Benutzer:Marlonwood45/Turbinenschaufel

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Dieser Artikel (Turbinenschaufel) ist im Entstehen begriffen und noch nicht Bestandteil der freien Enzyklopädie Wikipedia.
Wenn du dies liest:
  • Der Text kann teilweise in einer Fremdsprache verfasst, unvollständig sein oder noch ungeprüfte Aussagen enthalten.
  • Wenn du Fragen zum Thema hast, nimm am besten Kontakt mit dem Autor Marlonwood45 auf.
Wenn du diesen Artikel überarbeitest:
  • Bitte denke daran, die Angaben im Artikel durch geeignete Quellen zu belegen und zu prüfen, ob er auch anderweitig den Richtlinien der Wikipedia entspricht (siehe Wikipedia:Artikel).
  • Nach erfolgter Übersetzung kannst du diese Vorlage entfernen und den Artikel in den Artikelnamensraum verschieben. Die entstehende Weiterleitung kannst du schnelllöschen lassen.
  • Importe inaktiver Accounts, die länger als drei Monate völlig unbearbeitet sind, werden gelöscht.
Vorlage:Importartikel/Wartung-2024-03
Turbine blade from a Turbo-Union RB199 jet engine. This is a blade with an outer shroud which prevents gas leaking round the blade tip in which case it wouldn't contribute to the force on the aerofoil. The platform at the base of the aerofoil forms a continuous annulus ring which, together with cooling-air cavity purge flow prevents hot gas leakage onto the turbine discs. The short extension, or shank, between the platform and fir-tree fixing in the disc allows space for cooling-air entry to blade, may control blade vibration modes and heat transfer to disc rim.[1]
The turbine blades have a golden colour in this engine cutaway.

Eine Turbinenschaufel ist eine profilaerodynamisch geformte Schaufel, die als Komponente einer Turbine einem strömenden Fluid entweder als Teil des statischen Schaufelgitters (Stator) Drall zufügen oder als Teil des rotierenden Schaufelgitters (Rotor) Drall entnehmen und dabei dessen Totaldruck verringern soll. Infolge dessen verrichtet das Fluid Arbeit an der Turbine, die anderen Systemen zur Verfügung gestellt wird. Turbinengitter sind Verzögerungsgitter, das heißt dem Arbeitsmedium wird Enthalpie entzogen. Die Turbine ist damit eine Kraftmaschine. [2]

Die Turbinenschaufeln sind in Rotorscheiben und Statorkränzen eingebaut; darin enthalten sind zahlreiche Schaufeln pro Stufe. Die Turbinenschaufeln haben die Aufgabe, dem Heißgas mit großem Druck aus der Brennkammer Energie zu entziehen. Sie sind deshalb oft die limitierende Komponente bei der Auslegung von Gasturbinen, da sie den höchsten thermischen und mechanischen Belastungen standhalten müssen.[3] Da höhere Turbineneintrittstemperauren Vorteile für die thermodynamsische Effizienz haben, ist ein bedeutender Aspekt bei der Auslegung von Turbinenschaufeln die Erhöhung der zulässigen Maximaltemperatur. Um eine bessere Beständigkeit zu erreichen, werden einerseits Kühlungskonzepte wie Filmkühlung und andererseits Materialien mit hoher Festigkeit, wie etwa Superlegierungen, verwendet. Materialermüdung der Schaufeln ist eine erhebliche Schadensquelle in Dampf- und Gasturbinen und besonders in Fluggasturbinen hoch sicherheitsrelevant.

Je nach Turbinentyp wird zwischen der Aktionsbeschaufelung und der Reaktionsbeschaufelung unterschieden. In einer Gleichdruck- oder Aktionsturbine bleibt der statische Druck des Arbeitsmediums vor und nach dem Leitgitter gleich, wobei bei der Überdruck- oder Reaktionsturbine über das Leitgitter ein statischer Druckanstieg erfolgt. In modernen Gasturbinen lässt sich meist eine Kombination beider Beschaufelungstypen vorfinden. [4][5]

Diagram of a twin spool jet engine. The high-pressure turbine is connected by a shaft to the high-pressure compressor to form one spool, or complete rotating assembly(purple)- and the low-pressure turbine is connected to the low-pressure compressor to form the other spool (green).

