Masse (Physik)

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Gewichtsmaß)
Zur Navigation springen Zur Suche springen
Physikalische Größe
Name Masse
Formelzeichen
Größen- und
Einheitensystem
Einheit Dimension
SI kg M
cgs g M

Die Masse ist eine Eigenschaft der Materie. Sie bestimmt die Trägheit, mit der der Bewegungszustand des Körpers auf von außen einwirkende Kräfte reagiert. Außerdem ist sowohl die auf einen Körper wirkende als auch die von ihm verursachte Gravitation proportional zu seiner Masse. Diese doppelte Rolle der Masse ist Inhalt des Äquivalenzprinzips. In den meisten physikalischen Größensystemen ist sie eine der Basisgrößen. Sie wird im internationalen Einheitensystem in der Einheit Kilogramm angegeben. Ihr Formelzeichen ist meist .

Die Masse ist eine extensive Größe. Besitzt ein System eine von Null verschiedene Masse, dann sind die beiden mit der Bewegung verbundenen physikalischen Größen Impuls und kinetische Energie zu ihr proportional. Ferner bestimmt die Masse eines Systems dessen Ruheenergie. Aufgrund der Äquivalenz von Masse und Energie unterscheiden sich die beiden Größen Masse und Ruheenergie nur durch den konstanten Faktor (Lichtgeschwindigkeit zum Quadrat). Die Masse eines Körpers ist unabhängig von seiner Bewegung.

Die Masse eines Körpers wird außerhalb der Natur- und Ingenieurwissenschaften, besonders in der Umgangssprache, auch als Gewicht bezeichnet. Fachsprachlich steht „Gewicht“ aber allein für die Gewichtskraft.

Entwicklung des Begriffs der Masse

[Bearbeiten | Quelltext bearbeiten]

Masse in der klassischen Mechanik

[Bearbeiten | Quelltext bearbeiten]

Der physikalische Begriff Masse wurde Mitte des 17. Jahrhunderts geprägt, als Johannes Kepler, Galileo Galilei, Isaac Newton, Christiaan Huygens (und andere) mit dem Studium der Bewegungen von Körpern auf der Erde und am Himmel die Grundlagen der modernen Naturwissenschaften legten. Aus den Beobachtungen, wie sich die Geschwindigkeit eines Körpers durch Stoß oder Krafteinwirkung ändert, wurde geschlossen, dass jedem Körper eine unveränderliche Größe zukommt, die seine Trägheit verursacht. Dies entsprach dem älteren philosophischen Begriff „quantitas materiae“, der die Menge der in einem Körper enthaltenen Materie bezeichnen sollte. Newton definierte diese Größe, indem er von der Dichte und dem Volumen eines Körpers ausging, und bezeichnete sie fortan mit „Masse“.[1] Demnach ließ sich Newton von dem damals gängigen Verständnis leiten, reine Materie existiere in Form von kleinen, gleich beschaffenen Partikeln, die mit äthergefüllten Zwischenräumen jeweils verschiedener Größe die verschiedenen realen Körper bilden. Daraus entwickelte sich schließlich der Massebegriff der klassischen Mechanik. Seine genauen Eigenschaften sind:[2]

  1. Trägheit: Aufgrund seiner Masse setzt ein Körper einer Kraft, die seine Geschwindigkeit in Größe und/oder Richtung ändert, einen Widerstand entgegen: Die Geschwindigkeitsänderung erfolgt in der Richtung dieser beschleunigenden Kraft und ist umgekehrt proportional zur Masse.
  2. Gravitationsladung: Aufgrund ihrer Massen ziehen sich zwei Körper gegenseitig an, wobei die Richtung dieser anziehenden Kraft entlang der Verbindungslinie liegt und ihre Stärke zu den Massen beider Körper proportional ist.
  3. Invariantes Maß der Materiemenge: Die Masse eines Körpers hängt nicht von seiner Geschwindigkeit ab. D. h., sie bleibt die gleiche, wenn man das Bezugssystem wechselt, in dem der Körper betrachtet wird. In der klassischen Mechanik bedeutet dieser Wechsel, dass man die Koordinaten des Körpers mithilfe einer Galilei-Transformation umrechnet.
  4. Additivität: Die Masse eines zusammengesetzten Körpers ist die Summe der Massen seiner Einzelteile.
  5. Massenerhaltung: Bei allen physikalischen Prozessen bleibt die Gesamtmasse erhalten.

