorkommenden Kristallen eine Großserienfertigung nicht möglich ist. Die zur Herstellung von Schwingquarzen benötigten Kristalle werden deshalb schon seit den 1950er Jahren nach dem Hydrothermal-Prinzip synthetisch hergestellt. Hierbei wird die geologische Entstehung von Quarz in vertikalen Autoklaven nachgebildet.
Der Autoklav ist im unteren Bereich mit einer Natriumhydroxid-Lösung gefüllt, in der sich feinverteilter Naturquarz bei etwa 400 °C und 800 bar unter Kieselsäurebildung bis zur Sättigung auflöst. Durch Wärmekonvektion strömt die übersättigte Lösung in den oberen Teil des Autoklaven und kristallisiert dort bei einer Temperatur von etwa 400 °C und 1000 bis 1500 bar [37] [38] an dort befindlichen Quarz-Impfkristallen (engl. seed crystal) aus. Die abgekühlte Lösung sinkt wieder in den heißeren Bereich ab und nimmt erneut Kieselsäure auf. Es entsteht ein Kreislauf, der zum Wachsen von Quarz-Einkristallen mit einer Wachstumsrate von etwa 0,2 bis 1 mm pro Tag führt.[11] Die Kristallbildung erfolgt überwiegend auf der Z-Fläche und ist frei von Verwachsungen und Verzwilligungen. Im Allgemeinen dauert der Wachstumsprozess etwa 40 bis 80 Tage und ergibt Einkristalle von etwa 200 mm Länge und einer Breite von bis zu 50 mm mit einem Gewicht von etwa 0,2 bis 1 kg. Die Weltjahresproduktion geht mittlerweile in die Millionen Tonnen.[39] Die synthetische Herstellung des Quarz-Einkristalls hat weitere Vorteile. Da die Zusammensetzung des Grundmaterials sehr genau bestimmt werden kann, kann die Reinheit des Kristalls, die entscheidend für die spätere Güte und die zeitliche Frequenzstabilität des Schwingquarzes ist, recht genau eingestellt werden. Zusatzstoffe, die ggfs. die Wachstumsgeschwindigkeit erhöhen und deren Auswirkungen auf das Verhalten der Quarze bekannt sind, können somit präzise beigemischt werden.
Herstellen der Blanks
[Bearbeiten | Quelltext bearbeiten]Die eigentliche Fertigung eines Schwingquarzes beginnt mit dem Herausschneiden eines Plättchens (Wafers) aus dem Quarzkristall in dem vorgesehenen Schnittwinkel. Zum Schneiden kommen Kreis- oder Bandsägen zum Einsatz. Die Messung der Schnittwinkel erfolgt über eine hochpräzise Röntgen-Messsmethode. [40] [41] Mit dieser Methode kann der Schnittwinkel auf etwa einer Winkelminute genau eingestellt werden. Die herausgeschnittenen Plättchen werden „Wafer“ genannt. Sie haben zunächst noch nicht die Abmessungen des späteren Resonators. Dazu werden sie erst einmal zu einem Block zusammengefügt und dann so zurechtgeschnitten, dass durch Trennen die Abmessungen der späteren Quarzresonatoren, „Quarzblanks“ oder kurz „Blanks“ genannt, entstehen.
Nachdem der Waferblock an den zugänglichen Seitenflächen geschliffen und geläppt wurden, wird er anschließend in die gewünschte Größe der Blanks zersägt. Die einzelnen Blanks werden dann in mehreren Schritten auf die gewünschte Dicke geläppt. Hohe Präzisionsanforderungen bestehen dabei an möglichst geringe Oberflächen-Unebenheiten sowie auf eine genaue Plan-Parallelität der Oberflächen zueinander. Durch Zusammenfügen der Blanks zu einem Block können danach die äußeren Abmessungen der Blanks mit großer Gleichmäßigkeit in einer Großserie in Übereinstimmung gebracht werden.
Nach dem erneuten Trennen der Blanks voneinander werden dann die Resonatorplättchen mit Ätzverfahren auf eine etwas geringere Dicke gebracht, als es die gewünschte Frequenz des Schwingquarzes eigentlich erfordert. Denn durch die danach erfolgende metallische Beschichtung der Blanks, dem Aufbringen der Elektroden, kann die Resonanzfrequenz des Plättchens im Nachhinein noch beeinflusst werden.