Environment and failure modes

[Bearbeiten | Quelltext bearbeiten]

Turbine blades are subjected to very strenuous environments inside a gas turbine. They face high temperatures, high stresses, and a potential environment of high vibration. All three of these factors can lead to blade failures, potentially destroying the engine, therefore turbine blades are carefully designed to resist these conditions.[6]

Turbine blades are subjected to stress from centrifugal force (turbine stages can rotate at tens of thousands of revolutions per minute (RPM)) and fluid forces that can cause fracture, yielding, or creep[nb 1] failures. Additionally, the first stage (the stage directly following the combustor) of a modern gas turbine faces temperatures around Vorlage:Convert,[7] up from temperatures around Vorlage:Convert in early gas turbines.[8] Modern military jet engines, like the Snecma M88, can see turbine temperatures of Vorlage:Convert.[9] Those high temperatures can weaken the blades and make them more susceptible to creep failures. The high temperatures can also make the blades susceptible to corrosion failures.[10] Finally, vibrations from the engine and the turbine itself can cause fatigue failures.[6]

A limiting factor in early jet engines was the performance of the materials available for the hot section (combustor and turbine) of the engine. The need for better materials spurred much research in the field of alloys and manufacturing techniques, and that research resulted in a long list of new materials and methods that make modern gas turbines possible.[8] One of the earliest of these was Nimonic, used in the British Whittle engines.

The development of superalloys in the 1940s and new processing methods such as vacuum induction melting in the 1950s greatly increased the temperature capability of turbine blades. Further processing methods like hot isostatic pressing improved the alloys used for turbine blades and increased turbine blade performance.[8] Modern turbine blades often use nickel-based superalloys that incorporate chromium, cobalt, and rhenium.[6][11]

Aside from alloy improvements, a major breakthrough was the development of directional solidification (DS) and single crystal (SC) production methods. These methods help greatly increase strength against fatigue and creep by aligning grain boundaries in one direction (DS) or by eliminating grain boundaries altogether (SC). SC research began in the 1960s with Pratt and Whitney and took about 10 years to be implemented. One of the first implementations of DS was with the J58 engines of the SR-71.[8][12][13]

A turbine blade with thermal barrier coating. This blade has no tip shroud so tip leakage is controlled by the clearance between the tip and a stationary shroud ring attached to the turbine case.

Another major improvement to turbine blade material technology was the development of thermal barrier coatings (TBC). Where DS and SC developments improved creep and fatigue resistance, TBCs improved corrosion and oxidation resistance, both of which became greater concerns as temperatures increased. The first TBCs, applied in the 1970s, were aluminide coatings. Improved ceramic coatings became available in the 1980s. These coatings increased turbine blade temperature capability by about 200 °F (90 °C).[8] The coatings also improve blade life, almost doubling the life of turbine blades in some cases.[14]

Most turbine blades are manufactured by investment casting (or lost-wax processing). This process involves making a precise negative die of the blade shape that is filled with wax to form the blade shape. If the blade is hollow (i.e., it has internal cooling passages), a ceramic core in the shape of the passage is inserted into the middle. The wax blade is coated with a heat-resistant material to make a shell, and then that shell is filled with the blade alloy. This step can be more complicated for DS or SC materials, but the process is similar. If there is a ceramic core in the middle of the blade, it is dissolved in a solution that leaves the blade hollow. The blades are coated with a TBC, and then any cooling holes are machined.[15]

Ceramic matrix composites (CMC), where fibers are embedded in a matrix of polymer derived ceramics, are being developed for use in turbine blades.[16] The main advantage of CMCs over conventional superalloys is their light weight and high temperature capability. SiC/SiC composites consisting of a silicon carbide matrix reinforced by silicon carbide fibers have been shown to withstand operating temperatures 200°-300 °F higher than nickel superalloys.[17] GE Aviation successfully demonstrated the use of such SiC/SiC composite blades for the low-pressure turbine of its F414 jet engine.[18][19]

Liste von Turbinenschaufelwerkstoffen

[Bearbeiten | Quelltext bearbeiten]

Diese Liste ist nicht vollständig.[20][21]

