Benutzer:Molinarius/Silicon photonics

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Dieser Artikel (Silicon photonics) ist im Entstehen begriffen und noch nicht Bestandteil der freien Enzyklopädie Wikipedia.
Wenn du dies liest:
  • Der Text kann teilweise in einer Fremdsprache verfasst, unvollständig sein oder noch ungeprüfte Aussagen enthalten.
  • Wenn du Fragen zum Thema hast, nimm am besten Kontakt mit dem Autor Molinarius auf.
Wenn du diesen Artikel überarbeitest:
  • Bitte denke daran, die Angaben im Artikel durch geeignete Quellen zu belegen und zu prüfen, ob er auch anderweitig den Richtlinien der Wikipedia entspricht (siehe Wikipedia:Artikel).
  • Nach erfolgter Übersetzung kannst du diese Vorlage entfernen und den Artikel in den Artikelnamensraum verschieben. Die entstehende Weiterleitung kannst du schnelllöschen lassen.
  • Importe inaktiver Accounts, die länger als drei Monate völlig unbearbeitet sind, werden gelöscht.
Vorlage:Importartikel/Wartung-2024-12

Vorlage:Short description Vorlage:Use dmy dates Silicon photonics is the study and application of photonic systems which use silicon as an optical medium.[1][2][3][4][5] The silicon is usually patterned with sub-micrometre precision, into microphotonic components.[4] These operate in the infrared, most commonly at the 1.55 micrometre wavelength used by most fiber optic telecommunication systems.[6] The silicon typically lies on top of a layer of silica in what (by analogy with a similar construction in microelectronics) is known as silicon on insulator (SOI).[4][5]

Silicon photonics 300 mm wafer

Silicon photonic devices can be made using existing semiconductor fabrication techniques, and because silicon is already used as the substrate for most integrated circuits, it is possible to create hybrid devices in which the optical and electronic components are integrated onto a single microchip.[6] Consequently, silicon photonics is being actively researched by many electronics manufacturers including IBM and Intel, as well as by academic research groups, as a means for keeping on track with Moore's Law, by using optical interconnects to provide faster data transfer both between and within microchips.[7][8][9]

The propagation of light through silicon devices is governed by a range of nonlinear optical phenomena including the Kerr effect, the Raman effect, two-photon absorption and interactions between photons and free charge carriers.[10] The presence of nonlinearity is of fundamental importance, as it enables light to interact with light,[11] thus permitting applications such as wavelength conversion and all-optical signal routing, in addition to the passive transmission of light.

Silicon waveguides are also of great academic interest, due to their unique guiding properties, they can be used for communications, interconnects, biosensors,[12][13] and they offer the possibility to support exotic nonlinear optical phenomena such as soliton propagation.[14][15][16]

Optical communications

[Bearbeiten | Quelltext bearbeiten]

In a typical optical link, data is first transferred from the electrical to the optical domain using an electro-optic modulator or a directly modulated laser. An electro-optic modulator can vary the intensity and/or the phase of the optical carrier. In silicon photonics, a common technique to achieve modulation is to vary the density of free charge carriers. Variations of electron and hole densities change the real and the imaginary part of the refractive index of silicon as described by the empirical equations of Soref and Bennett.[17] Modulators can consist of both forward-biased PIN diodes, which generally generate large phase-shifts but suffer of lower speeds,[18] as well as of reverse-biased p–n junctions.[19] A prototype optical interconnect with microring modulators integrated with germanium detectors has been demonstrated.[20][21] Non-resonant modulators, such as Mach-Zehnder interferometers, have typical dimensions in the millimeter range and are usually used in telecom or datacom applications. Resonant devices, such as ring-resonators, can have dimensions of few tens of micrometers only, occupying therefore much smaller areas. In 2013, researchers demonstrated a resonant depletion modulator that can be fabricated using standard Silicon-on-Insulator Complementary Metal-Oxide-Semiconductor (SOI CMOS) manufacturing processes.[22] A similar device has been demonstrated as well in bulk CMOS rather than in SOI.[23][24]

On the receiver side, the optical signal is typically converted back to the electrical domain using a semiconductor photodetector. The semiconductor used for carrier generation has usually a band-gap smaller than the photon energy, and the most common choice is pure germanium.[25][26] Most detectors use a p–n junction for carrier extraction, however, detectors based on metal–semiconductor junctions (with germanium as the semiconductor) have been integrated into silicon waveguides as well.[27] More recently, silicon-germanium avalanche photodiodes capable of operating at 40 Gbit/s have been fabricated.[28][29] Complete transceivers have been commercialized in the form of active optical cables.[30]

Optical communications are conveniently classified by the reach, or length, of their links. The majority of silicon photonic communications have so far been limited to telecom[31] and datacom applications,[32][33] where the reach is of several kilometers or several meters respectively.

Silicon photonics, however, is expected to play a significant role in computercom as well, where optical links have a reach in the centimeter to meter range. In fact, progress in computer technology (and the continuation of Moore's Law) is becoming increasingly dependent on faster data transfer between and within microchips.[34] Optical interconnects may provide a way forward, and silicon photonics may prove particularly useful, once integrated on the standard silicon chips.[6][35][36] In 2006, Intel Senior Vice President - and future CEO - Pat Gelsinger stated that, "Today, optics is a niche technology. Tomorrow, it's the mainstream of every chip that we build."[8] In 2010 Intel demonstrated a 50 Gbit/s connection made with silicon photonics.[37]

The first microprocessor with optical input/output (I/O) was demonstrated in December 2015 using an approach known as "zero-change" CMOS photonics.[38] This is known as fiber-to-the-processor.[39] This first demonstration was based on a 45 nm SOI node, and the bi-directional chip-to-chip link was operated at a rate of 2×2.5 Gbit/s. The total energy consumption of the link was calculated to be of 16 pJ/b and was dominated by the contribution of the off-chip laser.

