Diskussion:Operatornorm
Eine oder viele?
[Quelltext bearbeiten]Mir wird nicht klar: Gibt es auf einem Raum von linearen Abbildungen nun genau eine Operatornorm (das sagt der Abschnitt "Definition") oder mehrere verschiedene (das sagt der Abschnitt über "Matrixnormen")? -- Digamma 15:29, 5. Jul. 2010 (CEST)
- Hallo, angenommen sei eine lineare Funktion zwischen normierten Vektorräumen. Die Operatornorm ist doch dann abhängig von der Norm auf den Räumen V und W. Auf dem R^n gzum Beispiel gibt es doch viele verschiedene äquivalente Normen und daher kommen auch die unterschiedlichen Normen im Abschnitt Matrixnorm. --Christian1985 16:07, 5. Jul. 2010 (CEST)
- Danke. Sorry, ich hatte nicht genau genug gelesen. -- Digamma 16:15, 5. Jul. 2010 (CEST)
Definition der Operatornorm falsch/nicht wohldefiniert für
[Quelltext bearbeiten]Falls ein linearer Operator ist, aber , dann gilt nach der Definition im Artikel
Außerdem existiert dann gar kein mit , daher gilt auch
Ich bin mir ziemlich sicher, dass da rauskommen sollte, weil die Nullfunktion ist. Man beachte, dass jede Nullfunktion nach der Definition im Artikel die Norm hat, nur wenn gilt, gilt . Das scheint mir sehr willkürlich. Ich finde diese Definition besser:
Da kommt für auch immer raus, und für stimmt sie auch mit der Definition im Artikel überein. Das wird auch in "Amann, Escher, Analysis II" so gemacht. -- Mejiwa 15:20, 16. Sep. 2010 (CEST)
- Nach einem Blick in das Buch Funktionalanalysis von Werner halte ich den Umbau auch für sinnvoll. --Christian1985 ( 17:27, 26. Sep. 2010 (CEST)
- Man sollte aber darauf achten, dass die Definition verständlich bleibt. Die bisherige Definition (die in allen Fällten außer zur hier neu vorgeschlagenen äquivalent ist) ist wesentlich verständlicher als die neu vorgeschlagene. Die zwei Definitionen stimmen auch überein, wenn man die Supremumsfunktion auf Teilmengen von beschränkt und dann sinnvollerweise setzt. Nichts anderes geschieht ja eigentlich in der alternativen Definition, die statt die Supremumsfunktion zu benutzen direkt auf deren Definition zurückgreift.
- Eine Möglichkeit wäre zum Beispiel, die Definition
- aus Amann, Escher zu benutzen, aber gleich darauf zu schreiben, dass für die Aussagen
- gelten. -- Digamma 18:02, 26. Sep. 2010 (CEST)
- Ich habe es so eingebaut. -- Digamma 18:11, 26. Sep. 2010 (CEST)
- Ok, Dankeschön für die Änderung :) Ich finde auch, dass die alten mit dem Supremum gemachten Definitionen zum besseren Verständnis drin bleiben sollten. -- Mejiwa 23:59, 26. Sep. 2010 (CEST)
- Gern geschehen. Falls Du weitere Verbesserungsmöglichkeiten siehst: Mach's einfach. -- Digamma 19:48, 27. Sep. 2010 (CEST)
- Ok, Dankeschön für die Änderung :) Ich finde auch, dass die alten mit dem Supremum gemachten Definitionen zum besseren Verständnis drin bleiben sollten. -- Mejiwa 23:59, 26. Sep. 2010 (CEST)