  • U-500 Dieses Material wurde in den 1960ern zunächst in der ersten, höchstbeanspruchten Stufe genutzt und wird nun in späteren, weniger beanspruchten Stufen genutzt.[21]
  • Rene 77[21]
  • Rene N5[22]
  • Rene N6[22]
  • PWA1484[22]
  • CMSX-4 [23]
  • CMSX-10[22]
  • Inconel
    • IN-738 – General Electric nutzte IN-738 zwischen 1971 und 1984 als Material in der ersten Stufen, bis es durch GTD-111 ersetzt wurde. Es wird nun als Material in der zweiten Stufe eingesetzt. IN-738 wurde spezifisch für stationäre Gasturbinen entwickelt.[21]
  • GTD-111 Blades made from directionally solidified GTD-111 are being used in many GE Energy gas turbines in the first stage. Blades made from equiaxed GTD-111 are being used in later stages.[21]
  • EPM-102 (MX4 (GE), PWA 1497 (P&W)) is a single crystal superalloy jointly developed by NASA, GE Aviation, and Pratt & Whitney for the High Speed Civil Transport (HSCT). While the HSCT program was cancelled, the alloy is still being considered for use by GE and P&W.[24]
  • Nimonic 80a was used for the turbine blades on the Rolls-Royce Nene and de Havilland Ghost
  • Nimonic 90 was used on the Bristol Proteus.
  • Nimonic 105 was used on the Rolls-Royce Spey.
  • Nimonic 263 was used in the combustion chambers of the Bristol Olympus used on the Concorde supersonic airliner.[25][26]
  • 3D printed thermoplastic resin to create wind turbine blades is in development in a partnership between ORNL, NREL, and GE Renewable Energy.

At a constant pressure ratio, thermal efficiency of the engine increases as the turbine entry temperature (TET) increases. However, high temperatures can damage the turbine, as the blades are under large centrifugal stresses and materials are weaker at high temperature. So, turbine blade cooling is essential for the first stages but since the gas temperature drops through each stage it is not required for later stages such as in the low pressure turbine or a power turbine.[27] Current modern turbine designs are operating with inlet temperatures higher than 1900 kelvins which is achieved by actively cooling the turbine components.[28]

Laser-drilled holes permit film cooling in this first-stage V2500 nozzle guide vane

Turbine blades are cooled using air except for limited use of steam cooling in a combined cycle power plant. Water cooling has been extensively tested but has never been introduced.[29] The General Electric "H" class gas turbine has cooled rotating blades and static vanes using steam from a combined cycle steam turbine although GE was reported in 2012 to be going back to air-cooling for its "FlexEfficiency" units.[30] Liquid cooling seems to be more attractive because of high specific heat capacity and chances of evaporative cooling but there can be leakage, corrosion, choking and other problems which work against this method.[27] On the other hand, air cooling allows the discharged air into main flow without any problem. Quantity of air required for this purpose is 1–3% of main flow and blade temperature can be reduced by 200–300 °C.[27] There are many techniques of cooling used in gas turbine blades; convection, film, transpiration cooling, cooling effusion, pin fin cooling etc. which fall under the categories of internal and external cooling. While all methods have their differences, they all work by using cooler air taken from the compressor to remove heat from the turbine blades.[31]

Interne Kühlung

[Bearbeiten | Quelltext bearbeiten]

Convection cooling

[Bearbeiten | Quelltext bearbeiten]
Blade cooling by convection

It works by passing cooling air through passages internal to the blade. Heat is transferred by conduction through the blade, and then by convection into the air flowing inside of the blade. A large internal surface area is desirable for this method, so the cooling paths tend to be serpentine and full of small fins. The internal passages in the blade may be circular or elliptical in shape. Cooling is achieved by passing the air through these passages from hub towards the blade tip. This cooling air comes from an air compressor. In case of gas turbine the fluid outside is relatively hot which passes through the cooling passage and mixes with the main stream at the blade tip.[31][32]

Impingement cooling

[Bearbeiten | Quelltext bearbeiten]
Impingement

A variation of convection cooling, impingement cooling, works by hitting the inner surface of the blade with high velocity air. This allows more heat to be transferred by convection than regular convection cooling does. Impingement cooling is used in the regions of greatest heat loads. In case of turbine blades, the leading edge has maximum temperature and thus heat load. Impingement cooling is also used in mid chord of the vane. Blades are hollow with a core.[33] There are internal cooling passages. Cooling air enters from the leading edge region and turns towards the trailing edge.[32]

Externe Kühlung

[Bearbeiten | Quelltext bearbeiten]
Rendering of a turbine blade with cooling holes for film cooling.
Film cooling

