Diskussion:Stetige Funktion mit kompaktem Träger
Letzter Kommentar: vor 5 Jahren von Stephan2802 in Abschnitt Abgeschlossen, vollständig
Abgeschlossen, vollständig
[Quelltext bearbeiten]„Ist ein vollständiger Raum, so ist ebenfalls ein vollständiger Raum und ein abgeschlossener Unterraum von , dem Raum der beschränkten Abbildungen.“ Stimmt das wirklich? Ich sehe gerade vor meinem geistigen Auge eine Folge von stetigen Funktionen mit kompaktem Träger gleichmäßig gegen eine beschränkte Funktion ohne kompakten Träger konvergieren. Das ist doch möglich, oder? -- HilberTraum (d, m) 20:12, 7. Mär. 2016 (CET)
- War falsch, habe kompakter Grundraum mit kompaktem Träger verwechselt. Hat jemand eine Verallgemeinerung des Beschränktheitsargumentes von metrischen Räumen zu topologischen Räumen? So wie es da steht ist die Aussage glaube ich nicht so allgemein wie möglich. LG --NikelsenH (Diskussion) 20:29, 7. Mär. 2016 (CET)
- Hm, hab das jetzt nicht genau durchdacht, aber könnte man statt den dann nicht die Urbilder nehmen? -- HilberTraum (d, m) 09:42, 8. Mär. 2016 (CET)
- Stimmt, ich hab was im H.W.Alt dazu gefunden. Ich habe es mal als Bemerkung mit reingenommen, aber die Argumentation mittels der metrischen Räume gelassen. (weil ich die Argumentation mit den metrischen Räumen als ganz schön und evtl. auch noch verständlich für jemanden, der nur die klassischen Stetigkeitsdefinitionen kennt empfunden habe). LG --NikelsenH (Diskussion) 12:53, 8. Mär. 2016 (CET)
- Mir erscheint die Herleitung viel zu kompliziert. ist als Bild einer kompakten Menge unter einer stetigen Funktion kompakt. Das Bild des Komplements von enthält nach Definition höchstens ein Element (nämlich die ), ist also ebenfalls kompakt. Damit ist das Bild von als Vereinigung zweier kompakter Mengen wieder kompakt, also natürlich auch beschränkt. --Stephan2802 (Diskussion) 12:40, 4. Mär. 2019 (CET)
- Stimmt, ich hab was im H.W.Alt dazu gefunden. Ich habe es mal als Bemerkung mit reingenommen, aber die Argumentation mittels der metrischen Räume gelassen. (weil ich die Argumentation mit den metrischen Räumen als ganz schön und evtl. auch noch verständlich für jemanden, der nur die klassischen Stetigkeitsdefinitionen kennt empfunden habe). LG --NikelsenH (Diskussion) 12:53, 8. Mär. 2016 (CET)
- Hm, hab das jetzt nicht genau durchdacht, aber könnte man statt den dann nicht die Urbilder nehmen? -- HilberTraum (d, m) 09:42, 8. Mär. 2016 (CET)