Nachdem jetzt die Blanks die gewünschte Dicke besitzen, erfolgt je nach Größe und vorgesehener Frequenz eine Weiterbearbeitung. Für größere Bauformen werden die Blanks gerundet und die Scheiben gegebenenfalls. mit einer Facette versehen. Kleinere Bauformen, insbesondere die für SMD-Quarze bleiben in einer rechteckigen Form.
Kontaktieren und Montage
[Bearbeiten | Quelltext bearbeiten]Es versteht sich von selbst, dass für Schwingquarze, die eine möglichst hohe Güte und Frequenzstabilität aufweisen müssen, hohe Anforderungen an die Reinheit, Sauberkeit und die Präzision der nachfolgenden Prozesse gestellt werden und in der Serienproduktion auch gewährleistet werden müssen. Sind die Quarzblanks in ihrer mechanisch endgültigen Form gebracht, dann werden sie zunächst kontaktiert. Dies erfolgt in Vakuumkammern durch Aufdampfen von metallischen Elektroden, meist Silber, auf die Oberflächen der Blanks. Durch gleichzeitiges Messen der individuellen Resonanzfrequenz kann beim Aufdampfen der Elektroden die Schichtdicke noch leicht variiert werden, so dass hiermit eine Feinabstimmung der gewünschten Resonanzfrequenz durchgeführt werden kann.
Die metallisierten Resonatoren werden anschließend mit einer geeigneten Halterung elektrisch mit Anschlüssen, die nach Außen geführt werden können, verbunden. Bei Scheibenförmigen Resonatoren sind dies oft Federhalterungen, bei SMD-Schwingquarzen aber auch bei liegend eingebauten Resonatoren erfolgt die Kontaktierung meist über eine Bondung. [42]
Es folgt eine Lagerung des Resonators bei einer höheren Temperatur (200 °C) [43], die eine Voralterung (engl. aging) des Quarzes bewirkt. Der kontaktierte und vorgealterte Resonator wird dann anschließend in einem evakuierten oder mit Stickstoff (N2) gefüllten hermetisch dichten Gehäuse eingebaut, um Umwelteinflüsse und Oxidation durch Luftsauerstoff gering zu halten, somit günstiges Alterungsverhalten und langlebigen Einsatz bei hoher Stabilität zu gewährleisten. Endgemessen und beschriftet, sofern Platz genug auf dem Gehäuse zur Verfügung steht, kann er dann als Schwingquarz seine Funktion in elektronischen Geräten erfüllen.
Ersatzschaltung und elektrisches Verhalten
[Bearbeiten | Quelltext bearbeiten]Das elektrische Verhalten eines Schwingquarzes in der Nähe seiner Resonanzfrequenz, der mit Hilfe von Elektroden in einer Oszillatorschaltung piezoelektrisch angeregt wird, entspricht einer Parallelschaltung, bestehend aus einem verlustbehafteten Serienresonanzkreis mit einer dynamischen Induktivität L1, einer dynamischen Kapazität C1 und einem dynamischen Verlustwiderstand R1 und einer dazu parallel geschalteten statischen Parallelkapazität C0, die sich aus der Kapazität zwischen den Elektroden des Quarzes und den Streukapazitäten aus dem Halterungssystem zusammensetzt. Die dynamische Induktivität in dem Ersatzschaltbild entspricht der schwingenden Masse des Resonators und der Induktivität der Zuleitungen, die dynamische Kapazität entspricht der Elastizitätskonstanten des Quarzes und im dynamischen Verlustwiderstand sind die Verluste der inneren Reibung, die mechanischen Verluste im Halterungssystem und die akustischen Verluste in der Umgebung zusammengefasst. Für hohe Frequenzen muss das elektrische Ersatzschema noch durch einen Serienwiderstand für die ohmschen Verluste und einer Serieninduktivität für die elektrischen Anschlussleitungen erweitert werden.