Film cooling (also called thin film cooling), a widely used type, allows for higher cooling effectiveness than either convection and impingement cooling.[34] This technique consists of pumping the cooling air out of the blade through multiple small holes or slots in the structure. A thin layer (the film) of cooling air is then created on the external surface of the blade, reducing the heat transfer from main flow, whose temperature (1300–1800 kelvins) can exceed the melting point of the blade material (1300–1400 kelvins).[35][36] The ability of the film cooling system to cool the surface is typically evaluated using a parameter called cooling effectiveness. Higher cooling effectiveness (with maximum value of one) indicates that the blade material temperature is closer to the coolant temperature. In locations where the blade temperature approaches the hot gas temperature, the cooling effectiveness approaches to zero. The cooling effectiveness is mainly affected by the coolant flow parameters and the injection geometry. Coolant flow parameters include the velocity, density, blowing and momentum ratios which are calculated using the coolant and mainstream flow characteristics. Injection geometry parameters consist of hole or slot geometry (i.e. cylindrical, shaped holes or slots) and injections angle.[28][37] A United States Air Force program in the early 1970s funded the development of a turbine blade that was both film and convection cooled, and that method has become common in modern turbine blades.[8] Injecting the cooler bleed into the flow reduces turbine isentropic efficiency; the compression of the cooling air (which does not contribute power to the engine) incurs an energetic penalty; and the cooling circuit adds considerable complexity to the engine.[38] All of these factors have to be compensated by the increase in overall performance (power and efficiency) allowed by the increase in turbine temperature.[39] In recent years, researchers have suggested using plasma actuator for film cooling. The film cooling of turbine blades by using a dielectric barrier discharge plasma actuator was first proposed by Roy and Wang.[40] A horseshoe-shaped plasma actuator, which is set in the vicinity of holes for gas flow, has been shown to improve the film cooling effectiveness significantly. Following the previous research, recent reports using both experimental and numerical methods demonstrated the effect of cooling enhancement by 15% using a plasma actuator.[41][42] [43]

Effusionskühlung

[Bearbeiten | Quelltext bearbeiten]
Cooling by effusion

The blade surface is made of porous material which means having a large number of small orifices on the surface. Cooling air is forced through these porous holes which forms a film or cooler boundary layer. Besides this uniform cooling is caused by effusion of the coolant over the entire blade surface.[27]

Pin fin cooling

[Bearbeiten | Quelltext bearbeiten]

In the narrow trailing edge film cooling is used to enhance heat transfer from the blade. There is an array of pin fins on the blade surface. Heat transfer takes place from this array and through the side walls. As the coolant flows across the fins with high velocity, the flow separates and wakes are formed. Many factors contribute towards heat transfer rate among which the type of pin fin and the spacing between fins are the most significant.[33]

Transpiration cooling

[Bearbeiten | Quelltext bearbeiten]

This is similar to film cooling in that it creates a thin film of cooling air on the blade, but it is different in that air is "leaked" through a porous shell rather than injected through holes. This type of cooling is effective at high temperatures as it uniformly covers the entire blade with cool air.[32][44] Transpiration-cooled blades generally consist of a rigid strut with a porous shell. Air flows through internal channels of the strut and then passes through the porous shell to cool the blade.[45] As with film cooling, increased cooling air decreases turbine efficiency, therefore that decrease has to be balanced with improved temperature performance.[39]

Dynamische Mechanische Belastungen

[Bearbeiten | Quelltext bearbeiten]
  1. Creep is the tendency of a solid material to slowly move or deform permanently under the influence of stresses. It occurs as a result of long term exposure to high levels of stress that are below the yield strength of the material. Creep is more severe in materials that are subjected to heat for long periods, and near the melting point. Creep always increases with temperature. From Creep (deformation).

Vorlage:Commons category Vorlage:Reflist

Bibliography
  • SM YAHYA: turbines, compressor and fans. 4th Auflage. Tata McGraw Hill Education private limited, New delhi 2011, ISBN 978-0-07-070702-3, Chapter 10: High temperature(cooled) turbine stages.
  • Ronald D. Flack: Fundamentals of Jet Propulsion with Applications (= Cambridge Aerospace Series). Cambridge University Press, New York, NY 2005, ISBN 978-0-521-81983-1, Chapter 8: Axial Flow Turbines.
  • Meherwan P. Boyce: Gas Turbine Engineering Handbook. 3rd Auflage. Elsevier, Oxford 2006, ISBN 978-0-7506-7846-9, Chapter 9: Axial Flow Turbines and Chapter 11: Materials.

