Benutzer:Staledel/Morphologische Bildverarbeitung Version 2

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Die morphologische Bildverarbeitung ist ein Teilgebiet der computergestützten Bildverarbeitung und kann als Technik zur Analyse von Strukturen in Bildern verstanden werden. Morphologie ist die Lehre der Gestalt oder der Form. Diese nichtlineare Bildverarbeitungsmethode dient dazu, die Struktur von Bildern zu analysieren und zu beeinflussen. Sie ist ein Konzept, das auf der Mengenlehre, der Topologie und der Verbandstheorie basiert. Es sind sowohl Binär- als auch Grauwertbilder zulässig, da auch Binärbilder bereits die Form und Gestalt eines Objektes wiedergeben können. Ein Ziel der morphologischen Bildverarbeitung kann einerseits ein neues Bild sein, das Relevantes hervorhebt. Ein weiteres Ziel kann eine Liste sein, die mit aus dem Bild bestimmten Messgrößen gefüllt wird.

Es gilt, die morphologische Bildverarbeitung nicht mit Morphing zu verwechseln. In der Literatur ist sie auch unter dem Begriff der mathematischen Morphologie zu finden.

In der Morphologie wird ein Bild als eine Teilmenge des Euklidischen Raumes oder eines diskreten Gitters der Dimension aufgefasst.

Strukturelement

[Bearbeiten | Quelltext bearbeiten]

Ein Strukturelement ist eine Strukturmenge der zweidimensionalen, diskreten Grundmenge. Sie besteht aus dem Ursprungspixel und weiteren beliebig angeordneten Pixeln. Der Ursprungspixel ist im Normalfall auch der Bezugspunkt, auf den sich die Filterung bezieht. Der Bezugspunkt wird durch das Zeichen gekennzeichnet.

Beispiele für häufig genutzte Strukturelemente für Bilder aus :

  • Vierer-Nachbarschaft: ;
  • Achter-Nachbarschaft: ;
  • Eine Näherung des Kreises mit Radius 2: .

Die Spiegelung des Strukturelementes wird mit gekennzeichnet: . Die Wahl des Strukturelementes hängt von der Problemstellung ab und wird deshalb im Normalfall durch vorhandenes Vorwissen erleichtert.

Morphologische Standardoperatoren

[Bearbeiten | Quelltext bearbeiten]
Links: Binärbild einer Kastanie; Mitte links: Erosion; Mitte rechts: Dilatation. Rechts: Öffnung. Die Auswirkungen der morphologischen Operationen auf das Binärbild sind blau markiert.

Die morphologischen Standardoperatoren sind die Erosion und die Dilatation. Aus der Kombination dieser ergeben sich die Öffnung und die Schließung. Die Standardoperatoren sind eng mit der Minkowski-Summe verwandt und bilden die Grundlage der morphologischen Bildverarbeitung.

Die Erosion eines Bildes mit dem Strukturelement trägt den Rand der Objekte ab. Ein Ergebnis daraus kann sein, das anfangs Zusammenhänge Objektstrukturen getrennt werden.

Analog dazu erweitert die Dilatation die Objektstrukturen im Bild. Dabei kann es auch zu Verschmelzungen vormals getrennter Objekte kommen.

Die Verwandschaft zwischen Erosion und Dilatation nennt man Dualität. Für Binärbilder und (zentral-)symmetrische Strukturelemente gilt: . Dabei ist das Komplement zu , also .

Die Öffnung des Bildes mit dem Strukturelement besteht aus zwei Schritten: Erosion von mit , danach Dilatation des Ergebnisses mit . Geometrisch interpretiert kann die Öffnung zum glätten äußerer Ecken, zum entfernen dünner Stege oder "Stacheln" sowie zum entfernen kleiner Außenliegender Objekte genutzt werden. So können beispielsweise die Stacheln einer Kastanie entfernt werden während die Form der Frucht jedoch weitgehend erhalten bleibt.

Analog zur Öffnung setzt sich die Schließung aus den gleichen Schritten in umgekehrter Reihenfolge zusammen. Zunächst wird das Bild mit dilatiert, um das Ergebnis wiederum mit zu erodieren. Aufgrund der Dualität kann die Schließung auch alternativ formuliert werden: . Geometrisch wirkt sich die Schließung durch die Glättung innerer Ecken, die Überbrückung kleiner Distanzen und besonders der namensgebenden Schließung von inneren Löchern aus.

Binärbild von Zahnrädern vor und nach morphologischer Schließung. Man erkennt, dass die Löcher geschlossen werden, die Form aber erhalten bleibt.
Eigenschaften der Standardoperatoren
[Bearbeiten | Quelltext bearbeiten]
  • Erosion ist monoton wachsend:
  • Dilatation ist monoton wachsend:
  • Dilatation ist extensiv, d.h. , falls B den Ursprung enthält
  • Erosion ist anti-extensiv, d.h. , falls B den Ursprung enthält
  • Ist A konvex, ist auch
  • Tranlationsinvarianz:

Weitere Operatoren und Anwendungen

[Bearbeiten | Quelltext bearbeiten]
  • Clusteranalyse

Anwendungsgebiete

[Bearbeiten | Quelltext bearbeiten]

Die Anwendungsgebiete der morphologischen Bildverarbeitung sind vielseitig. Beipsiele sind die industrielle Qualitätskontrolle, die Dokumentenverarbeitung, die Bildkodierung sowie die medizinische Bildverarbeitung. Auch in den Geowissenschaften, den Materialwissenschaften und im Bereich der Sicherheitskontrolle findet die Technik Anwendung.


Mathematische Morphologie

  • P. Soille, Morphologische Bildverarbeitung, Springer-Verlag, Berlin Heidelberg, 1998, DOI 10.1007/978-3-642-72190-8
  • B. Jähne, Digitale Bildverarbeitung, Springer-Verlag, Berlin Heidelberg, 2012, DOI 10.1007/978-3-642-04952-1 19
  • J. Beyerer, F. Puente León, C. Frese, Automatische Sichtprüfung, Springer-Verlag, Berlin Heidelberg, 2012, ISBN 978-3-642-23966-3

Kategorie:Bildverarbeitung