-
Vereinfachte elektrische Ersatzschaltung eines Schwingquarzes
-
Verlauf des Blindwiderstandes eines Schwingquarzes im Bereich der Resonanzfrequenz fr und der Antiresonanzfrequenz f p
-
Ortskurve des Blindwiderstandes eines Schwingquarzes
In der Darstellung der Ortskurve des Scheinwiderstandes eines Schwingquarzes können weitere Begriffe, die mit den Eigenschaften des Schwingquarzes zusammenhängen, anschaulich erklärt werden:
Die Resonanzfrequenz fr tritt auf, wenn der Blindwiderstand X des Resonators gleich Null wird. Dazu gehört dann der Resonanzwiderstand Rr. Am hochohmigen Schnittpunkt des Ortskreises mit der reellen Achse befindet sich die Antiresonanzfrequenz fa mit dem zugehörigen Widerstand Ra. Die Verlängerung des Vektors der Serienresonanzfrequenz fs führt zur Parallelresonanz fp , dem Punkt, an dem der Quotient des Quadrats des Blindwiderstands der Parallelkapazität bei Serienresonanz X0 und dem Verlustwiderstand R1 (X02/R1) am größten ist. Die Frequenz, bei der die Impedanz des Quarzes den minimalen Wert erreicht, ist die Minimalimpedanzfrequenz fm. Die Stelle auf dem Ortskreis, an dem die Impedanz ihren Maximalwert erreicht, ist die Maximalimpedanzfrequenz fn.
Die Ersatzschaltung des Schwingquarzes hat also zwei Resonanzfrequenzen, bei denen der Scheinwiderstand reell ist, der Phasenwinkel also Null beträgt: die Resonanzfrequenz fr und die höhere Antiresonanzfrequenz fa. Zahlenmäßig entspricht die Resonanzfrequenz fr in etwa der Serienresonanzfrequenz fs, der Resonanzfrequenz, die sich aus der Serienschaltung der dynamischen Bauelemente des Kristalls ergibt. Die Antiresonanzfrequenz f awird dagegen oft mit der Parallelresonanzfrequnz fp verwechselt. Der Wert der Serienresonanzfrequenz fs ergibt sich, unter Vernachlässigung des Verlustwiderstandes, aus:
Da die Ersatzschaltung des Schwingquarzes auch noch die parallel geschaltete statische Kapazität C0 enthält, kann die Resonanz, unter Einbeziehung dieser Kapazität, auch als Parallelresonanzfrequenz fp definiert werden:
Das Verhältnis der Parallelkapazität C0 zur dynamischen Kapazität C1 wird r genannt:
Der Abstand zwischen Serien- und Parallelresonanzfrequenz ist:
Oder vereinfacht für groβe Werte von r (> 25):
Miniaturisierung
[Bearbeiten | Quelltext bearbeiten]in Vorbereitung
Kennwerte von Schwingquarzen
[Bearbeiten | Quelltext bearbeiten]in Vorbereitung
Frequenzgang
[Bearbeiten | Quelltext bearbeiten]in Vorbereitung
Ziehen der Quarzfrequenz
[Bearbeiten | Quelltext bearbeiten]in Vorbereitung
Gütefaktor und Bandbreite
[Bearbeiten | Quelltext bearbeiten]Der Gütefaktor Q eines Schwingquarzes, auch Schwingungsgüte genannt, kann, unter Vernachlässigung der statischen Kapazität C0, aus den Werten der dynamischen Kapazität C1, der dynamischen Induktivität L1 und dem dynamischen Verlustwiderstand R1 aus dem Ersatzschaltbild nach folgenden Formeln berechnet werden.
Gegenüber üblichen LC-Resonanzkreisen sind bei Schwingquarzen die Werte der dynamischen Induktivität L1 verhältnismäßig hoch, die der dynamischen Kapazität C1 äußerst niedrig und die Werte der dynamischen Verlustwiderstände R1 bewegen sich im Bereich recht niedriger zweistelliger Ohm-Werte. Beispielsweise liegen die Werte bei einem handelsüblichen Schwingquarz mit 10 MHz bei L1 = 25 mH, C1 = 0,01 pF und R1 = 65 Ω. Aus diesen Werten errechnet sich der für Schwingquarze übliche, im Vergleich mit LC-Kreisen recht hohe Gütefaktor von 25.000.
Die Bandbreite B einer Resonanzschaltung wird durch die Beziehung
ausgedrückt. Bei dem obigen 10-MHz-Schwingquarz mit dem Gütefaktor 25.000 liegt somit die Bandbreite im Bereich von 400 Hz, wodurch die hohe Frequenzgenauigkeit von Schwingquarzen erklärt wird.
