Benutzer:MovGP0/C♯/Encryption
< Benutzer:MovGP0 | C♯
MovGP0 | Über mich | Hilfen | Artikel | Weblinks | Literatur | Zitate | Notizen | Programmierung | MSCert | Physik |
|
Encryption
[Bearbeiten | Quelltext bearbeiten]Hashing
[Bearbeiten | Quelltext bearbeiten]var password = "password";
var byteConverter = new UnicodeEncoding();
var data = byteConverter.GetBytes(password);
var sha256 = SHA256.Create();
var hash = sha256.CompiteHash(data);
Symmetric Encryption
[Bearbeiten | Quelltext bearbeiten]Asymmetric Encryption
[Bearbeiten | Quelltext bearbeiten]var password = "password";
var byteConverter = new UnicodeEncoding();
var dataToEncrypt = byteConverter.GetBytes(password);
// export Keys
var provider = new RSACryptoServiceProvider();
var publicKeyXml = provider.ToXmlString(false);
var privateKeyXml = provider.ToXmlString(true);
// Encrypt
byte[] enryptedData;
using(var provider = new RSACryptoServiceProvider())
{
provider.FromXmlString(publicKeyXml);
encryptedData = provider.Encrypt(dataToEncrypt);
}
// Decrypt
byte[] decryptedData;
using(var provider = new RSACryptoServiceProvider())
{
provider.FromXmlString(privateKeyXml);
decryptedData = provider.Decrypt(enryptedData);
}
var enrcyptedPassword = byteConverter.GetString(decryptedData);
Example
[Bearbeiten | Quelltext bearbeiten]- Namespaces
using System;
using System.IO;
using System.Runtime.InteropServices;
using System.Security;
using System.Security.Cryptography;
using System.Text;
- Helper classes
public static class SecureStringExtensions
{
public static string ConvertToString(this SecureString secstrPassword)
{
IntPtr unmanagedString = IntPtr.Zero;
try
{
unmanagedString = Marshal.SecureStringToGlobalAllocUnicode(secstrPassword);
return Marshal.PtrToStringUni(unmanagedString);
}
finally
{
Marshal.ZeroFreeGlobalAllocUnicode(unmanagedString);
}
}
public static SecureString ConvertToSecureString(this string plainText)
{
return plainText.ToCharArray().Aggregate(new SecureString(), (secureString, c) => {
secureString.AppendChar(c);
return secureString;
});
}
}
public static class HashAlgorithm
{
public static readonly string Sha1 = "SHA1";
public static readonly string Md5 = "MD5";
}
/// <summary>
/// Size of encryption key in bits.
/// Values are: 128, 192, and 256.
/// Longer keys are more secure than shorter keys.
/// </summary>
public enum KeySize
{
Short = 128,
Medium = 192,
Long = 256
}
- Encryption
/// <summary>
/// This class uses a symmetric key algorithm (Rijndael/AES) to encrypt and
/// decrypt data. As long as encryption and decryption routines use the same
/// parameters to generate the keys, the keys are guaranteed to be the same.
/// The class uses static functions with duplicate code to make it easier to
/// demonstrate encryption and decryption logic. In a real-life application,
/// this may not be the most efficient way of handling encryption, so - as
/// soon as you feel comfortable with it - you may want to redesign this class.
/// </summary>
public sealed class RijndaelSimple
{
/// <summary>
/// Encrypts specified plaintext using Rijndael symmetric key algorithm
/// and returns a base64-encoded result.
/// </summary>
/// <param name="plainText">
/// Plaintext value to be encrypted.
/// </param>
/// <param name="passPhrase">
/// Passphrase from which a pseudo-random password will be derived. The
/// derived password will be used to generate the encryption key.
/// Passphrase can be any string. In this example we assume that this
/// passphrase is an ASCII string.
/// </param>
/// <param name="saltValue">
/// Salt value used along with passphrase to generate password. Salt can
/// be any string. In this example we assume that salt is an ASCII string.
/// </param>
/// <param name="hashAlgorithm">
/// Hash algorithm used to generate password. Allowed values are: "MD5" and
/// "SHA1". SHA1 hashes are a bit slower, but more secure than MD5 hashes.
/// </param>
/// <param name="passwordIterations">
/// Number of iterations used to generate password. One or two iterations
/// should be enough.
/// </param>
/// <param name="initVector">
/// Initialization vector (or IV). This value is required to encrypt the
/// first block of plaintext data. For RijndaelManaged class IV must be
/// exactly 16 ASCII characters long.
/// </param>
/// <param name="keySize">
/// Size of encryption key in bits. Allowed values are: 128, 192, and 256.
