Diskussion:Metabelsche Gruppe
Letzter Kommentar: vor 8 Jahren von GroupCohomologist in Abschnitt Beispiel mit den Dreiecksmatrizen
Beispiel mit den Dreiecksmatrizen
[Quelltext bearbeiten]Da heißt es: „Die Kommutatoruntergruppe ist in diesem Fall die abelsche Gruppe der Diagonalmatrizen.“ Wenn ich keinen Denkfehler habe, stimmt das nicht: Bei und kriege ich z. B. raus? -- HilberTraum (d, m) 14:30, 15. Jun. 2016 (CEST)
- Sorry, das war natürlich der Quotient, nicht die Untergruppe.--Pugo (Diskussion) 14:59, 15. Jun. 2016 (CEST)
- Der analoge Fehler war übrigens auch in den beiden folgenden Beispielen. Jetzt ist aber hoffentlich alles korrigiert.--Pugo (Diskussion) 15:10, 15. Jun. 2016 (CEST)
- Ist denn eine Spiegelung der Ebene keine Isometrie? Meinst du vielleicht , die Gruppe der eigentlichen Bewegungen? --GroupCohomologist (Diskussion) 15:15, 15. Jun. 2016 (CEST)
- Irgendwie denke ich immer nur orientierungserhaltend. Für die orientierungserhaltenden Isometrien wäre der Quotient SO(2), für die Gruppe aller Isometrien bekommt man O(2). So steht es jetzt auch da.--Pugo (Diskussion) 15:19, 15. Jun. 2016 (CEST)
- Danke für die schnelle Reaktion. Aber du hattest Recht, hier orientierungserhaltend zu denken, denn ist nichtabelsch. Das Beispiel müsste also sagen, dass die Gruppe aller orientierungserhaltenden Isometrien der Ebene metabelsch ist. --GroupCohomologist (Diskussion) 15:25, 15. Jun. 2016 (CEST)