Stabilität
[Bearbeiten | Quelltext bearbeiten]in Vorbereitung
Rauschen
[Bearbeiten | Quelltext bearbeiten]in Vorbereitung
Jitter
[Bearbeiten | Quelltext bearbeiten]in Vorbereitung
Temperaturabhängigkeit
[Bearbeiten | Quelltext bearbeiten]in Vorbereitung
Alterung
[Bearbeiten | Quelltext bearbeiten]in Vorbereitung
Anwendungen
[Bearbeiten | Quelltext bearbeiten]Stückzahlmäßig am häufigsten werden Schwingquarze als sogenannte „Clock-Generatoren“ in Uhrenanwendungen eingesetzt.
Industrielle Schwingquarze finden sich in praktisch aber in fast allen elektronischen Schaltungen wie z. B. als Taktgeber in Computern und Mikrocontrollern sowie in Frequenzzählern und digitalen Signalgeneratorenallen sowie in Sendeanlagen und in Empfängern. Ebenso eignen sich Quarzresonatoren in Quarzoszillatoren und Quarzfiltern.
Mit entsprechend geschnittenen Quarzen sind durch den Temperaturgang der Resonanzfrequenz sehr genaue Temperatursensoren herstellbar. In Beschichtungsanlagen dienen frei aufgehängte Schwingquarze der Messung der erreichten Schichtdicke, indem die Änderung ihrer Resonanzfrequenz verfolgt wird, die durch die Massenzunahme infolge der auf dem Quarz entstehenden Schicht entsteht.
Schwingquarze lassen sich durch die mechanische Bearbeitung für beliebige Resonanzfrequenzen innerhalb ihrer gegebenen technischen Grenzen herstellen.[44]
Einen Auszug aus dieser Liste mit einigen handelsüblichen Frequenzen bietet die folgende Tabelle:
Frequenz in MHz | Primäre Anwendung |
---|---|
0,032768 | Echtzeituhren und Quarzuhren; erlaubt eine Division durch 215, um einen Sekundenimpuls zu erhalten. |
1,8432 | Takt für UARTs; erlaubt ganzzahlige Divisionen zu üblichen Bitraten wie 9600 bps. |
3,579545 | Frequenz des Farbträgers in der US-Farbfernsehnorm NTSC. Aufgrund der weiten Verbreitung findet diese Frequenz auch bei dem Mehrfrequenzwahlverfahren im Telefoniebereich Anwendung. |
3,686400 | Takt für Mikrocontroller und UART; erlaubt ganzzahlige Divisionen zu üblichen Bitraten wie 9600 bps. |
4,43361875 | Frequenz des Farbträgers in der Farbfernsehnorm PAL. |
10,245 | Verwendet in älteren, analogen UKW-Radios, um die Zwischenfrequenz von 10,7 MHz auf 455 kHz zu mischen |
11,0592 | Takt für Mikrocontroller und UART; erlaubt ganzzahlige Divisionen zu üblichen Bitraten wie 9600 |
11,2896 | Digitale Audiosysteme wie die Compact Disc (CD), welche mit einer Abtastrate von 44,1 kHz arbeiten. |
12,0000 | Verwendet bei USB-Geräten. |
12,288 | Digitale Audiosysteme wie Digital Audio Tape und Soundkarten, welche mit einer Abtastrate von 48kHz arbeiten. |
25,000 | Anwendung bei Fast Ethernet und dem Media Independent Interface (MII). |
27,000 | Haupttakt bei digitalen Videogeräten wie DVD-Spielern. |
33,33 | Üblicher externer Takt für Hauptprozessoren vor der PLL |
Normung
[Bearbeiten | Quelltext bearbeiten]Die Normung von Schwingquarzen umfasst den gesamten Umfang der hierzu auftretenden Fragestellungen, angefangen vom synthetischen Quarzkristall über die Begriffe und die Anwendungen von Schwingquarzen bis hin zu den Messbedingungen zur Messung der elektrischen Parameter.
