Benutzer:Sbrgc/Automatic Train Protection
Dieser Artikel wird gerade erweitert und kann noch Unstimmigkeiten aufweisen. |
Zugbeeinflussung oder auch Zugbeeinflussungssystem (engl.: Automatic Train Protection (ATP)) nennt man technische Anlagen und Systeme bei Eisenbahnen, die die Fahrt von Zügen in Abhängigkeit von der zulässigen Geschwindigkeit kontrollieren. Ist die Fahrt nicht zugelassen oder fährt ein Zug zu schnell, so wird er durch eine Zugbeeinflussung selbsttätig gebremst.
Zur Sicherung von Zugfahrten wurden bereits im 19. Jahrhundert verschiedene technische Systeme und betriebliche Vorschriften entwickelt. Weit verbreitet sind Signale, die Fahrten für einen bestimmten Streckenabschnitt zulassen (Fahrtstellung) oder untersagen (Haltstellung), wobei das gleichzeitige Zulassen feindlicher Fahrten häufig durch technische Abhängigkeiten weitgehend ausgeschlossen wird. Signale wirken jedoch nicht unmittelbar auf den Zug. Der Lokführer muss sie wahrnehmen und bei Annäherung an ein Halt zeigendes oder die Geschwindigkeit begrenzendes Signal den Zug entsprechend bremsen. Übersieht aber ein Lokführer ein Signal kann es zu erheblichen Gefährdungen und schweren Unfällen kommen. Um dieser Gefahr zu begegnen, wurden Systeme entwickelt, die direkt in den Fahrbetrieb eingreifen, indem sie erforderlichenfalls eine Zwangsbremsung auslösen. Mit der gleichen Technik lässt sich auch die Geschwindigkeit der Züge überwachen.
In Deutschland regelt die Eisenbahn-Bau- und Betriebsordnung (EBO) nur ausdrücklich für Strecken, die für mehr als 100 km/h zugelassen sind, dass Zugbeeinflussung einzubauen ist. Was unter 100 km/h zu tun ist, schreibt die EBO nicht vor. Für Sachverhalte, die nicht ausdrücklich durch die EBO geregelt sind, verweist die Verordnung mit §2 (1) Satz 2 allerdings auf die anerkannten Regeln der Technik. Aus diesem Grunde wurden vermutlich die meisten Strecken mit Personenverkehr – auch wenn nur niedrigere Geschwindigkeiten gefahren werden – damit ausgerüstet. Bei Neubauten werden regelmäßig Strecken- und Bahnhofsausrüstungen nach PZB90 Standard eingebaut.
Zugbeeinflussungssysteme lassen sich nach ihrer Wirkung unterteilen in:
- punktuell wirkende,
- teilkontinuierlich wirkende und
- kontinuierlich wirkende Systeme.
Zugbeeinflussung mit punktueller Wirkung
[Bearbeiten | Quelltext bearbeiten]Fahrsperre
[Bearbeiten | Quelltext bearbeiten]Eine Fahrsperre ist ein einfaches Zugbeeinflussungssystem, das einen Zug bremst, der ein Halt zeigendes Signal überfährt, aber sonst, abgesehen von Geschwindigkeitsprüfabschnitten keine weiteren Funktionen erfüllen kann. Problematisch ist, dass ein Zug immer erst dann gebremst wird, wenn er schon ein Halt zeigendes Signal überfahren hat. Sollen Zusammenstöße sicher ausgeschlossen werden, muss daher hinter dem Signal der volle aus der Höchstgeschwindigkeit des Zuges benötigte Bremsweg freigehalten werden, im Stellwerk heißt dieser Durchrutschweg. In der Praxis behilft man sich oft, indem man zum Beispiel bereits am vorhergehenden Signal die Höchstgeschwindigkeit beschränkt. Man geht dabei davon aus, dass ein Lokführer nicht sowohl die Geschwindigkeitsbeschränkung als auch das folgende Halt zeigende Signal übersieht. Diese einfache Form der Zugbeeinflussung wird vor allem bei U-Bahnen und Stadtbahnen sowie noch bei der Berliner S-Bahn eingesetzt.