/// Longer keys are more secure than shorter keys.
/// </param>
/// <returns>
/// Encrypted value formatted as a base64-encoded string.
/// </returns>
public static string Encrypt(string plainText, string passPhrase, string saltValue, string hashAlgorithm, int passwordIterations, string initVector, KeySize keySize)
{
// Convert strings into byte arrays.
// Let us assume that strings only contain ASCII codes.
// If strings include Unicode characters, use Unicode, UTF7, or UTF8
// encoding.
var initVectorBytes = Encoding.ASCII.GetBytes(initVector);
if(initVectorBytes.Count() != 16)
{
throw new ArgumentException("For RijndaelManaged, the Initialization Vector must be exactly 16 ASCII characters.", initVector);
}
var saltValueBytes = Encoding.ASCII.GetBytes(saltValue);
// Convert our plaintext into a byte array.
// Let us assume that plaintext contains UTF8-encoded characters.
var plainTextBytes = Encoding.UTF8.GetBytes(plainText);
// First, we must create a password, from which the key will be derived.
// This password will be generated from the specified passphrase and
// salt value. The password will be created using the specified hash
// algorithm. Password creation can be done in several iterations.
var password = new PasswordDeriveBytes(passPhrase, saltValueBytes, hashAlgorithm, passwordIterations);
// Use the password to generate pseudo-random bytes for the encryption
// key. Specify the size of the key in bytes (instead of bits).
var keyBytes = password.GetBytes((int)keySize / 8);
// Create uninitialized Rijndael encryption object.
var symmetricKey = new RijndaelManaged();
// It is reasonable to set encryption mode to Cipher Block Chaining
// (CBC). Use default options for other symmetric key parameters.
symmetricKey.Mode = CipherMode.CBC;
// Generate encryptor from the existing key bytes and initialization
// vector. Key size will be defined based on the number of the key
// bytes.
var encryptor = symmetricKey.CreateEncryptor
(
keyBytes,
initVectorBytes
);
// Define memory stream which will be used to hold encrypted data.
var memoryStream = new MemoryStream();
// Define cryptographic stream (always use Write mode for encryption).
var cryptoStream = new CryptoStream(memoryStream, encryptor, CryptoStreamMode.Write);
// Start encrypting.
cryptoStream.Write(plainTextBytes, 0, plainTextBytes.Length);
// Finish encrypting.
cryptoStream.FlushFinalBlock();
// Convert our encrypted data from a memory stream into a byte array.
var cipherTextBytes = memoryStream.ToArray();
// Close both streams.
memoryStream.Close();
cryptoStream.Close();
// Convert encrypted data into a base64-encoded string.
var cipherText = Convert.ToBase64String(cipherTextBytes);
// Return encrypted string.
return cipherText;
}
/// <summary>
/// Decrypts specified ciphertext using Rijndael symmetric key algorithm.
/// </summary>
/// <param name="cipherText">
/// Base64-formatted ciphertext value.
/// </param>
/// <param name="passPhrase">
/// Passphrase from which a pseudo-random password will be derived. The
/// derived password will be used to generate the encryption key.
/// Passphrase can be any string. In this example we assume that this
/// passphrase is an ASCII string.
/// </param>
/// <param name="saltValue">
/// Salt value used along with passphrase to generate password. Salt can
/// be any string. In this example we assume that salt is an ASCII string.
/// </param>
/// <param name="hashAlgorithm">
/// Hash algorithm used to generate password. Allowed values are: "MD5" and
/// "SHA1". SHA1 hashes are a bit slower, but more secure than MD5 hashes.
/// </param>
/// <param name="passwordIterations">
/// Number of iterations used to generate password. One or two iterations
/// should be enough.
/// </param>
/// <param name="initVector">
/// Initialization vector (or IV). This value is required to encrypt the
/// first block of plaintext data. For RijndaelManaged class IV must be
/// exactly 16 ASCII characters long.
/// </param>
/// <param name="keySize">
/// Size of encryption key in bits. Allowed values are: 128, 192, and 256.
/// Longer keys are more secure than shorter keys.
/// </param>
/// <returns>
/// Decrypted string value.
/// </returns>
/// <remarks>
/// Most of the logic in this function is similar to the Encrypt
/// logic. In order for decryption to work, all parameters of this function
/// - except cipherText value - must match the corresponding parameters of
/// the Encrypt function which was called to generate the
/// ciphertext.
