Diskussion:Kontinuum (Mathematik)

aus Wikipedia, der freien Enzyklopädie
Letzter Kommentar: vor 1 Jahr von Leon Decker in Abschnitt Gleichmächtigkeit von R und C
Zur Navigation springen Zur Suche springen

Kontinuumshypothese

[Quelltext bearbeiten]

Im Abschnitt steht:

, die Menge aller Teilmengen der natürlichen Zahlen, also die Potenzmenge von

Die ist doch die Kontinuumshypothese. Diese lässt sich nicht aus ZF herleiten. (nicht signierter Beitrag von 93.131.55.214 (Diskussion) 16:44, 22. Mai 2011 (CEST)) Beantworten

Nein, das geht auch ohne. ist sogar recht einfach, wenn man die Binärdarstellung verwendet und nur die Zahlen im Intervall (0,1) von IR betrachtet. (nicht signierter Beitrag von 188.104.185.150 (Diskussion) 13:04, 19. Jun. 2012‎)

Die Menge /A wird benutzt, aber nicht definiert - nicht sehr verständlich...

Kontinua im Allgemeinen: Definition des Kontinuums

[Quelltext bearbeiten]

"In der Mathematik nennt man eine jede Menge, welche die Mächtigkeit der reellen Zahlen hat, ein Kontinuum." Ich bezweifele die Üblichkeit dieser Definition und würde gerne Belege sehen. Das Cantorsche Diskontinuum hat die Mächtigkeit der reellen Zahlen und wäre nach dieser Definition ein Kontinuum. Das scheint mir wenig Sinn zur ergeben.-Sigma^2 (Diskussion) 22:19, 1. Jun. 2016 (CEST)Beantworten

Sehe ich genauso. Und kein Beleg für diese starke Aussage. Ich änder das mal. — SpezialistDisk 23:50, 14. Nov. 2021 (CET)Beantworten

Gleichmächtigkeit von R und C

[Quelltext bearbeiten]

Wenn die reellen und die komplexen Zahlen gleichmächtig sind, wie sähe dann eine Vorschrift/ ein Algorithmus aus, der die reellen Zahlen bijektiv den komplexen Zahlen zuordnet? --Leon Decker (Diskussion) 22:41, 24. Jul. 2023 (CEST)Beantworten