Brückenzahl
Zur Navigation springen
Zur Suche springen
Die Brückenzahl ist eine Invariante aus dem mathematischen Gebiet der Knotentheorie.
Definition
[Bearbeiten | Quelltext bearbeiten]Ein Knoten besitzt eine Darstellung mit Brücken, wenn er sich so in Intervalle zerlegen lässt, dass für eine geeignete Ebene jeweils Intervalle in beiden von der Ebene berandeten Halbräumen liegen. (Äquivalent kann man auch verlangen, dass Intervalle in einer Ebene und die anderen Intervalle in einem der berandeten Halbräume liegen.)
Die Brückenzahl eines Knotens ist die kleinste Zahl , für die es eine Darstellung mit Brücken gibt.
Beispiele
[Bearbeiten | Quelltext bearbeiten]- Der Unknoten ist der einzige Knoten mit Brückenzahl .
- Knoten mit Brückenzahl wurden 1956 von Horst Schubert klassifiziert, sie werden auch als rationale Knoten bezeichnet.
- Eine Klassifikation der 3-Brücken-Knoten ist bisher nicht gelungen.
- Die Brückenzahl des Torusknotens ist .
- Die Brückenzahl eines n-strändigen Zopfes ist höchstens .
Eigenschaften
[Bearbeiten | Quelltext bearbeiten]- Für die Knotensumme gilt die Gleichung
- Linsenräume sind verzweigte Überlagerungen der mit einem 2-Brückenknoten als Verzweigungsmenge.
- Wenn eine geschlossene 3-Mannigfaltigkeit eine Heegaard-Zerlegung vom Geschlecht besitzt, dann ist sie eine verzweigte Überlagerung der mit einem 3-Brückenknoten als Verzweigungsmenge.
Literatur
[Bearbeiten | Quelltext bearbeiten]- Gerhard Burde, Heiner Zieschang, Michael Heusener: Knots. (= De Gruyter Studies in Mathematics. 5). 3., vollst. überarb. und erw. Auflage. De Gruyter, Berlin 2014, ISBN 978-3-11-027074-7.
- Jennifer Schultens: Additivity of bridge numbers of knots. In: Math. Proc. Cambridge Philos. Soc. 135, no. 3, 2003, S. 539–544.
- Jennifer Schultens: Bridge numbers of torus knots. In: Math. Proc. Cambridge Philos. Soc. 143, no. 3, 2007, S. 621–625.