Benutzer:Espresso robusta/Chemische Kinetik

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen


Freie Aktivierungsenthalpien und thermodynamisches Gleichgewicht

[Bearbeiten | Quelltext bearbeiten]
Profil der freien Enthalpie entlang der Reaktionstrajektorie einer Elementarreaktion. Um von den Ausgangsstoffen (Edukte) zum Übergangszustand (ÜZ) zu kommen, muss die freie Aktivierungsenergie der Hinreaktion aufgebracht werden. Durchläuft die Rückreaktion denselben Übergangszustand wie die Hinreaktion, ist die freie Aktivierungsenthalpie der Rückreaktion gleich (freie Reaktionsenthalpie).

Viele Reaktionen sind Gleichgewichtsreaktionen, bei denen neben der Bildung von Reaktionsprodukten durch die Hinreaktion durch die Rückreaktion auch Ausgangsstoffe aus den Reaktionsprodukten neu gebildet werden:

Sofern die Hinreaktion mit der molaren freien Aktivierungsenthalpie sowie der molaren freien Reaktionsenthalpie

und die Rückreaktion

exakt entlang derselben Reaktionstrajektorie in jeweils entgegensetzter Richtung ablaufen, gilt für die molare freie Aktivierungsenthalpie der Rückreaktion:

Die Geschwindigkeitskonstante der Hinreaktion khin wird dann:

Für den Quotienten aus khin und krueck folgt:

Somit wird:

Dabei ist K die thermodynamische Gleichgewichtskonstante der betrachteten Reaktion. Die Geschwindigkeitskonstanten kG,hin der Hinreaktion und kG,rueck der Rückreaktion sind somit durch miteinander gekoppelt ‒ das Verhältnis wird durch die thermodynamische Gleichgewichtskonstante bestimmt. Dieser Zusammenhang wird oft dahingehend fehlinterpretiert, dass die Gleichgewichtskonstante einer Gleichgewichtsreaktion von den Geschwindigkeitskonstanten der Hin- und Rückreaktionen abhinge. Diese Vorstellung beruht jedoch auf einem unzutreffenden Präkonzept. Thermodynamische Größen, die wie die freie Reaktionsenthalpie und die Gleichgewichtskonstante Zustandsänderungen beschreiben, hängen ausschließlich von Ausgangs- und Endzustand ab, nicht jedoch vom Weg, auf dem sich das System vom Ausgangs- zum Endzustand bewegt.


Teilt man den Ausdruck für durch den Ausdruck für , erhält man:

Mit sowie erhält man:

Daraus folgt, dass im chemischen Gleichgewicht die Geschwindigkeit der Hinreaktion gleich der Geschwindigkeit der Rückreaktion sein muss: