Benutzer:Pascal.vollmer.fr/Geometric mechanics
Die Geometrische Mechanik ist ein Zweig der Mathematik, in dem Methoden der Differentialgeometrie auf verschiedene Bereiche der Mechanik angewendet werden: von der Punktmechanik über die Mechanik starrer Körper bis zur Strömungsmechanik und zur Regelungstechnik.
Die geometrische Mechanik wird auf Systeme angewendet,
- deren Konfigurationsraum eine Lie-Gruppe oder
- deren Konfigurationsraum eine Gruppe von Diffeomorphismen ist, oder allgemeiner,
- bei denen ein Aspekt des Konfigurationsraums diese Gruppenstruktur besitzt.
Zum Beispiel ist
- der Konfigurationsraum eines Satelliten die Bewegungsgruppe, bestehend aus Translationen und Rotationen im Raum,
- der Konfigurationsraum eines Flüssigkristalls die Gruppe der Diffeomorphismen, verbunden mit einem internen Zustand (Eichsymmetrie oder >>>Ordnungsparameter).
Momentum map and reduction
[Bearbeiten | Quelltext bearbeiten]Ein wichtiges Motiv der geometrischen Mechanik ist die Reduktion. >>>s. etwa Bloch, 2015, S. 152; Abraham, Marsden, 1978, S. 298; Arnold, 1978>>> Er geht zurück auf Jacobi und seine ... which goes back to Jacobi's elimination of the node beim 3-Körper-Problem. >>>https://www.physik.uzh.ch/~psaha/astron/jacobi/jacobi.php>>> In seiner modernen Form wurde er von K. Meyer formuliert[1]. Unabhängig davon von .. independently J.E. Marsden and A. Weinstein (1974), die beide von der Arbeit von Smale (1970) beeinflusst waren.
Verfügt ein Hamilton'sches oder Lagrange'sches System über eine Symmetrie, dann gibt es nach dem Noether-Theorem eine entsprechende Erhaltungsgröße. Diese Erhaltungsgrößen sind die Bestandteile der Impulsabbildung J >>> siehe in dem entsprechenden Artikel der de.wikipedia >>>. If P is the phase space and G the symmetry group, the momentum map is a map , and the reduced spaces are quotients of the level sets of J by the subgroup of G preserving the level set in question: for one defines , and this reduced space is a symplectic manifold if is a regular value of J.
Variational principles
[Bearbeiten | Quelltext bearbeiten]- Hamilton's principle
- Lagrange d'Alembert principle
- Maupertuis
- Euler–Poincaré
- Vakonomic
Geometric integrators
[Bearbeiten | Quelltext bearbeiten]One of the important developments arising from the geometric approach to mechanics is the incorporation of the geometry into numerical methods. In particular symplectic and variational integrators are proving particularly accurate for long-term integration of Hamiltonian and Lagrangian systems.
History
[Bearbeiten | Quelltext bearbeiten]>>> Dieser Abschnitt überschneidet sich teilweise mit "Momentum map and reduction". The term "geometric mechanics" occasionally refers to 17th-century mechanics.[2]
As a modern subject, geometric mechanics has its roots in four works written in the 1960s. These were by Vladimir Arnold (1966), Stephen Smale (1970) and Jean-Marie Souriau (1970), and the first edition of Abraham and Marsden's Foundation of Mechanics (1967). Arnold's fundamental work showed that Euler's equations for the free rigid body are the equations for geodesic flow on the rotation group SO(3) and carried this geometric insight over to the dynamics of ideal fluids, where the rotation group is replaced by the group of volume-preserving diffeomorphisms. Smale's paper on Topology and Mechanics investigates the conserved quantities arising from Noether's theorem when a Lie group of symmetries acts on a mechanical system, and defines what is now called the momentum map (which Smale calls angular momentum), and he raises questions about the topology of the energy-momentum level surfaces and the effect on the dynamics. In his book, Souriau also considers the conserved quantities arising from the action of a group of symmetries, but he concentrates more on the geometric structures involved (for example the equivariance properties of this momentum for a wide class of symmetries), and less on questions of dynamics.