Some researchers believe an on-chip laser source is required.[40] Others think that it should remain off-chip because of thermal problems (the quantum efficiency decreases with temperature, and computer chips are generally hot) and because of CMOS-compatibility issues. One such device is the hybrid silicon laser, in which the silicon is bonded to a different semiconductor (such as indium phosphide) as the lasing medium.[41] Other devices include all-silicon Raman laser[42] or an all-silicon Brillouin lasers[43] wherein silicon serves as the lasing medium.

In 2012, IBM announced that it had achieved optical components at the 90 nanometer scale that can be manufactured using standard techniques and incorporated into conventional chips.[7][44] In September 2013, Intel announced technology to transmit data at speeds of 100 gigabits per second along a cable approximately five millimeters in diameter for connecting servers inside data centers. Conventional PCI-E data cables carry data at up to eight gigabits per second, while networking cables reach 40 Gbit/s. The latest version of the USB standard tops out at ten Gbit/s. The technology does not directly replace existing cables in that it requires a separate circuit board to interconvert electrical and optical signals. Its advanced speed offers the potential of reducing the number of cables that connect blades on a rack and even of separating processor, storage and memory into separate blades to allow more efficient cooling and dynamic configuration.[45]

Graphene photodetectors have the potential to surpass germanium devices in several important aspects, although they remain about one order of magnitude behind current generation capacity, despite rapid improvement. Graphene devices can work at very high frequencies, and could in principle reach higher bandwidths. Graphene can absorb a broader range of wavelengths than germanium. That property could be exploited to transmit more data streams simultaneously in the same beam of light. Unlike germanium detectors, graphene photodetectors do not require applied voltage, which could reduce energy needs. Finally, graphene detectors in principle permit a simpler and less expensive on-chip integration. However, graphene does not strongly absorb light. Pairing a silicon waveguide with a graphene sheet better routes light and maximizes interaction. The first such device was demonstrated in 2011. Manufacturing such devices using conventional manufacturing techniques has not been demonstrated.[46]

Optical routers and signal processors

[Bearbeiten | Quelltext bearbeiten]

Another application of silicon photonics is in signal routers for optical communication. Construction can be greatly simplified by fabricating the optical and electronic parts on the same chip, rather than having them spread across multiple components.[47] A wider aim is all-optical signal processing, whereby tasks which are conventionally performed by manipulating signals in electronic form are done directly in optical form.[3][48] An important example is all-optical switching, whereby the routing of optical signals is directly controlled by other optical signals.[49] Another example is all-optical wavelength conversion.[50]

In 2013, a startup company named "Compass-EOS", based in California and in Israel, was the first to present a commercial silicon-to-photonics router.[51]

Long range telecommunications using silicon photonics

[Bearbeiten | Quelltext bearbeiten]

Silicon microphotonics can potentially increase the Internet's bandwidth capacity by providing micro-scale, ultra low power devices. Furthermore, the power consumption of datacenters may be significantly reduced if this is successfully achieved. Researchers at Sandia,[52] Kotura, NTT, Fujitsu and various academic institutes have been attempting to prove this functionality. A 2010 paper reported on a prototype 80 km, 12.5 Gbit/s transmission using microring silicon devices.[53]

Light-field displays

[Bearbeiten | Quelltext bearbeiten]

As of 2015, US startup company Magic Leap is working on a light-field chip using silicon photonics for the purpose of an augmented reality display.[54]

Artificial intelligence

[Bearbeiten | Quelltext bearbeiten]

Silicon photonics has been used in artificial intelligence inference processors that are more energy efficient than those using conventional transistors. This can be done using Mach-Zehnder interferometers (MZIs) which can be combined with nanoelectromechanical systems to modulate the light passing though it, by physically bending the MZI which changes the phase of the light.[55][56][57]

Physical properties

[Bearbeiten | Quelltext bearbeiten]

Optical guiding and dispersion tailoring

[Bearbeiten | Quelltext bearbeiten]

Silicon is transparent to infrared light with wavelengths above about 1.1 micrometres.[58] Silicon also has a very high refractive index, of about 3.5.[58] The tight optical confinement provided by this high index allows for microscopic optical waveguides, which may have cross-sectional dimensions of only a few hundred nanometers.[10] Single mode propagation can be achieved,[10] thus (like single-mode optical fiber) eliminating the problem of modal dispersion.

The strong dielectric boundary effects that result from this tight confinement substantially alter the optical dispersion relation. By selecting the waveguide geometry, it is possible to tailor the dispersion to have desired properties, which is of crucial importance to applications requiring ultrashort pulses.[10] In particular, the group velocity dispersion (that is, the extent to which group velocity varies with wavelength) can be closely controlled. In bulk silicon at 1.55 micrometres, the group velocity dispersion (GVD) is normal in that pulses with longer wavelengths travel with higher group velocity than those with shorter wavelength. By selecting a suitable waveguide geometry, however, it is possible to reverse this, and achieve anomalous GVD, in which pulses with shorter wavelengths travel faster.[59][60][61] Anomalous dispersion is significant, as it is a prerequisite for soliton propagation, and modulational instability.[62]

In order for the silicon photonic components to remain optically independent from the bulk silicon of the wafer on which they are fabricated, it is necessary to have a layer of intervening material. This is usually silica, which has a much lower refractive index (of about 1.44 in the wavelength region of interest[63]), and thus light at the silicon-silica interface will (like light at the silicon-air interface) undergo total internal reflection, and remain in the silicon. This construct is known as silicon on insulator.[4][5] It is named after the technology of silicon on insulator in electronics, whereby components are built upon a layer of insulator in order to reduce parasitic capacitance and so improve performance.[64] Silicon photonics have also been built with silicon nitride as the material in the optical waveguides.[65][66]

Kerr nonlinearity

[Bearbeiten | Quelltext bearbeiten]

Silicon has a focusing Kerr nonlinearity, in that the refractive index increases with optical intensity.[10] This effect is not especially strong in bulk silicon, but it can be greatly enhanced by using a silicon waveguide to concentrate light into a very small cross-sectional area.[14] This allows nonlinear optical effects to be seen at low powers. The nonlinearity can be enhanced further by using a slot waveguide, in which the high refractive index of the silicon is used to confine light into a central region filled with a strongly nonlinear polymer.[67]

Kerr nonlinearity underlies a wide variety of optical phenomena.[62] One example is four wave mixing, which has been applied in silicon to realise optical parametric amplification,[68] parametric wavelength conversion,[50] and frequency comb generation.,[69][70]

Kerr nonlinearity can also cause modulational instability, in which it reinforces deviations from an optical waveform, leading to the generation of spectral-sidebands and the eventual breakup of the waveform into a train of pulses.[71] Another example (as described below) is soliton propagation.

