Bleiwolframat
Strukturformel | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Allgemeines | ||||||||||||||||
Name | Bleiwolframat | |||||||||||||||
Andere Namen |
Blei(II)-wolframat | |||||||||||||||
Summenformel | PbWO4 | |||||||||||||||
Externe Identifikatoren/Datenbanken | ||||||||||||||||
| ||||||||||||||||
Eigenschaften | ||||||||||||||||
Molare Masse | 455,04 g·mol−1 | |||||||||||||||
Aggregatzustand |
fest | |||||||||||||||
Dichte | ||||||||||||||||
Schmelzpunkt |
1123 °C[1] | |||||||||||||||
Löslichkeit |
nahezu unlöslich in Wasser[2] | |||||||||||||||
Sicherheitshinweise | ||||||||||||||||
| ||||||||||||||||
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen (0 °C, 1000 hPa). |
Bleiwolframat (PWO) ist eine kristalline Verbindung aus Wolfram, Blei und Sauerstoff. Bleiwolframat wird als sehr strahlungsresistenter Szintillator in Kalorimetern der Teilchenphysik verwendet.
Vorkommen
[Bearbeiten | Quelltext bearbeiten]Bleiwolframat kommt natürlich als Mineral Stolzit und Raspit vor.
Gewinnung und Darstellung
[Bearbeiten | Quelltext bearbeiten]Die Kristalle werden sowohl mit dem Czochralski-Verfahren als auch der Bridgman-Stockbarger-Methode aus einer stöchiometrischen Schmelze von PbO und WO3 hergestellt.[4][5]
Eigenschaften
[Bearbeiten | Quelltext bearbeiten]Bleiwolframat hat eine Schmelztemperatur von 1123 °C, eine Dichte von 8,28 g/cm3 und ist nicht hygroskopisch. Das spektrale Maximum des Szintillationslichts liegt bei 430 nm, dort beträgt der Brechungsindex 2,17. Die Strahlungslänge beträgt 0,89 cm. 80 % des Szintillationslichts wird innerhalb von 25 ns emittiert. Die Szintillationslichtausbeute von Bleiwolframat ist gering und beträgt lediglich 5 % von Bismutgermanat oder 0,6 % von Natriumiodid.[1] Weiterhin ist die Lichtausbeute stark von der Temperatur abhängig.[6] Bei etwa 400 °C setzt sich Raspit in Stolzit um.[2]
Verwendung
[Bearbeiten | Quelltext bearbeiten]Am Large Hadron Collider am CERN kommt Bleiwolframat in den Detektoren CMS und ALICE zum Einsatz, weiterhin ist ein Einsatz im PANDA-Detektor am FAIR-Beschleunigerzentrum geplant.[1]
ECAL des Compact Muon Solenoids
[Bearbeiten | Quelltext bearbeiten]Das elektronische Kalorimeter ECAL des Compact Muon Solenoids besteht aus einer Röhre aus 61.200 Kristallen und zwei Endelementen aus jeweils 7324 Kristallen. Die Kristalle haben die Abmessungen von 24 × 24 × 230 mm im radialen Bereich und 30 × 30 × 220 mm an den Endstücken. Die erwartete Strahlendosis im Laufe von 10 Jahren Betrieb beträgt für den radialen Bereich 4000 Gy und 2·1013 Neutronen/cm2, an den Endstücken wird die fünfzigfache Dosis erwartet. Durch die hohe Strahlungsdosis wird im CMS eine Schwankung der Transmittivität um etwa 5 % erwartet. Zur Korrektur der Schwankungen ist das CMS mit einem System ausgestattet, mit welchem zu Kalibrierungszwecken Laserlicht über Glasfaser in die einzelnen Kristalle eingekoppelt wird.[6]
ALICE-PHOS-Detektor
[Bearbeiten | Quelltext bearbeiten]Im PHOS-Kalorimeter des ALICE-Detektors kommen Kristalle der Abmessung 22 × 22 × 180 mm zum Einsatz. Die Kristalle sind mit etwa 100 ppm Yttriumoxid dotiert. Zur Erhöhung der Lichtausbeute werden die Bleiwolframat-Kalorimeter im ALICE-Detektor auf −25 °C abgekühlt. Nach zehnjährigem Betrieb wird eine Strahlendosis von 1 Gy und eine Neutronendosis von 2·1010 Neutronen/cm2 erwartet.[4]
PANDA-EMC-Detektor
[Bearbeiten | Quelltext bearbeiten]Im elektromagnetischen Kalorimeter (EMC) des PANDA-Detektors kommen 16.000 Bleiwolframat-Kristalle von etwa 21 × 28 × 200 mm mit dem Gewicht von etwa einem Kilogramm zum Einsatz. Die Betriebstemperatur des EMC beträgt −25 °C.[1]
Siehe auch
[Bearbeiten | Quelltext bearbeiten]Weblinks
[Bearbeiten | Quelltext bearbeiten]Einzelnachweise
[Bearbeiten | Quelltext bearbeiten]- ↑ a b c d e Florian Feldbauer: Studien zur Strahlenhärte von Bleiwolframat-Kristallen, Masterarbeit. Ruhr-Universität Bochum, 2009, abgerufen am 12. November 2018.
- ↑ a b c Dale L. Perry, Sidney L. Phillips; Handbook of inorganic compounds; ISBN 978-0849386718.
- ↑ a b Datenblatt Bleiwolframat bei Sigma-Aldrich, abgerufen am 13. März 2011 (PDF).
- ↑ a b M. Ippolitova et al.: Lead tungstate crystals for the ALICE/CERN experiment. In: Nuclear Instruments and Methods in Physics Research A. 537. Jahrgang, Nr. 1–2, 2005, S. 353–356, doi:10.1016/j.nima.2004.08.042 (englisch).
- ↑ Baoguo Han, Xiqi Feng, Guangin Hu, Yanxing Zhang, Zhiwen Yin: Annealing effects and radiation damage mechanisms of PbWO4 single crystals. In: J. Appl. Phys. 86. Jahrgang, Nr. 7, 1999, S. 3571–3578, doi:10.1063/1.371260 (englisch).
- ↑ a b Q. Ingram1: The Lead Tungstate Electromagnetic Calorimeter of CMS. (PDF; 165 kB) 16. März 2006, archiviert vom am 7. Oktober 2006; abgerufen am 2. April 2010 (englisch).
- Gesundheitsschädlicher Stoff bei Verschlucken
- Gesundheitsschädlicher Stoff bei Einatmen
- Stoff mit reproduktionstoxischer Wirkung
- Gesundheitsschädlicher Stoff (Organschäden)
- Umweltgefährlicher Stoff (chronisch wassergefährdend)
- Bleiverbindung
- Wolframat
- Beschränkter Stoff nach REACH-Anhang XVII, Eintrag 63
- Beschränkter Stoff nach REACH-Anhang XVII, Eintrag 72