These ideas, and particularly those of Smale were central in the second edition of Foundations of Mechanics (Abraham and Marsden, 1978).
Anwendungen
[Bearbeiten | Quelltext bearbeiten]- Computergrafik
- Regelungstechnik; siehe Bloch (2015)
- Flüssigkristalle — siehe Gay-Balmaz, Ratiu, Tronci (2013)
- Magnetohydrodynamik
- Molekülschwingung
- Nicht-holonome Zwangsbedingungen; siehe Bloch (2015)
- Stabilität nichtlineare Systeme
- Plasmen; siehe Holm, Marsden, Weinstein (1985)
- Quantenmechanik
- Quantenchemie; siehe Foskett, Holm, Tronci (2019)
- Suprafluidität
- Bewegungsplanung
- Unbemannte Unterwasserfahrzeuge
- Numerische Integratoren für Hamilton'sche Systzeme; siehe Marsden and West (2001)
Literatur
[Bearbeiten | Quelltext bearbeiten]Allgemein
[Bearbeiten | Quelltext bearbeiten]- Buch #1
Einzelnachweise
[Bearbeiten | Quelltext bearbeiten]- ↑ Kenneth Meyer: Symmetries and integrals in mechanics In: Dynamical systems (M. Peixoto, ed., Proc. Sympos., Univ. Bahia, Salvador, 1971) Academic Press, New York 1973, S. 259–272.
- ↑ Sébastien Maronne, Marco Panza. "Euler, Reader of Newton: Mechanics and Algebraic Analysis". In: Raffaelle Pisano. Newton, History and Historical Epistemology of Science, 2014, pp. 12–21.
- Ralph Abraham, Jerrold E. Marsden: Foundations of Mechanics. 2nd Auflage. Addison-Wesley, 1978.
- Vorlage:Citation
- Vorlage:Citation
- Anthony M. Bloch: Nonholonomic Mechanics and Control. 2. Auflage. Springer-Verlag, 2015.
- Michael S. Foskett, Darryl D. Holm, Cesare Tronci: Geometry of Nonadiabatic Quantum Hydrodynamics. In: Acta Applicandae Mathematicae. 162. Jahrgang, Nr. 1, 2019, S. 63–103, doi:10.1007/s10440-019-00257-1, arxiv:1807.01031.
- Francois Gay-Balmaz, Tudor Ratiu, Cesare Tronci: Equivalent Theories of Liquid Crystal Dynamics. In: Arch. Ration. Mech. Anal. 210. Jahrgang, Nr. 3, 2013, S. 773–811, doi:10.1007/s00205-013-0673-1, arxiv:1102.2918, bibcode:2013ArRMA.210..773G.
- Darryl D. Holm, Jerrold E. Marsden, Tudor S. Ratiu, Alan Weinstein: Nonlinear stability of fluid and plasma equilibria. In: Physics Reports. 123. Jahrgang, Nr. 1–2, 1985, S. 1–116, doi:10.1016/0370-1573(85)90028-6, bibcode:1985PhR...123....1H (epfl.ch).
- Paulette Libermann, Charles-Michel Marle: Symplectic geometry and analytical mechanics (= Mathematics and its Applications. Band 35). D. Reidel, Dordrecht 1987, ISBN 90-277-2438-5, doi:10.1007/978-94-009-3807-6 (archive.org).
- Vorlage:Citation
- Jerrold Marsden, Tudor S. Ratiu: Introduction to mechanics and symmetry (= Texts in Applied Mathematics). 2. Auflage. Springer-Verlag, New York 1999, ISBN 0-387-98643-X.
- Kenneth Meyer: Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971). Academic Press, New York 1973, Symmetries and integrals in mechanics, S. 259–272.
- Juan-Pablo Ortega, Tudor S. Ratiu: Momentum maps and Hamiltonian reduction (= Progress in Mathematics. Band 222). Birkhauser Boston, 2004, ISBN 0-8176-4307-9.
- Vorlage:Citation
- Vorlage:Citation
[[Category:Classical mechanics]] [[Category:Hamiltonian mechanics]] [[Category:Dynamical systems]] [[Category:Symplectic geometry]] [[Category:Lagrangian mechanics]] [[Category:Variational principles]]