Two-photon absorption

[Bearbeiten | Quelltext bearbeiten]

Silicon exhibits two-photon absorption (TPA), in which a pair of photons can act to excite an electron-hole pair.[10] This process is related to the Kerr effect, and by analogy with complex refractive index, can be thought of as the imaginary-part of a complex Kerr nonlinearity.[10] At the 1.55 micrometre telecommunication wavelength, this imaginary part is approximately 10% of the real part.[72]

The influence of TPA is highly disruptive, as it both wastes light, and generates unwanted heat.[73] It can be mitigated, however, either by switching to longer wavelengths (at which the TPA to Kerr ratio drops),[74] or by using slot waveguides (in which the internal nonlinear material has a lower TPA to Kerr ratio).[67] Alternatively, the energy lost through TPA can be partially recovered (as is described below) by extracting it from the generated charge carriers.[75]

Free charge carrier interactions

[Bearbeiten | Quelltext bearbeiten]

The free charge carriers within silicon can both absorb photons and change its refractive index.[76] This is particularly significant at high intensities and for long durations, due to the carrier concentration being built up by TPA. The influence of free charge carriers is often (but not always) unwanted, and various means have been proposed to remove them. One such scheme is to implant the silicon with helium in order to enhance carrier recombination.[77] A suitable choice of geometry can also be used to reduce the carrier lifetime. Rib waveguides (in which the waveguides consist of thicker regions in a wider layer of silicon) enhance both the carrier recombination at the silica-silicon interface and the diffusion of carriers from the waveguide core.[78]

A more advanced scheme for carrier removal is to integrate the waveguide into the intrinsic region of a PIN diode, which is reverse biased so that the carriers are attracted away from the waveguide core.[79] A more sophisticated scheme still, is to use the diode as part of a circuit in which voltage and current are out of phase, thus allowing power to be extracted from the waveguide.[75] The source of this power is the light lost to two photon absorption, and so by recovering some of it, the net loss (and the rate at which heat is generated) can be reduced.

As is mentioned above, free charge carrier effects can also be used constructively, in order to modulate the light.[18][19][80]

Second-order nonlinearity

[Bearbeiten | Quelltext bearbeiten]

Second-order nonlinearities cannot exist in bulk silicon because of the centrosymmetry of its crystalline structure. By applying strain however, the inversion symmetry of silicon can be broken. This can be obtained for example by depositing a silicon nitride layer on a thin silicon film.[81] Second-order nonlinear phenomena can be exploited for optical modulation, spontaneous parametric down-conversion, parametric amplification, ultra-fast optical signal processing and mid-infrared generation. Efficient nonlinear conversion however requires phase matching between the optical waves involved. Second-order nonlinear waveguides based on strained silicon can achieve phase matching by dispersion-engineering.[82] So far, however, experimental demonstrations are based only on designs which are not phase matched.[83] It has been shown that phase matching can be obtained as well in silicon double slot waveguides coated with a highly nonlinear organic cladding[84] and in periodically strained silicon waveguides.[85]

The Raman effect

[Bearbeiten | Quelltext bearbeiten]

Silicon exhibits the Raman effect, in which a photon is exchanged for a photon with a slightly different energy, corresponding to an excitation or a relaxation of the material. Silicon's Raman transition is dominated by a single, very narrow frequency peak, which is problematic for broadband phenomena such as Raman amplification, but is beneficial for narrowband devices such as Raman lasers.[10] Early studies of Raman amplification and Raman lasers started at UCLA which led to demonstration of net gain Silicon Raman amplifiers and silicon pulsed Raman laser with fiber resonator (Optics express 2004). Consequently, all-silicon Raman lasers have been fabricated in 2005.[42]

The Brillouin effect

[Bearbeiten | Quelltext bearbeiten]

In the Raman effect, photons are red- or blue-shifted by optical phonons with a frequency of about 15 THz. However, silicon waveguides also support acoustic phonon excitations. The interaction of these acoustic phonons with light is called Brillouin scattering. The frequencies and mode shapes of these acoustic phonons are dependent on the geometry and size of the silicon waveguides, making it possible to produce strong Brillouin scattering at frequencies ranging from a few MHz to tens of GHz.[86][87] Stimulated Brillouin scattering has been used to make narrowband optical amplifiers[88][89][90] as well as all-silicon Brillouin lasers.[43] The interaction between photons and acoustic phonons is also studied in the field of cavity optomechanics, although 3D optical cavities are not necessary to observe the interaction.[91] For instance, besides in silicon waveguides the optomechanical coupling has also been demonstrated in fibers[92] and in chalcogenide waveguides.[93]

The evolution of light through silicon waveguides can be approximated with a cubic Nonlinear Schrödinger equation,[10] which is notable for admitting sech-like soliton solutions.[94] These optical solitons (which are also known in optical fiber) result from a balance between self phase modulation (which causes the leading edge of the pulse to be redshifted and the trailing edge blueshifted) and anomalous group velocity dispersion.[62] Such solitons have been observed in silicon waveguides, by groups at the universities of Columbia,[14] Rochester,[15] and Bath.[16]