Systeme mit mehreren Wirkpunkten
[Bearbeiten | Quelltext bearbeiten]Da Züge lange Bremswege haben, werden die Hauptsignale abhängig von den zulässigen Geschwindigkeiten durch Vorsignale im Abstand von 400 m (Nebenstrecken) bis 1300 m (Hauptstrecken mit leichtem Gefälle) vorangekündigt. Dabei muss der Lokführer am Signalbild des Vorsignals mindestens 5 Sekunden lang erkennen, ob er bremsen muss, oder die Fahrt ungehindert fortsetzen kann. Daher ist das Vorsignal auch ein entscheidender Punkt für Zugbeeinflussungssysteme. Bei Vorbeifahrt am Vorsignal in Warnstellung (= „Halt erwarten“) wird der Zug aber noch nicht zwangsgebremst. Erhält der Zug eine Beeinflussung am Vorsignal, so muss der Lokführer bei den meisten Systemen mit einer Taste bestätigen, dass er das Vorsignal wahrgenommen hat. Wird die Taste nicht innerhalb einiger Sekunden nach der Beeinflussung bedient, wird der Zug zwangsgebremst.
Nach dem Vorsignal kann es weitere Wirkpunkte (in festgelegter Entfernung) geben, an denen eine Zwangsbremsung erfolgt, wenn der Zug eine bestimmte Geschwindigkeit überschreitet. Dazu wurden die Zugbeeinflussungssysteme weiterentwickelt. Weiterhin gibt es häufig einen Wirkpunkt am Hauptsignal, der den Zug sofort zwangsbremst.
In den verschiedenen Ländern hat sich unabhängig voneinander eine große Vielzahl an zueinander inkompatiblen Zugbeeinflussungssystemen mit unterschiedlichen Sicherheitsstufen dieser Konzeption entwickelt.
Zu den Zugbeeinflussungssystemen mit mehreren Wirkpunkten gehören z.B.
- Integra-Signum (Schweiz: induktive Übertragung)
- Krokodil (Belgien, Frankreich, Luxemburg: elektrische Übertragung)
- Indusi (Vorgänger der PZB in Deutschland, Österreich: induktive Übertragung)
Weitere Systeme mit mechanischer, optischer oder akustischer Übertragung haben sich nicht durchsetzen können.
Teilkontinuierlich wirkende Zugbeeinflussungssysteme
[Bearbeiten | Quelltext bearbeiten]Die teilkontinuierlich wirkenden Systeme haben sich aus Systemen mit mehreren Wirkpunkten entwickelt. Dabei wurde neben der Überwachung an bestimmten Punkten eine weitere Überwachung des Bremsvorgangs nach den Wirkpunkten durch ein Fahrzeuginternes Gerät implementiert. Bei frühen Versionen der deutschen Indusi musste nach Ablauf einer bestimmten Zeit nach der Vorsignalbeeinflussung eine Prüfgeschwindigkeit unterschritten worden sein.
Bei späteren, rechnergesteuerten Formen wie auch bei der aktuellen Punktförmigen Zugbeeinflussung (PZB) kann die Einhaltung einer Bremskurve überwacht werden, die an die Bremseigenschaften des Zuges angepasst gewählt wird. Durch diese Überwachung lässt sich die Geschwindigkeit, mit der ein Zug maximal ein Halt zeigendes Signal erreichen kann, sehr weit begrenzen, womit der nötige Durchrutschweg kürzer ausfällt.
Allerdings muss es auch möglich sein, dass der Zug wieder beschleunigt, wenn das Signal zwischenzeitlich auf Fahrt umgestellt hat. Dafür kann eine spezielle Taste zum „Freischalten“ aus der Überwachung vorgesehen werden. Wenn sich andererseits Lokführer gewohnheitsmäßig freischalten, um später wieder beschleunigen zu können, erfüllt das System seine Funktion nicht mehr. Bei der deutschen PZB ist daher ein Freischalten nur vor dem letzten Beeinflussungspunkt vor dem Signal möglich, wobei eine danach erfolgte Beeinflussung (also bei falschem Freischalten) sofort zur Zwangsbremsung führt.
Zu den teilkontinuierlich wirkenden Systemen gehören
- PZB (Deutschland: induktive Übertragung)
- ZUB 121 (Schweiz, Spanien, Dänemark: induktive Übertragung)
Kontinuierlich wirkende Zugbeeinflussungssysteme
[Bearbeiten | Quelltext bearbeiten]Punktuelle Übertragung: ETCS Level 1
[Bearbeiten | Quelltext bearbeiten]Hauptartikel: European Train Control System
Zur Vereinheitlichung der Zugbeeinflussungssysteme in Europa wurde das European Train Control System entwickelt, das in mehreren Stufen aufgebaut werden kann. Bei ETCS Level 1 bleiben vorhandene Stellwerkstechnik und Signale erhalten. Zur Zugbeeinflussung wurde die induktive Übertragung gewählt, wobei über sogenannte Eurobalisen größere Datentelegramme an die Züge übertragen werden. Dadurch ist es möglich, neben einem folgenden Signalbegriff auch die aktuelle Höchstgeschwindigkeit, einen Geschwindigkeitswechsel und dessen Entfernung sowie die Entfernung des nächsten Datenpunktes mit zu übertragen. Zugfahrten lassen sich dadurch kontinuierlich überwachen, auch wenn nur eine punktuelle Datenübertragung stattfindet.
