Enthält Formeln
Δ E p o t = 0 {\displaystyle \Delta E_{pot}=0}
φ 1 , 2 = 0 = W 1 , 2 F e l d Q p {\displaystyle \varphi _{1,2}=0={\frac {W_{1,2}^{Feld}}{Q_{p}}}}
F → ( s ) d s → = 0 {\displaystyle {\overrightarrow {F}}(s)d{\overrightarrow {s}}=0}
Q p ∗ E → ( s ) d s → = 0 {\displaystyle Q_{p}*{\overrightarrow {E}}(s)d{\overrightarrow {s}}=0}
W e i l d a m i t a u c h j e d e r z e i t φ 1 , 2 = 0 = W 1 , 2 F e l d Q p b z w . Q p ∗ E → ( s ) d s → = 0 g e l t e n m u s s , m u s s l a e n g s d e s W e g e s i m m e r {\displaystyle Weildamitauchjederzeit\varphi _{1,2}=0={\frac {W_{1,2}^{Feld}}{Q_{p}}}bzw.Q_{p}*{\overrightarrow {E}}(s)d{\overrightarrow {s}}=0geltenmuss,musslaengsdesWegesimmer}
f , g ∈ O ( h ) {\displaystyle f,g\in O(h)}
f + g ∈ O ( h ) {\displaystyle f+g\in O(h)}
( f + g ) = O ( h ) + O ( h ) = c 1 ∗ h + c 2 ∗ h = ( c 1 + c 2 ) ∗ h = c ∗ h = O ( h ) {\displaystyle (f+g)=O(h)+O(h)=c_{1}*h+c_{2}*h=(c_{1}+c_{2})*h=c*h=O(h)}
( f + g ) = O ( h ) + O ( h ) = c 1 ∗ h + c 2 ∗ h = ( c 1 + c 2 ) ∗ h = c ∗ h = O ( h ) {\displaystyle {\begin{matrix}(f+g)&=&O(h)+O(h)\\\ &=&c_{1}*h+c_{2}*h\ \ &=&(c_{1}+c_{2})*h\ \ &=&c*h\ \ &=&O(h)\end{matrix}}}
( θ ″ i ) = ( − b J K J − K L − R L ) ⋅ ( θ ′ i ) + V L ⋅ u {\displaystyle {\begin{pmatrix}\theta ^{''}\\i\end{pmatrix}}={\begin{pmatrix}-{\frac {b}{J}}&{\frac {K}{J}}\\-{\frac {K}{L}}&-{\frac {R}{L}}\end{pmatrix}}\cdot {\begin{pmatrix}\theta ^{'}\\i\end{pmatrix}}+{\frac {V}{L}}\cdot u}