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Richard A. Soref, Joseph P. Lorenzo: All-silicon active and passive guided-wave components for lambda= 1.3 and 1.6 microns. In: IEEE Journal of Quantum Electronics. 22. Jahrgang, Nr. 6, 1986, S. 873–879, doi:10.1109/JQE.1986.1073057, bibcode:1986IJQE...22..873S (zenodo.org [abgerufen am 2. Juli 2019]).
  2. Bahram Jalali, Sasan Fathpour: Silicon photonics. In: Journal of Lightwave Technology. 24. Jahrgang, Nr. 12, 2006, S. 4600–4615, doi:10.1109/JLT.2006.885782, bibcode:2006JLwT...24.4600J.
  3. a b V. R. Almeida, C. A. Barrios, R. R. Panepucci, M Lipson: All-optical control of light on a silicon chip. In: Nature. 431. Jahrgang, Nr. 7012, 2004, S. 1081–1084, doi:10.1038/nature02921, PMID 15510144, bibcode:2004Natur.431.1081A.
  4. a b c d Silicon photonics. Springer, 2004, ISBN 3-540-21022-9.
  5. a b c Silicon photonics: an introduction. John Wiley and Sons, 2004, ISBN 0-470-87034-6.
  6. a b c Lipson, Michal: Guiding, Modulating, and Emitting Light on Silicon – Challenges and Opportunities. In: Journal of Lightwave Technology. 23. Jahrgang, Nr. 12, 2005, S. 4222–4238, doi:10.1109/JLT.2005.858225, bibcode:2005JLwT...23.4222L.
  7. a b Silicon Integrated Nanophotonics. IBM Research, abgerufen am 14. Juli 2009.
  8. a b Silicon Photonics. Intel, abgerufen am 14. Juli 2009.
  9. SPIE: Yurii A. Vlasov plenary presentation: Silicon Integrated Nanophotonics: From Fundamental Science to Manufacturable Technology. In: SPIE Newsroom. 5. März 2015, doi:10.1117/2.3201503.15.
  10. a b c d e f g h i R Dekker, N Usechak, M Först, A Driessen: Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides. In: Journal of Physics D. 40. Jahrgang, Nr. 14, 2008, S. R249–R271, doi:10.1088/0022-3727/40/14/r01, bibcode:2007JPhD...40..249D (utwente.nl [PDF]).
  11. Butcher, Paul N., Cotter, David: The elements of nonlinear optics. Cambridge University Press, 1991, ISBN 0-521-42424-0.
  12. Sahba Talebi Fard, Samantha M. Grist, Valentina Donzella, Shon A. Schmidt, Jonas Flueckiger, Xu Wang, Wei Shi, Andrew Millspaugh: Silicon Photonics VIII. Band 8629, 2013, Label-free silicon photonic biosensors for use in clinical diagnostics, S. 862909, doi:10.1117/12.2005832.
  13. Valentina Donzella, Ahmed Sherwali, Jonas Flueckiger, Samantha M. Grist, Sahba Talebi Fard, Lukas Chrostowski: Design and fabrication of SOI micro-ring resonators based on sub-wavelength grating waveguides. In: Optics Express. 23. Jahrgang, Nr. 4, 2015, S. 4791–803, doi:10.1364/OE.23.004791, PMID 25836514, bibcode:2015OExpr..23.4791D.
  14. a b c I.-Wei Hsieh, Xiaogang Chen, Jerry I. Dadap, Nicolae C. Panoiu, Richard M. Osgood, Sharee J. McNab, Yurii A. Vlasov: Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides. In: Optics Express. 14. Jahrgang, Nr. 25, 2006, S. 12380–12387, doi:10.1364/OE.14.012380, PMID 19529669, bibcode:2006OExpr..1412380H.
  15. a b Jidong Zhang, Qiang Lin, Giovanni Piredda, Robert W. Boyd, Govind P. Agrawal, Philippe M. Fauchet: Optical solitons in a silicon waveguide. In: Optics Express. 15. Jahrgang, Nr. 12, 2007, S. 7682–7688, doi:10.1364/OE.15.007682, PMID 19547096, bibcode:2007OExpr..15.7682Z.
  16. a b W. Ding, C. Benton, A. V. Gorbach, W. J. Wadsworth, J. C. Knight, D. V. Skryabin, M. Gnan, M. Sorrel, R. M. de la Rue: Solitons and spectral broadening in long silicon-on- insulator photonic wires. In: Optics Express. 16. Jahrgang, Nr. 5, 2008, S. 3310–3319, doi:10.1364/OE.16.003310, PMID 18542420, bibcode:2008OExpr..16.3310D.
  17. Richard A. Soref, Brian R. Bennett: Electrooptical effects in silicon. In: IEEE Journal of Quantum Electronics. 23. Jahrgang, Nr. 1, 1987, S. 123–129, doi:10.1109/JQE.1987.1073206, bibcode:1987IJQE...23..123S (zenodo.org [abgerufen am 2. Juli 2019]).
  18. a b C.A. Barrios, V.R. Almeida, R. Panepucci, M. Lipson: Electrooptic Modulation of Silicon-on-Insulator Submicrometer-Size Waveguide Devices. In: Journal of Lightwave Technology. 21. Jahrgang, Nr. 10, 2003, S. 2332–2339, doi:10.1109/JLT.2003.818167, bibcode:2003JLwT...21.2332B.
  19. a b Ansheng Liu, Ling Liao, Doron Rubin, Hat Nguyen, Berkehan Ciftcioglu, Yoel Chetrit, Nahum Izhaky, Mario Paniccia: High-speed optical modulation based on carrier depletion in a silicon waveguide. In: Optics Express. 15. Jahrgang, Nr. 2, 2007, S. 660–668, doi:10.1364/OE.15.000660, PMID 19532289, bibcode:2007OExpr..15..660L.
  20. Long Chen, Kyle Preston, Sasikanth Manipatruni, Michal Lipson: Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors. In: Optics Express. 17. Jahrgang, Nr. 17, 2009, S. 15248–15256, doi:10.1364/OE.17.015248, PMID 19688003, arxiv:0907.0022, bibcode:2009OExpr..1715248C.
  21. Vance, Ashlee: Intel cranks up next-gen chip-to-chip play, The Register. Abgerufen im 26 July 2009 
  22. J. M. Shainline, J. S. Orcutt, M. T. Wade, K. Nammari, B. Moss, M. Georgas, C. Sun, R. J. Ram, V. Stojanović, M. A. Popović: Depletion-mode carrier-plasma optical modulator in zero-change advanced CMOS. In: Optics Letters. 38. Jahrgang, Nr. 15, 2013, S. 2657–2659, doi:10.1364/OL.38.002657, PMID 23903103, bibcode:2013OptL...38.2657S.
  23. Major silicon photonics breakthrough could allow for continued exponential growth in microprocessors. KurzweilAI, 8. Oktober 2013, abgerufen am 8. Oktober 2013.
  24. J. M. Shainline, J. S. Orcutt, M. T. Wade, K. Nammari, O. Tehar-Zahav, Z. Sternberg, R. Meade, R. J. Ram, V. Stojanović, M. A. Popović: Depletion-mode polysilicon optical modulators in a bulk complementary metal-oxide semiconductor process. In: Optics Letters. 38. Jahrgang, Nr. 15, 2013, S. 2729–2731, doi:10.1364/OL.38.002729, PMID 23903125, bibcode:2013OptL...38.2729S.
  25. D. Kucharski, D. Guckenberger, G. Masini, S. Abdalla, J. Witzens, S. Sahni: 10 Gb/s 15mW optical receiver with integrated Germanium photodetector and hybrid inductor peaking in 0.13µm SOI CMOS technology. In: Solid-State Circuits Conference Digest of Technical Papers (ISSCC). 2010, S. 360–361.
  26. Cary Gunn, Gianlorenzo Masini, J. Witzens, G. Capellini: CMOS photonics using germanium photodetectors. In: ECS Transactions. 3. Jahrgang, Nr. 7, 2006, S. 17–24, doi:10.1149/1.2355790, bibcode:2006ECSTr...3g..17G.
  27. Laurent Vivien, Mathieu Rouvière, Jean-Marc Fédéli, Delphine Marris-Morini, Jean François Damlencourt, Juliette Mangeney, Paul Crozat, Loubna El Melhaoui, Eric Cassan, Xavier Le Roux, Daniel Pascal, Suzanne Laval: High speed and high responsivity germanium photodetector integrated in a Silicon-On-Insulator microwaveguide. In: Optics Express. 15. Jahrgang, Nr. 15, 2007, S. 9843–9848, doi:10.1364/OE.15.009843, PMID 19547334, bibcode:2007OExpr..15.9843V.
  28. Yimin Kang, Han-Din Liu, Mike Morse, Mario J. Paniccia, Moshe Zadka, Stas Litski, Gadi Sarid, Alexandre Pauchard, Ying-Hao Kuo, Hui-Wen Chen, Wissem Sfar Zaoui, John E. Bowers, Andreas Beling, Dion C. McIntosh, Xiaoguang Zheng, Joe C. Campbell: Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product. In: Nature Photonics. 3. Jahrgang, Nr. 1, 2008, S. 59–63, doi:10.1038/nphoton.2008.247, bibcode:2009NaPho...3...59K.
  29. Modine, Austin: Intel trumpets world's fastest silicon photonic detector, The Register, 8 December 2008. Abgerufen im 10 August 2017 
  30. Narasimha, A.: A 40-Gb/s QSFP optoelectronic transceiver in a 0.13 µm CMOS silicon-on-insulator technology. In: Proceedings of the Optical Fiber Communication Conference (OFC). 2008, S. OMK7 (opticsinfobase.org [abgerufen am 14. September 2012]).
  31. Christopher R. Doerr: Photonic Integration and Photonics-Electronics Convergence on Silicon. Hrsg.: Koji Yamada. Band 3. Frontiers Media SA, 2015, Silicon photonic integration in telecommunications, S. 7, doi:10.3389/fphy.2015.00037.
  32. Jason Orcutt: Monolithic Silicon Photonics at 25Gb/s. Optical Fiber Communication Conference. OSA, 2016, S. Th4H.1, doi:10.1364/OFC.2016.Th4H.1.
  33. Boeuf Frederic: Recent Progress in Silicon Photonics R&D and Manufacturing on 300mm Wafer Platform. Optical Fiber Communication Conference. OSA, 2015, S. W3A.1, doi:10.1364/OFC.2015.W3A.1.
  34. Meindl, J. D.: Beyond Moore's Law: the interconnect era. In: Computing in Science & Engineering. 5. Jahrgang, Nr. 1, 2003, S. 20–24, doi:10.1109/MCISE.2003.1166548, bibcode:2003CSE.....5a..20M.
  35. T. Barwicz, H. Byun, F. Gan, C. W. Holzwarth, M. A. Popovic, P. T. Rakich, M. R. Watts, E. P. Ippen, F. X. Kärtner, H. I. Smith, J. S. Orcutt, R. J. Ram, V. Stojanovic, O. O. Olubuyide, J. L. Hoyt, S. Spector, M. Geis, M. Grein, T. Lyszczarz, J. U. Yoon: Silicon photonics for compact, energy-efficient interconnects. In: Journal of Optical Networking. 6. Jahrgang, Nr. 1, 2006, S. 63–73, doi:10.1364/JON.6.000063, bibcode:2007JON.....6...63B.
  36. Orcutt, J. S.: Demonstration of an Electronic Photonic Integrated Circuit in a Commercial Scaled Bulk CMOS Process. Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies. 2008.
  37. Intel's 50Gbps Silicon Photonics Link: The Future of Interfaces.
  38. Chen Sun: Single-chip microprocessor that communicates directly using light. In: Nature. 528. Jahrgang, Nr. 7583, 2015, S. 534–538, doi:10.1038/nature16454, PMID 26701054, bibcode:2015Natur.528..534S (escholarship.org [abgerufen am 2. Juli 2019]).
  39. Silicon Photonics Stumbles at the Last Meter - IEEE Spectrum.
  40. John E Bowers: Semiconductor lasers on silicon. 2014 International Semiconductor Laser Conference\. IEEE, 2014, S. 29.
  41. Hybrid Silicon Laser – Intel Platform Research. Intel, abgerufen am 14. Juli 2009.
  42. a b H Rong, A Liu, R Jones, O Cohen, D Hak, R Nicolaescu, A Fang, M Paniccia: An all-silicon Raman laser. In: Nature. 433. Jahrgang, Nr. 7023, 2005, S. 292–294, doi:10.1038/nature03273, PMID 15635371, bibcode:2005Natur.433..292R.
  43. a b Nils T. Otterstrom, Ryan O. Behunin, Eric A. Kittlaus, Zheng Wang, Peter T. Rakich: A silicon Brillouin laser. In: Science. 360. Jahrgang, Nr. 6393, 8. Juni 2018, ISSN 0036-8075, S. 1113–1116, doi:10.1126/science.aar6113, PMID 29880687, arxiv:1705.05813, bibcode:2018Sci...360.1113O.
  44. Borghino, Dario: IBM integrates optics and electronics on a single chip. Gizmag.com, 13. Dezember 2012, abgerufen am 20. April 2013.
  45. Tom Simonite: Intel Unveils Optical Technology to Kill Copper Cables and Make Data Centers Run Faster | MIT Technology Review. Technologyreview.com, abgerufen am 4. September 2013.
  46. Orcutt, Mike (2 October 2013) "Graphene-Based Optical Communication Could Make Computing More Efficient web.archive.org Fehler bei Vorlage * Parametername unbekannt (Vorlage:Webarchiv): "date"Vorlage:Webarchiv/Wartung/Parameter Fehler bei Vorlage:Webarchiv: Genau einer der Parameter 'wayback', 'webciteID', 'archive-today', 'archive-is' oder 'archiv-url' muss angegeben werden.Vorlage:Webarchiv/Wartung/Linktext_fehltVorlage:Webarchiv/Wartung/URL Fehler bei Vorlage:Webarchiv: enWP-Wert im Parameter 'url'.. MIT Technology Review.
  47. Behnam Analui, Drew Guckenberger, Daniel Kucharski, Adithyaram Narasimha: A Fully Integrated 20-Gb/s Optoelectronic Transceiver Implemented in a Standard 0.13- μm CMOS SOI Technology. In: IEEE Journal of Solid-State Circuits. 41. Jahrgang, Nr. 12, 2006, S. 2945–2955, doi:10.1109/JSSC.2006.884388, bibcode:2006IJSSC..41.2945A.
  48. ÖZdal Boyraz, Prakash Koonath, Varun Raghunathan, Bahram Jalali: All optical switching and continuum generation in silicon waveguides. In: Optics Express. 12. Jahrgang, Nr. 17, 2004, S. 4094–4102, doi:10.1364/OPEX.12.004094, PMID 19483951, bibcode:2004OExpr..12.4094B.
  49. Yurii Vlasov, William M. J. Green, Fengnian Xia: High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks. In: Nature Photonics. 2. Jahrgang, Nr. 4, 2008, S. 242–246, doi:10.1038/nphoton.2008.31.
  50. a b Mark A. Foster, Amy C. Turner, Reza Salem, Michal Lipson, Alexander L. Gaeta: Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides. In: Optics Express. 15. Jahrgang, Nr. 20, 2007, S. 12949–12958, doi:10.1364/OE.15.012949, PMID 19550563, bibcode:2007OExpr..1512949F.
  51. After six years of planning, Compass-EOS takes on Cisco to make blazing-fast routers. venturebeat.com, 12. März 2013, abgerufen am 25. April 2013.
  52. Zortman, W. A.: Optical Fiber Communication Conference. OMI7, 2010, ISBN 978-1-55752-885-8, Power Penalty Measurement and Frequency Chirp Extraction in Silicon Microdisk Resonator Modulators, S. OMI7, doi:10.1364/OFC.2010.OMI7.
  53. Aleksandr Biberman, Sasikanth Manipatruni, Noam Ophir, Long Chen, Michal Lipson, Keren Bergman: First demonstration of long-haul transmission using silicon microring modulators. In: Optics Express. 18. Jahrgang, Nr. 15, 2010, S. 15544–15552, doi:10.1364/OE.18.015544, PMID 20720934, bibcode:2010OExpr..1815544B.
  54. Katherine Bourzac: Can Magic Leap Do What It Claims with $592 Million? MIT Technology Review, 11. Juni 2015, abgerufen am 13. Juni 2015.
  55. Carl Ramey: Silicon Photonics for Artificial Intelligence Acceleration. In: hotchips.org. Abgerufen am 1. Juli 2023.
  56. Sally Ward-Foxton: Optical Compute Promises Game-Changing AI Performance. In: EE Times. 24. August 2020, abgerufen am 1. Juli 2023.
  57. Sally Ward-Foxton: How Does Optical Computing Work? In: EE Times. 24. August 2020, abgerufen am 1. Juli 2023.
  58. a b Silicon (Si). University of Reading Infrared Multilayer Laboratory, abgerufen am 17. Juli 2009.
  59. Lianghong Yin, Q. Lin, Govind P. Agrawal: Dispersion tailoring and soliton propagation in silicon waveguides. In: Optics Letters. 31. Jahrgang, Nr. 9, 2006, S. 1295–1297, doi:10.1364/OL.31.001295, PMID 16642090, bibcode:2006OptL...31.1295Y.
  60. Amy C. Turner, Christina Manolatou, Bradley S. Schmidt, Michal Lipson, Mark A. Foster, Jay E. Sharping, Alexander L. Gaeta: Tailored anomalous group-velocity dispersion in silicon channel waveguides. In: Optics Express. 14. Jahrgang, Nr. 10, 2006, S. 4357–4362, doi:10.1364/OE.14.004357, PMID 19516587, bibcode:2006OExpr..14.4357T.