Punkt- und Linienförmige Übertragung
[Bearbeiten | Quelltext bearbeiten]Für kurze Abschnitte zwischen einem Vor- und dem zugehörigen Hauptsignal ist bei ETCS Level 1 auch eine kontinuierliche induktive Datenübertragung mittels EuroLoops vorgesehen. Durch die kontinuierliche Übertragung des Signalbegriffs auf das Fahrzeug wird sichergestellt, dass bei Wechsel von Halt auf Fahrt der Zug sofort beschleunigen kann, andernfalls müsste er bis zum nächsten Übertragungspunkt weiter abbremsen. Die kombinierte Verwendung von EuroLoops und EuroBalisen stellt somit den Übergang zwischen punkt- und linienförmiger Übertragung dar.
Systeme mit linienförmiger Übertragung
[Bearbeiten | Quelltext bearbeiten]Bei hohen Geschwindigkeiten besteht das Problem, dass der klassische Abstand von einem Kilometer zwischen Vor- und Hauptsignal nicht mehr ausreicht, um einen Zug anzuhalten. Zudem wird die Zeit zur Wahrnehmung eines Signals (Sichtzeit) für den Lokführer sehr kurz. Für den Hochgeschwindigkeitsverkehr wurden daher Systeme entwickelt, bei denen Fahraufträge kontinuierlich, also unabhängig von der Position des Zuges zu diesem übertragen werden. Die Fahrt- und Bremsvorgänge werden kontinuierlich überwacht.
Durch die signaltechnisch sichere Anzeige der gültigen Höchstgeschwindigkeit und anderer relevanten Daten im Führerstand werden ortsfeste Signale entbehrlich. Mit solchen Systemen ist auch eine weitgehend automatische Fahr- und Bremssteuerung möglich, wobei der Triebfahrzeugführer die Vorgänge nur noch überwacht.
Kodierte Gleisstromkreise
[Bearbeiten | Quelltext bearbeiten]In den Pilotländern des Hochgeschwindigkeitsverkehrs, Japan und Frankreich benutzte man zur Übertragung die ohnehin zur Gleisfreimeldung vorhandenen Gleisstromkreise. Diese werden mit einer bestimmten Frequenz betrieben, die eine induktive Übertragung von Informationen zum Fahrzeug ermöglicht. Unterschiedliche Frequenzen ermöglichen die Übertragung mehrerer Geschwindigkeitsstufen. Übertragen wird die jeweils niedrigere der zulässigen Geschwindigkeiten im befahrenen und dem folgenden Abschnitt. Die Fahrzeugsteuerung überwacht den Bremsvorgang und das anschließende Einhalten der Geschwindigkeit. Ein Geschwindigkeitswechsel von Höchstgeschwindigkeit auf 0 erfolgt dabei stets über mehrere Abschnitte, wobei die Geschwindigkeitsstufen so gewählt wurden, dass sich ungefähr identische Bremswege zur nächstniedrigeren Stufe ergeben (=Länge eines Gleisstromkreises).
Das System ist technisch einfach und benötigt außer den Gleisstromkreisen keine zusätzlichen Leiter am Gleiskörper. Da keine Standortinformation vom Zug an die Strecke übertragen wird, muss die Länge der Gleisstromkreise und damit auch die Länge der Blockabschnitte je nach Steigungsverhältnissen der Länge des Bremsweges angepasst werden und kann nicht nach betrieblichen Gesichtspunkten der Zugfolge optimiert werden. Ebenso wird wie bei einer Fahrsperre die Information „Halt“ erst beim Befahren des Abschnittes erkannt, der nicht befahren werden darf. Aus diesem Grund wird hinter dem Ende des Bremsweges immer ein Blockabschnitt als Durchrutschweg freigehalten.
Voraussetzung für eine sichere Informationsübertragung ist, dass ein geführtes Fahrzeug die Informationen vor der ersten Achse aufnehmen kann. Deshalb müssen alle Gleisstromkreise so eingebaut sein, dass die Seite, an der das Gleisrelais bzw. die Auswerteeinrichtung angeschlossen ist, zuerst befahren wird. In beiden Richtungen signalmäßig zu befahrende Gleisstromkreise müssen also symmetrisch aufgebaut und umschaltbar sein. Umschaltbare Gleisstromkreise in Weichen sind besonders aufwändig.