Die Definitionen und den Leitfaden zur Anwendung von synthetischen Quarzkristallen wird spezifiziert in der
- DIN EN 60758, Synthetischer Quarzkristall - Festlegungen und Leitfaden für die Anwendung
Die Grundbegriffe und die Definitionen für die Prüfungen der elektrischen Parameter der Schwingquarze sind festgelegt in der Fachgrundspezifikation sowie in den zugehörenden Rahmenspezifikationen:
- DIN EN 60122-1, Teil 1: Fachgrundspezifikation für Schwingquarze mit bewerteter Qualität
- DIN IEC 60122-1, Teil 2: Leitfaden zur Anwendung von Schwingquarzen zur Frequenzstabilisierung und -Selektion zur Taktversorgung von Mikroprozessoren;
- DIN IEC 60122-2, Teil 2: Leitfaden zur Anwendung von Schwingquarzen zur Frequenzstabilisierung und -Selektion
- DIN EN 60122-3, Teil 3: Norm-Gehäusemaße und Anschlussdrähte
Die Bedingungen für die Messvorschriften der elektrischen Parameter der Schwingquarze sind in den folgenden Normen festgelegt:
- DIN EN 60444-1, Messung der Resonanzfrequenz und des Resonanzwiderstandes von Schwingquarzen nach dem Null-Phasenverfahren in einem π-Netzwerk
- DIN EN 60444-2, Messung der dynamischen Kapazität von Schwingquarzen nach dem Phasenoffsetverfahren
- DIN EN 60444-3, Messung der Zwei-Pol-Parameter von Schwingquarzen bis 200 MHz mit Kompensation der Parallelkapazität C0
- DIN EN 60444-4, Messung der Lastresonanzfrequenz fL des Lastresonanzwiderstandes RL und Berechnung anderer hergeleiteter Werte von Schwingquarzen bis 30 MHz
- DIN EN 60444-5, Meßverfahren zur Bestimmung der Ersatzschaltungsparameter von Schwingquarzen mit automatischer Netzwerkanalysatortechnik und Fehlerkorrektur
- DIN EN 60444-6, Messung der Belastungsabhängigkeit (DLD)
- DIN EN 60444-7, Messung von Aktivitäts- und Frequenz-Dips von Schwingquarzen
- DIN EN 60444-8, Prüfaufbau für oberflächenmontierbare Schwingquarze
- DIN EN 60444-9, Messung der Nebenresonanzen von Schwingquarzen
Weitere Normen, die sich mit Bauelementen befassen, die direkt oder indirekt mit Schwingquarzen zusammen hängen, sind:
- DIN EN (IEC) 60679ff. Oszillatoren
- DIN EN (IEC) 60368ff. Quarzfilter
- DIN EN (IEC) 60862ff. & 61019ff. SAW-Filter und Resonatoren
- DIN EN (IEC) 61337ff. Dielektrische Resonatoren
Markt
[Bearbeiten | Quelltext bearbeiten]Der Markt für Schwingquarze teilt sich auf in drei Bereiche. Einmal sind es die Schwingquarze als Einzelbauelemente, die von Anwendern separat in die entsprechenden Schaltungen eingebaut werden, zum anderen sind es die Quarzoszillatoren, die jeweils mit einem Quarzresonator, also einem Schwingquarz versehen sind. Die dritte Gruppe sind die sogenannten „Clock-Generatoren“, das sind die Stimmgabelquarze für Uhren. Es wird geschätzt, dass der weltweite Bedarf an Schwingquarzen im Jahre 2010 für jeden Bereich etwa den Wert von etwa 1,5 bis 1,8 Mrd. USD berägt, [45] so dass der Gesamtwert weltweit in etwa 4,5 bis 5,4 Mrd. USD beträgt.
Einzelnachweise
[Bearbeiten | Quelltext bearbeiten]- ↑ Gisbert L. Brunner: Armbanduhren. Heyne, München 1996, ISBN 978-3-453-11490-6.
- ↑ Carlos Perez: Bound: The final paradigm of horological evolution. Carlos' Journal. TimeZone. 23. November 2001.
- ↑ CEH, [1]
- ↑ Fritz von Osterhausen: Callweys Uhrenlexikon. Callwey, München 1999, ISBN 978-3-7667-1353-7, S. 16.
- ↑ Sobel, Dava: Längengrad – Die wahre Geschichte eines einsamen Genies, welches das größte wissenschaftliche Problem seiner Zeit löste. Bvt Berliner Taschenbuch Verlag, Berlin 2005, ISBN 978-3833302718 und Berlin Verlag, Berlin 2000, ISBN 978-3827003645 (illustrierte Ausgabe) (Engl. Orig.: „Longitude“, 1995)
- ↑ Warren A. Marrison: The Evolution of the Quartz Crystal Clock. 1948 (engl.)