  61. Tahmid H. Talukdar, Gabriel D. Allen, Ivan Kravchenko, Judson D. Ryckman: Single-mode porous silicon waveguide interferometers with unity confinement factors for ultra-sensitive surface adlayer sensing. In: Optics Express. 27. Jahrgang, Nr. 16, 5. August 2019, ISSN 1094-4087, S. 22485–22498, doi:10.1364/OE.27.022485, PMID 31510540, bibcode:2019OExpr..2722485T (englisch).
  62. a b c Govind P. Agrawal: Nonlinear fiber optics. 2nd Auflage. Academic Press, 1995, ISBN 0-12-045142-5.
  63. Malitson, I. H.: Interspecimen Comparison of the Refractive Index of Fused Silica. In: Journal of the Optical Society of America. 55. Jahrgang, Nr. 10, 1965, S. 1205–1209, doi:10.1364/JOSA.55.001205, bibcode:1965JOSA...55.1205M.
  64. G. K. Celler, Sorin Cristoloveanu: Frontiers of silicon-on-insulator. In: Journal of Applied Physics. 93. Jahrgang, Nr. 9, 2003, S. 4955, doi:10.1063/1.1558223, bibcode:2003JAP....93.4955C.
  65. Silicon photonics: Silicon nitride versus silicon-on-insulator. März 2016, S. 1–3;.
  66. Daniel J. Blumenthal, Rene Heideman, Douwe Geuzebroek, Arne Leinse, Chris Roeloffzen: Silicon Nitride in Silicon Photonics. In: Proceedings of the IEEE. 106. Jahrgang, Nr. 12, 2018, S. 2209–2231, doi:10.1109/JPROC.2018.2861576 (ieee.org).
  67. a b C Koos, L Jacome, C Poulton, J Leuthold, W Freude: Nonlinear silicon-on-insulator waveguides for all-optical signal processing. In: Optics Express. 15. Jahrgang, Nr. 10, 2007, S. 5976–5990, doi:10.1364/OE.15.005976, PMID 19546900, bibcode:2007OExpr..15.5976K.
  68. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M Lipson, A. L. Gaeta: Broad-band optical parametric gain on a silicon photonic chip. In: Nature. 441. Jahrgang, Nr. 7096, 2006, S. 960–3, doi:10.1038/nature04932, PMID 16791190, bibcode:2006Natur.441..960F.
  69. Austin G. Griffith, Ryan K.W. Lau, Jaime Cardenas, Yoshitomo Okawachi, Aseema Mohanty, Romy Fain, Yoon Ho Daniel Lee, Mengjie Yu, Christopher T. Phare, Carl B. Poitras, Alexander L. Gaeta, Michal Lipson: Silicon-chip mid-infrared frequency comb generation. In: Nature Communications. 6. Jahrgang, 24. Februar 2015, S. 6299, doi:10.1038/ncomms7299, PMID 25708922, arxiv:1408.1039, bibcode:2015NatCo...6.6299G.
  70. Bart Kuyken, Takuro Ideguchi, Simon Holzner, Ming Yan, Theodor W. Hänsch, Joris Van Campenhout, Peter Verheyen, Stéphane Coen, Francois Leo, Roel Baets, Gunther Roelkens, Nathalie Picqué: An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide. In: Nature Communications. 6. Jahrgang, 20. Februar 2015, S. 6310, doi:10.1038/ncomms7310, PMID 25697764, PMC 4346629 (freier Volltext), arxiv:1405.4205, bibcode:2015NatCo...6.6310K.
  71. Nicolae C. Panoiu, Xiaogang Chen, Richard M. Osgood Jr.: Modulation instability in silicon photonic nanowires. In: Optics Letters. 31. Jahrgang, Nr. 24, 2006, S. 3609–11, doi:10.1364/OL.31.003609, PMID 17130919, bibcode:2006OptL...31.3609P.
  72. Lianghong Yin, Govind P. Agrawal: Impact of two-photon absorption on self-phase modulation in silicon waveguides: Free-carrier effects. In: Optics Letters. 32. Jahrgang, Nr. 14, 2006, S. 2031–2033, doi:10.1364/OL.32.002031, PMID 17632633, bibcode:2007OptL...32.2031Y.
  73. Nikbin, Darius: Silicon photonics solves its "fundamental problem", IOP publishing, 20 July 2006. Abgerufen im 27 July 2009 
  74. J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, Z. P. Huang, D. Cai, M. Giersig: Two-photon absorption and Kerr coefficients of silicon for 850– Vorlage:Convert. In: Applied Physics Letters. 90. Jahrgang, Nr. 2, 2007, S. 191104, doi:10.1063/1.2430400, bibcode:2007ApPhL..90b1104R.
  75. a b Tsia, K. M.: Energy Harvesting in Silicon Raman Amplifiers. 3rd IEEE International Conference on Group IV Photonics. 2006.
  76. R. Soref, B. Bennett: Electrooptical Effects in Silicon. In: IEEE Journal of Quantum Electronics. 23. Jahrgang, Nr. 1, 1987, S. 123–129, doi:10.1109/JQE.1987.1073206, bibcode:1987IJQE...23..123S (zenodo.org [abgerufen am 2. Juli 2019]).
  77. Y. Liu, H. K. Tsang: Nonlinear absorption and Raman gain in helium-ion-implanted silicon waveguides. In: Optics Letters. 31. Jahrgang, Nr. 11, 2006, S. 1714–1716, doi:10.1364/OL.31.001714, PMID 16688271, bibcode:2006OptL...31.1714L.
  78. Manuel E. Zevallos l., S. K. Gayen, M. Alrubaiee, R. R. Alfano: Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides. In: Applied Physics Letters. 86. Jahrgang, Nr. 1, 2005, S. 071115, doi:10.1063/1.1846145, bibcode:2005ApPhL..86a1115Z.
  79. Richard Jones, Haisheng Rong, Ansheng Liu, Alexander W. Fang, Mario J. Paniccia, Dani Hak, Oded Cohen: Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering. In: Optics Express. 13. Jahrgang, Nr. 2, 2005, S. 519–525, doi:10.1364/OPEX.13.000519, PMID 19488380, bibcode:2005OExpr..13..519J.