Vorlage:Aircraft gas turbine engine components


[[Category:Engines]]

  1. Nomenclature of Cooled Axial Turbine Blade – Turbomachinery Aerodynamic Design.
  2. Willy J.G. Bräunling: Flugzeugtriebwerke, 4. Auflage. Grundlagen, Aero-Thermodynamik, Ideale und reale Kreisprozesse, Thermische Turbomaschinen, Komponenten, Emissionen und Systeme. Springer Vieweg, Berlin / Heidelberg, ISBN 978-3-642-34538-8, S. 220–240, doi:10.1007/978-3-642-34539-5.
  3. Boyce, p. 368.
  4. HM 150.19 Funktionsprinzip einer Peltonturbine. In: www.gunt.de. G.U.N.T. Gerätebau GmbH, 2024, abgerufen am 16. März 2024.
  5. HM 150.20 Funktionsprinzip einer Francisturbine. In: www.gunt.de. G.U.N.T. Gerätebau GmbH, 2024, abgerufen am 16. März 2024.
  6. a b c Flack, p. 429.
  7. Flack, p. 410
  8. a b c d e f Koff, Bernard L. (2003). "Gas Turbine Technology Overview – A Designer's Perspective". AIAA/ICAS International Air and Space Symposium and Exposition: The Next 100 Years. 14–17 July 2003, Dayton, Ohio. AIAA 2003-2722.
  9. Dexclaux, Jacques and Serre, Jacque (2003). "M88-2 E4: Advanced New Generation Engine for Rafale Multirole Fighter". AIAA/ICAS International Air and Space Symposium and Exposition: The Next 100 Years. 14–17 July 2003, Dayton, Ohio. AIAA 2003-2610
  10. Bhagi LK, Rastogi V, Gupta P (2013).Fractographic investigations of the failure of L-1 low pressure steam turbine blade. Case Studies in Engineering Failure Analysis, 1(2), pp.72–78
  11. Michael J. Magyar: Mineral Yearbook: Rhenium. United States Geological Survey;
  12. Lee S. Langston: Single-Crystal Turbine Blades Earn ASME Milestone Status. In: www.machinedesign.com. 16. März 2018, abgerufen am 25. November 2018.
  13. Lee S. Langston: Each Blade a Single Crystal. In: www.americanscientist.org. 6. Februar 2017, abgerufen am 25. November 2018.
  14. Boyce, p. 449
  15. Flack, p. 430-3
  16. Takeshi, Takashi, Kuniyuki, Ken-ichi, Masato: Development of CMC Turbine Parts for Aero Engines.
  17. Halbig, Jaskowiak, Kiser, Zhu: Evaluation of Ceramic Matrix Composite Technology for Aircraft Turbine Engine Applications. In: 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Juni 2013, doi:10.2514/6.2013-539 (nasa.gov [PDF]).
  18. Ceramic Matrix Composites Allow GE Jet Engines to Fly Longer – GE Reports. In: GE Reports. Abgerufen am 2. November 2015.
  19. GE Successfully Tests World's First Rotating Ceramic Matrix Composite Material for Next-Gen Combat Engine | Press Release | GE Aviation. In: www.geaviation.com. Abgerufen am 2. November 2015.
  20. Boyce, p. 440-2
  21. a b c d e Schilke, P. W. (2004). Advanced Gas Turbine Materials and Coatings (Seite dauerhaft nicht mehr abrufbar, festgestellt im Oktober 2023.). GE Energy. August 2004. Retrieved: 25 May 2011.
  22. a b c d MacKay, Rebecca A., et al. (2007). Low-Density, Creep-Resistant Superalloys Developed for Turbine Blades. NASA Glenn's Research & Technology. Updated: 7 November 2007. Retrieved: 16 June 2010.
  23. P. Caron, Y. Ohta, Y.G. Nakagawa, T. Khan (1988): Superalloys 1988 (edited by S. Reichmann et al.), p. 215. The Metallurgical Society of AIME, Warrendale, PA.