/// </remarks>
public static SecureString Decrypt(string cipherText, string passPhrase, string saltValue, string hashAlgorithm, int passwordIterations, string initVector, KeySize keySize)
{
// Convert strings defining encryption key characteristics into byte
// arrays. Let us assume that strings only contain ASCII codes.
// If strings include Unicode characters, use Unicode, UTF7, or UTF8
// encoding.
var initVectorBytes = Encoding.ASCII.GetBytes(initVector);
var saltValueBytes = Encoding.ASCII.GetBytes(saltValue);
// Convert our ciphertext into a byte array.
var cipherTextBytes = Convert.FromBase64String(cipherText);
byte[] keyBytes;
// First, we must create a password, from which the key will be
// derived. This password will be generated from the specified
// passphrase and salt value. The password will be created using
// the specified hash algorithm. Password creation can be done in
// several iterations.
using(var password = new PasswordDeriveBytes(passPhrase, saltValueBytes, hashAlgorithm, passwordIterations))
{
// Use the password to generate pseudo-random bytes for the encryption
// key. Specify the size of the key in bytes (instead of bits).
keyBytes = password.GetBytes((int)keySize / 8);
}
string plainText;
// Create uninitialized Rijndael encryption object.
using(var symmetricKey = new RijndaelManaged())
{
// It is reasonable to set encryption mode to Cipher Block Chaining
// (CBC). Use default options for other symmetric key parameters.
symmetricKey.Mode = CipherMode.CBC;
// Generate decryptor from the existing key bytes and initialization
// vector. Key size will be defined based on the number of the key
// bytes.
using(var decryptor = symmetricKey.CreateDecryptor(keyBytes, initVectorBytes))
{
// Define memory stream which will be used to hold encrypted data.
using(var memoryStream = new MemoryStream(cipherTextBytes))
{
// Define cryptographic stream (always use Read mode for encryption).
using(var cryptoStream = new CryptoStream(memoryStream, decryptor, CryptoStreamMode.Read))
{
// Since at this point we don't know what the size of decrypted data
// will be, allocate the buffer long enough to hold ciphertext;
// plaintext is never longer than ciphertext.
var plainTextBytes = new byte[cipherTextBytes.Length];
// Start decrypting.
var decryptedByteCount = cryptoStream.Read(plainTextBytes, 0, plainTextBytes.Length);
// Close both streams.
memoryStream.Close();
cryptoStream.Close();
// Convert decrypted data into a string.
// Let us assume that the original plaintext string was UTF8-encoded.
plainText = Encoding.UTF8.GetString(plainTextBytes, 0, decryptedByteCount);
// Secure string.
return plainText.ConvertToSecureString();
}
}
}
}
}
}
- Application
void Main()
{
var plainText = "Hello, World!"; // original plaintext
var passPhrase = "Pas5pr@se"; // can be any string
var saltValue = "s@1tValue"; // can be any string
var hashAlgorithm = HashAlgorithm.Sha1;
var passwordIterations = 2; // can be any positive number
var initVector = "@1B2c3D4e5F6g7H8"; // must be 16 bytes
var keySize = KeySize.Long;
Console.WriteLine(string.Format("Plaintext : {0}", plainText));
var cipherText = RijndaelSimple.Encrypt(plainText, passPhrase, saltValue, hashAlgorithm, passwordIterations, initVector, keySize);
Console.WriteLine(String.Format("Encrypted : {0}", cipherText));
var securePlainText = RijndaelSimple.Decrypt(cipherText, passPhrase, saltValue, hashAlgorithm, passwordIterations, initVector, keySize);
Console.WriteLine(string.Format("Decrypted : {0}", securePlainText.ConvertToString()));
}
Internetquellen
[Bearbeiten | Quelltext bearbeiten]- Encrypting & Decrypting a String in C#. In: StackOverflow. Abgerufen am 14. Juni 2015 (englisch).
- How to encrypt and decrypt data using a symmetric key. Obviex, abgerufen am 14. Juni 2015 (englisch).
- HMACSHA512 versus Rfc2898DeriveBytes for password hash. In: StackExchange. Abgerufen am 14. Juni 2015 (englisch).
- wumpus1: .NET Encryption Simplified. In: CodeProject. 29. Januar 2007, abgerufen am 15. Juni 2015.
- How To: Secure Connection Strings when Using Data Source Controls. In: MSDN. Microsoft, abgerufen am 15. Juni 2015 (englisch).
- Securing ADO.NET Applications. In: MSDN. Microsoft, abgerufen am 15. Juni 2015 (englisch).
- Encrypting Configuration Information Using Protected Configuration. In: MSDN. Microsoft, abgerufen am 15. Juni 2015 (englisch).
|}