- ↑ [2]
- ↑ Der Schwingquarz, Valvo-GmbH Hamburg, April 1964
- ↑ a b c d e f g Bernd Neubig, Wolfgang Briese: Das Grosse Quarzkochbuch. Feldkirchen: Franzis-Verlag, 1997, ISBN 3-7723-5853-5 (Kapitel 2 online).
- ↑ QUARTZ CRYSTAL, THE TIMING MATERIAL. Fortiming Corporation
- ↑ a b c d Bernd Neubig: Moderne Technologien bei Schwingquarzen und Quarzoszillatoren.
- ↑ AT cut
- ↑ Darstellung von Quarzschnitten [3]
- ↑ a b c d e Jerry A. Lichter: Crystals and oscillators
- ↑ Crystal Technology, 4timing.com [4].
- ↑ Crystal and frequency control glossary, Icmfg.com. [5]
- ↑ Paul W. Kruse: Uncooled infrared imaging arrays and systems. Academic Press, 1997, ISBN 978-0-12-752155-8, S. 273 (eingeschränkte Vorschau in der Google-Buchsuche).
- ↑ Patent US4985687: Low power temperature-controlled frequency-stabilized oscillator.
- ↑ Patent US4499395: Cut angles for quartz crystal resonators.
- ↑ Patent US4419600: Stress-compensated quartz resonators.
- ↑ W. Briese: Eigenschaften von Schwingquarzen.
- ↑ Patent US5686779: High sensitivity temperature sensor and sensor array.
- ↑ Patent US5686779: High sensitivity temperature sensor and sensor array.
- ↑ Patent US5686779: High sensitivity temperature sensor and sensor array.
- ↑ Y Cut Crystal. Engineersedge.com (2009-08-25).
- ↑ Patent US5686779: High sensitivity temperature sensor and sensor array.
- ↑ UFFC|History. Ieee-uffc.org (1959-03-23).
- ↑ Glossary of terms used in the quartz oscillator-plate industry
- ↑ Das Grosse Quarzkochbuch, Bernd Neubig & Wolfgang Briese, Feldkirchen: Franzis-Verlag, 1997, ISBN 3-7723-5853-5, [6]
- ↑ Patent US2212845: Generating and transmitting electric currents. Angemeldet am 10. April 1918, veröffentlicht am 27. August 1940, Erfinder: Alexander M. Nicholson.
- ↑ THE INFLUENCE OF AMATEUR RADIO ON THE DEVELOPMENT OF THE COMMERCIAL MARKET FOR QUARTZ PIEZOELECTRIC RESONATORS IN THE UNITED STATES
- ↑ Virgil E. Bottom: A History of the Quartz Crystal Industry in the USA. In: Proceedings of the 35th Annual Frequency Control Symposium 1981.
- ↑ The Evolution of the Quartz Crystal Clock. IEEE Untrasonics, Ferroelectrics and Frequency control society [7]
- ↑ EDN, Crystal grinding: When electronics were REALLY hands-on April 4, 2008
- ↑ Richard J. Thompson Jr, Crystal Clear: The Struggle for Reliable Communications Technology in World War II, ISBN 978-0-470-04606-7.
- ↑ Schwingquarze, Vortrag von F. Fick, Valvo (Philips) am Valvo/Philips-Forschungslabor, Hamburg/Stellinge August 1976
- ↑ All about Quartz Devices [8]
- ↑ W. Briese: Eigenschaften von Schwingquarzen.
- ↑ Martin Wucherer, Achim Krumrein: Quarze & Quarzoszillatoren.
- ↑ Ken Hennessy: Quartz Crystal Basics: From Raw Materials to Oscillators.
- ↑ Wintron plant tour.
- ↑ Frequency Electronics, Inc., Tutorial, Precision Frequency Generation [9]
- ↑ Wintron plant tour [10]
- ↑ Eine nahezu vollständige Liste der industriell benutzten Frequenzen findet sich in der englischen Wikipedia unter dem Begriff: cristall oscillator freqencies
- ↑ Unser Ziel ist es, den Quarz obsolet werden zu lassen. SiTime, Markt & Technik Nr. 27, 2. Juni 2010 ]