  24. S. Walston, A. Cetel, R. MacKay, K. O’Hara, D. Duhl, and R. Dreshfield (2004). Joint Development of a Fourth Generation Single Crystal Superalloy web.archive.org Fehler bei Vorlage * Parametername unbekannt (Vorlage:Webarchiv): "date"Vorlage:Webarchiv/Wartung/Parameter Fehler bei Vorlage:Webarchiv: Genau einer der Parameter 'wayback', 'webciteID', 'archive-today', 'archive-is' oder 'archiv-url' muss angegeben werden.Vorlage:Webarchiv/Wartung/Linktext_fehltVorlage:Webarchiv/Wartung/URL Fehler bei Vorlage:Webarchiv: enWP-Wert im Parameter 'url'.. NASA TM—2004-213062. December 2004. Retrieved: 16 June 2010.
  25. "Metal Tidbits: Nimonic." steelforge.com. Retrieved: 5 March 2011.
  26. "Products." archive.today Fehler bei Vorlage * Parametername unbekannt (Vorlage:Webarchiv): "date"Vorlage:Webarchiv/Wartung/Parameter Fehler bei Vorlage:Webarchiv: Genau einer der Parameter 'wayback', 'webciteID', 'archive-today', 'archive-is' oder 'archiv-url' muss angegeben werden.Vorlage:Webarchiv/Wartung/Linktext_fehltVorlage:Webarchiv/Wartung/URL Fehler bei Vorlage:Webarchiv: enWP-Wert im Parameter 'url'. Special Metals. Retrieved: 5 March 2011.
  27. a b c d S M Yahya: Turbines Compressors and Fans. Tata McGraw-Hill Education, 2010, New delhi 2011, ISBN 978-0-07-070702-3, S. 430–433 (google.com).
  28. a b Vorlage:Citation
  29. Gas Turbine Engineering Handbook Second Edition,Boyce,ISBN 0 88415 732 6, Fig. 9-23 General Electric "Water-cooled turbine blade"
  30. Moving beyond the steam cooling.
  31. a b Flack, p.428.
  32. a b c Boyce, p. 370.
  33. a b Je-Chin Han Lesley M. Wright: Enhanced Internal Cooling of Turbine Blades and Vanes. In: 4.2.2.2 Enhanced Internal Coolingof Turbine Blades and Vanes. Abgerufen am 27. Mai 2013.
  34. Volume 1. Performance Flight Testing Phase. Chapter 7. Aero Propulsion page 7.122. Edwards Air Force Base, Air Force Test Center, February 1991. Size: 8MB. mirror of ADA320315.pdf
  35. What is Film Cooling?
  36. Martinez, Isidoro. "Aircraft propulsion. Thermal and mechanical limitations in jet engines web.archive.org Fehler bei Vorlage * Parametername unbekannt (Vorlage:Webarchiv): "date"Vorlage:Webarchiv/Wartung/Parameter Fehler bei Vorlage:Webarchiv: Genau einer der Parameter 'wayback', 'webciteID', 'archive-today', 'archive-is' oder 'archiv-url' muss angegeben werden.Vorlage:Webarchiv/Wartung/Linktext_fehltVorlage:Webarchiv/Wartung/URL Fehler bei Vorlage:Webarchiv: enWP-Wert im Parameter 'url'." page 19. Technical University of Madrid, School of Aeronautical Engineering, 2015. Retrieved: April 2015.
  37. Vorlage:Citation
  38. Rolls-Royce plc: The Jet Engine. 6. Auflage. Rolls-Royce plc, 2005, ISBN 978-0-902121-23-2.
  39. a b Boyce, p. 379-80
  40. S. Roy, C.-C. Wang, Plasma actuated heat transfer, Appl. Phys. Lett. 92 (2008) 231501
  41. P. Audier, M., N. Benard, E. Moreau, Film cooling effectiveness enhancement using surface dielectric barrier discharge plasma actuator, Int. J. Heat Fluid Flow 62 (2016), 247–57.
  42. S. Dai, Y. Xiao, L. He, T. Jin, P. Hou, Q. Zhang, Z. Zhao, Computational study of plasma actuator on film cooling performance for different shaped holes, AIP Adv. 5 (2015), 067104.
  43. Y. Xiao, S. Dai, L. He, T. Jin, Q. Zhang, P. Hou, Investigation of film cooling from cylindrical hole with plasma actuator on flat plate, Heat Mass Transf. 52 (2016), 1571–83.
  44. Flack, p. 428-9
  45. Boyce, p. 375