Fritz-John-Bedingungen
Die Fritz-John-Bedingungen (abgekürzt FJ-Bedingungen) sind in der Mathematik ein notwendiges Optimalitätskriterium erster Ordnung in der nichtlinearen Optimierung. Sie sind eine Verallgemeinerung der Karush-Kuhn-Tucker-Bedingungen und kommen im Gegensatz zu diesen ohne Regularitätsbedingungen aus. Benannt sind sie nach dem US-amerikanischen Mathematiker deutscher Abstammung, Fritz John.[1]
Rahmenbedingungen
[Bearbeiten | Quelltext bearbeiten]Die Fritz-John-Bedingungen ermöglichen Aussagen über ein Optimierungsproblem der Form
unter den Nebenbedingungen
- .
Dabei sind alle betrachteten Funktionen stetig differenzierbar und ist eine nichtleere Teilmenge des .
Aussage
[Bearbeiten | Quelltext bearbeiten]Ein Punkt heißt Fritz-John-Punkt oder kurz FJ-Punkt des obigen Optimierungsproblems, wenn er die folgenden Bedingungen erfüllt:
Diese Bedingungen werden die Fritz-John-Bedingungen oder kurz FJ-Bedingungen genannt.
Ist der Punkt lokales Minimum des Optimierungsproblems, so gibt es , so dass ein FJ-Punkt ist und ungleich dem Nullvektor ist.
Somit sind die FJ-Bedingungen ein notwendiges Optimalitätskriterium erster Ordnung.
Beziehung zu den Karush-Kuhn-Tucker-Bedingungen
[Bearbeiten | Quelltext bearbeiten]Für entsprechen die FJ-Bedingungen genau den Karush-Kuhn-Tucker-Bedingungen. Ist ein FJ-Punkt, so ist auch mit ein FJ-Punkt. Somit kann man davon ausgehen, dass wenn ist, bereits ein KKT-Punkt vorliegt, dieser wird durch Reskalierung mit erzeugt. Dann ist der zu einem FJ-Punkt gehörende KKT-Punkt. Umgekehrt lassen sich nun die constraint qualifications der KKT-Bedingungen so interpretieren, dass sie für die FJ-Bedingungen garantieren.
Beispiele
[Bearbeiten | Quelltext bearbeiten]FJ ohne KKT
[Bearbeiten | Quelltext bearbeiten]Betrachte als Beispiel das Optimierungsproblem
mit Restriktionsmenge
- .
Minimum des Problems ist der Punkt . Daher existiert ein FJ-Punkt , so dass
- .
Daraus folgt direkt, dass für einen FJ-Punkt gilt.
Insbesondere gibt es keinen dazugehörigen KKT-Punkt. Setzt man , so ist das Gleichungssystem der Gradienten nicht lösbar. Tatsächlich ist im Punkt keine Regularitätsbedingung erfüllt, speziell nicht die allgemeinste, die Abadie CQ.
FJ und KKT
[Bearbeiten | Quelltext bearbeiten]Betrachte als Beispiel das Optimierungsproblem
mit Restriktionsmenge
- .
Die Restriktionsmenge ist der Einheitskreis, bei dem am ersten Quadranten die Krümmung des Kreises entfernt wurde. Minimum des Problems ist der Punkt . Daher gibt es einen FJ-Punkt , so dass
gilt. Eine Lösung wäre , was zu dem FJ-Punkt führt. Eine Reskalierung mit führt zu dem KKT-Punkt . Tatsächlich ist im Punkt auch die LICQ erfüllt, deshalb gelten hier auch die KKT-Bedingungen.
Verwandte Konzepte
[Bearbeiten | Quelltext bearbeiten]Für konvexe Optimierungsprobleme, bei denen die Funktionen nicht stetig differenzierbar sind, gibt es die Sattelpunktkriterien der Lagrange-Funktion. Sind alle beteiligten Funktionen stetig differenzierbar, so sind sie strukturell ähnlich den Fritz-John-Bedingungen und äquivalent zu den KKT-Bedingungen.
Literatur
[Bearbeiten | Quelltext bearbeiten]- Florian Jarre, Josef Stoer: Optimierung. Springer, Berlin 2004, ISBN 3-540-43575-1.
- C. Geiger, C. Kanzow: Theorie und Numerik restringierter Optimierungsaufgaben. Springer, 2002, ISBN 3-540-42790-2, books.google.de
Weblinks
[Bearbeiten | Quelltext bearbeiten]- Stephen Boyd, Lieven Vandenberghe: Convex Optimization. (PDF; englisch)
Einzelnachweise
[Bearbeiten | Quelltext bearbeiten]- ↑ F. John: Extremum problems with inequalities as subsidiary conditions. In: Kurt Friedrichs, Otto Neugebauer, J. J. Stoker (Hrsg.): Studies and Essays. Courant Anniversary Volume, Wiley, 1948, S. 187–204, nachgedruckt in: Fritz John: Collected Papers. Birkhäuser 1985, S. 543–560