LZB Deutschland
[Bearbeiten | Quelltext bearbeiten]Hauptartikel: Linienzugbeeinflussung
In Deutschland wählte man eine induktive Übertragung mittels Linienleiter. In der Mitte des Gleises wird ein Sendekabel verlegt, am Fuß einer Schiene liegt der elektrische Rückleiter. Alle 100 m wechseln die Kabel durch Vertauschen. Der Linienleiter überträgt mehrmals pro Sekunde über eine unter dem Fahrzeug aufgehängte Antenne Informationen (Maximale Geschwindigkeit, Entfernung zur nächsten Geschwindigkeitsänderung, Geschwindigkeit dort) zur Zugbeeinflussungseinrichtung im Zug. Auf dem umgekehrten Weg werden Daten (Standort, Geschwindigkeit) vom Fahrzeug über den Linienleiter zum Stellwerk übertragen und dort ausgewertet. Das Fahrzeug bestimmt seinen Standort aus dem eigenen Odometer, die Kreuzungsstellen des Linienleiters werden dabei erkannt und dienen zur Kalibrierung. Da der Standort und der aktuelle Zielpunkt des Fahrzeuges ermittelt werden, kann eine Bremsung genau dann eingeleitet werden, wenn sich der Zug im Bremswegabstand vor dem nächsten Zielpunkt befindet. Ist bis dahin ein weiterer Streckenabschnitt freigegeben, braucht auch keine Bremsung zu erfolgen. In Deutschland wird die LZB seit 2001 mit dem Betriebsleitsystem CIR-ELKE auf den Neubaustrecken Köln-Rhein/Main und Nürnberg-Ingolstadt sowie der S-Bahn München erweitert. Neuerungen des Systems sind u.A. neigungsabhängige Bremskurven (kürzere Bremswege bei Bergfahrt, längere bei Talfahrt) und die Möglichkeit der Verwendung extrem kurzer Blockabstände (minimal 50 m). Dadurch können unter bestimmten Voraussetzungen die Zugfolgezeiten weiter gesenkt werden.
ETCS Level 2/3
[Bearbeiten | Quelltext bearbeiten]Hauptartikel: European Train Control System
Im Rahmen von ETCS wurde auch eine Linienförmige Zugbeeinflussung entwickelt, die einen einheitlichen Standard im europäischen Hochgeschwindigkeitsnetz zur Verfügung stellen soll. Im Gegensatz zu bisherigen linienförmigen Zugbeeinflussungssystemen wird bei ETCS Level 2 auf eine Übertragung mittels Linienleiter oder Gleisstromkreisen verzichtet, die Informationsübertragung zwischen Fahrzeug und Strecke erfolgt über den europäischen Mobilfunkstandard GSM-R (GSM-Rail). Zur Kalibrierung der Standortinformation der Züge sind lediglich passive Eurobalisen (siehe ETCS Level 1) erforderlich. In der Schweiz ist ETCS Level 2 auf der Neubaustrecke Mattstetten–Rothrist sowie im Lötschbergbasistunnel in Betrieb, zwischen Berlin und Leipzig wird derzeit (Stand Mitte 2007) auf einer ersten Strecke in Deutschland ETCS Level 2 (parallel zur deutschen LZB) getestet.
ETCS Level 3 soll ohne feste Gleisfreimeldeabschnitte funktionieren und damit erstmals das Fahren im wandernden Raumabstand bei der Eisenbahn ermöglichen. Auf Grund des ungelösten Problems der Zugvollständigkeitskontrolle, speziell bei Güterzügen ohne elektrische Verbindung zwischen den Wagen, ist die Einführung von ETCS Level 3 jedoch nicht absehbar.
Literatur
[Bearbeiten | Quelltext bearbeiten]- Pachl, Jörn: Systemtechnik des Schienenverkehrs, B.G. Teubner, Stuttgart 2000, ISBN 3-519-16383-7
- Victor Freiherr von Röll (Hrsg.): Enzyklopädie des Eisenbahnwesens, 2. völlig neu bearbeitete Auflage, DVD-ROM-Ausgabe, Directmedia Publishing GmbH, Berlin 2007, ISBN 978-3-89853-091-0
Weblinks
[Bearbeiten | Quelltext bearbeiten]((Navigationsleiste Zugbeeinflussung))
((Kategorie:Zugsicherung))
((cs:Vlakový zabezpečovač)) ((da:Togkontrolsystem)) ((en:Train protection system)) ((hu:Automatikus vonatbefolyásoló rendszer)) ((ja:自動列車保安装置)) ((nl:Treinbeïnvloeding)) ((sk:Vlakové zabezpečovacie zariadenie))