Debye-Gleichung

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Die Debye-Gleichung (benannt nach dem niederländischen Physikochemiker Peter Debye) verknüpft die makroskopisch messbare Größe Permittivität mit den mikroskopischen (molekularen) Größen elektrische Polarisierbarkeit und permanentes Dipolmoment :

Darin sind

Die Debye-Gleichung vereinigt die temperaturabhängige Orientierungspolarisation (den Summand mit ) und die temperaturunabhängige Verschiebungspolarisation (den Summanden mit ).

Für unpolare Stoffe (permanentes Dipolmoment also nur induzierte Dipole) geht die Debye-Gleichung über in die Clausius-Mossotti-Gleichung.

Auch bei hochfrequenter Änderung des elektrischen Feldes (etwa ab Mikrowellen-Bereich) ist keine Orientierungspolarisation mehr zu beobachten, da dann die relativ trägen permanenten Dipole dem äußeren Feld nicht mehr folgen können. In diesem Fall geht die Debye-Gleichung ebenfalls in die Clausius-Mossotti-Gleichung über.

  • Peter Debye: Polare Molekeln. S. Hirzel, Leipzig 1929.