  80. Sasikanth Manipatruni, Qianfan Xu, B. Schmidt, J. Shakya, M. Lipson: LEOS 2007 - IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings. 2007, ISBN 978-1-4244-0924-2, High Speed Carrier Injection 18 Gb/S Silicon Micro-ring Electro-optic Modulator, S. 537–538, doi:10.1109/leos.2007.4382517.
  81. Rune S. Jacobsen, Karin N. Andersen, Peter I. Borel, Jacob Fage-Pedersen, Lars H. Frandsen, Ole Hansen, Martin Kristensen, Andrei V. Lavrinenko, Gaid Moulin, Haiyan Ou, Christophe Peucheret, Beáta Zsigri, Anders Bjarklev: Strained silicon as a new electro-optic material. In: Nature. 441. Jahrgang, Nr. 7090, 2006, ISSN 0028-0836, S. 199–202, doi:10.1038/nature04706, PMID 16688172, bibcode:2006Natur.441..199J.
  82. Ivan Avrutsky, Richard Soref: Phase-matched sum frequency generation in strained silicon waveguides using their second-order nonlinear optical susceptibility. In: Optics Express. 19. Jahrgang, Nr. 22, 2011, ISSN 1094-4087, S. 21707–16, doi:10.1364/OE.19.021707, PMID 22109021, bibcode:2011OExpr..1921707A.
  83. M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, L. Pavesi: Second-harmonic generation in silicon waveguides strained by silicon nitride. In: Nature Materials. 11. Jahrgang, Nr. 2, 2011, ISSN 1476-1122, S. 148–154, doi:10.1038/nmat3200, PMID 22138793, bibcode:2012NatMa..11..148C.
  84. L. Alloatti, D. Korn, C. Weimann, C. Koos, W. Freude, J. Leuthold: Second-order nonlinear silicon-organic hybrid waveguides. In: Optics Express. 20. Jahrgang, Nr. 18, 2012, ISSN 1094-4087, S. 20506–15, doi:10.1364/OE.20.020506, PMID 23037098, bibcode:2012OExpr..2020506A (kit.edu [abgerufen am 2. Juli 2019]).
  85. Nick K. Hon, Kevin K. Tsia, Daniel R. Solli, Bahram Jalali: Periodically poled silicon. In: Applied Physics Letters. 94. Jahrgang, Nr. 9, 2009, ISSN 0003-6951, S. 091116, doi:10.1063/1.3094750, arxiv:0812.4427, bibcode:2009ApPhL..94i1116H.
  86. Peter T. Rakich, Charles Reinke, Ryan Camacho, Paul Davids, Zheng Wang: Giant Enhancement of Stimulated Brillouin Scattering in the Subwavelength Limit. In: Physical Review X. 2. Jahrgang, Nr. 1, 30. Januar 2012, ISSN 2160-3308, S. 011008, doi:10.1103/PhysRevX.2.011008, bibcode:2012PhRvX...2a1008R.
  87. Heedeuk Shin, Wenjun Qiu, Robert Jarecki, Jonathan A. Cox, Roy H. Olsson, Andrew Starbuck, Zheng Wang, Peter T. Rakich: Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides. In: Nature Communications. 4. Jahrgang, Nr. 1, Dezember 2013, ISSN 2041-1723, S. 1944, doi:10.1038/ncomms2943, PMID 23739586, PMC 3709496 (freier Volltext), arxiv:1301.7311, bibcode:2013NatCo...4.1944S.
  88. Eric A. Kittlaus, Heedeuk Shin, Peter T. Rakich: Large Brillouin amplification in silicon. In: Nature Photonics. 10. Jahrgang, Nr. 7, 1. Juli 2016, ISSN 1749-4885, S. 463–467, doi:10.1038/nphoton.2016.112, arxiv:1510.08495, bibcode:2016NaPho..10..463K.
  89. Raphaël Van Laer, Bart Kuyken, Dries Van Thourhout, Roel Baets: Interaction between light and highly confined hypersound in a silicon photonic nanowire. In: Nature Photonics. 9. Jahrgang, Nr. 3, 1. März 2015, ISSN 1749-4885, S. 199–203, doi:10.1038/nphoton.2015.11, arxiv:1407.4977, bibcode:2015NaPho...9..199V.
  90. Raphaël Van Laer, Alexandre Bazin, Bart Kuyken, Roel Baets, Dries Van Thourhout: Net on-chip Brillouin gain based on suspended silicon nanowires. In: New Journal of Physics. 17. Jahrgang, Nr. 11, 1. Januar 2015, ISSN 1367-2630, S. 115005, doi:10.1088/1367-2630/17/11/115005, arxiv:1508.06318, bibcode:2015NJPh...17k5005V.
  91. Raphaël Van Laer, Roel Baets, Dries Van Thourhout: Unifying Brillouin scattering and cavity optomechanics. In: Physical Review A. 93. Jahrgang, Nr. 5, 20. Mai 2016, S. 053828, doi:10.1103/PhysRevA.93.053828, arxiv:1503.03044, bibcode:2016PhRvA..93e3828V.
  92. Andrey Kobyakov, Michael Sauer, Dipak Chowdhury: Stimulated Brillouin scattering in optical fibers. In: Advances in Optics and Photonics. 2. Jahrgang, Nr. 1, 31. März 2010, ISSN 1943-8206, S. 1, doi:10.1364/AOP.2.000001, bibcode:2010AdOP....2....1K.
  93. Shahar Levy, Victor Lyubin, Matvei Klebanov, Jacob Scheuer, Avi Zadok: Stimulated Brillouin scattering amplification in centimeter-long directly written chalcogenide waveguides. In: Optics Letters. 37. Jahrgang, Nr. 24, 15. Dezember 2012, ISSN 1539-4794, S. 5112–4, doi:10.1364/OL.37.005112, PMID 23258022, bibcode:2012OptL...37.5112L.
  94. Drazin, P. G., Johnson, R. S.: Solitons: an introduction. Cambridge University Press, 1989, ISBN 0-521-33655-4.

Vorlage:Photonics

[[Category:Silicon photonics| ]] [[Category:Nonlinear optics]] [[Category:Photonics]] [[Category:Silicon]]