Die Eigenschaft Nr. 1 ist ein Teil des zweiten newtonschen Gesetzes und definiert die Bedeutung der physikalischen Größe Masse durch ihre Trägheit, allerdings setzt sie die Definition der Größe Kraft voraus. Die Eigenschaft Nr. 2 ist Teil des newtonschen Gravitationsgesetzes, das zur Grundlage der genauen Beschreibung der Erdanziehung und der Planetenbewegung wurde. Sie liefert die benötigte Kraftdefinition, indem sie die Gravitationskraft konkret angibt und damit alle weiteren Kräfte durch Vergleich mit der aus der Gravitation folgenden Gewichtskraft zu messbaren Größen macht. Die im Gravitationsgesetz enthaltene Feststellung, dass es die durch Trägheit definierte Masse ist, welche die Gravitation verursacht, wird als Äquivalenz von träger und schwerer Masse bezeichnet. Die Eigenschaften Nr. 3 und 4 der Masse ergeben sich in der newtonschen Mechanik als Folgerungen aus der definierenden Eigenschaft Nr. 1. Die Massenerhaltung (Eigenschaft Nr. 5) ist eine Erfahrungstatsache zunächst aus dem Bereich der Mechanik, deren Gültigkeit Ende des 18. Jahrhunderts (vor allem durch Antoine de Lavoisier) auch auf die chemischen Vorgänge ausgeweitet werden konnte. Zusammen entsprechen die drei letztgenannten Eigenschaften genau der Vorstellung von einer unzerstörbaren Substanz, aus der die materielle Welt besteht.

Bis etwa Mitte des 18. Jahrhunderts wurden die wichtigen Erhaltungsgrößen Impuls und kinetische Energie herausgearbeitet, die mit der Masse eines in Bewegung befindlichen Körpers verbunden sind:

  • Bewegungsgröße: Zur Bewegung eines Körpers gehört neben der Geschwindigkeit eine zweite gerichtete Größe, der Impuls. Sein Betrag ist der Masse proportional, seine Richtung ist parallel zur Geschwindigkeit. Bei jedem Vorgang bleibt die vektorielle Summe der Impulse aller beteiligten Körper erhalten.
  • Kinetische Energie: Zur Bewegung eines Körpers gehört auch eine ungerichtete Erhaltungsgröße, die kinetische Energie. Sie ist der Masse proportional und beträgt Null, wenn der Körper ruht. Bei jedem Vorgang bleibt die Gesamtenergie, d. h. die Summe aus kinetischer Energie und allen anderen Energieformen, erhalten.

Diese beiden Erhaltungssätze für Impuls und Energie sind grundlegend sowohl für die klassische als auch für die moderne Physik und gelten in der gegebenen Formulierung exakt in beiden Bereichen. Auf ihrer Grundlage kann man eine neue Definition der Masse geben, die im Ergebnis mit den fünf oben genannten Eigenschaften übereinstimmt, aber keine von ihnen schon voraussetzt.[3] Man benötigt dazu noch die genaue Festlegung, wie die Beschreibung eines physikalischen Vorgangs abzuändern ist, wenn man in ein bewegtes Bezugssystem wechselt. Es ist kein Rückgriff auf den Kraftbegriff nötig, der nach Ernst Mach, Gustav Kirchhoff, Heinrich Hertz und anderen im 19. Jahrhundert als ungeeignet für einen wissenschaftstheoretisch befriedigenden Grundbegriff kritisiert wurde.

Umbruch zur modernen Physik

[Bearbeiten | Quelltext bearbeiten]

Im Rahmen der klassischen Physik, und damit auch in der Alltagswelt, gelten alle fünf oben genannten Eigenschaften der Masse. In der von Relativitätstheorie und Quantenphysik geprägten modernen Physik gelten sie nur noch näherungsweise.

Hendrik Lorentz entdeckte zu Beginn des 20. Jahrhunderts, dass für elektrodynamische Vorgänge ein Wechsel des Bezugssystems nicht mithilfe der Galilei-Transformation, sondern mittels der Lorentz-Transformation vollzogen werden muss. Albert Einstein erkannte, dass dies für jedes physikalische Phänomen gilt, auch im Bereich der Mechanik. Das lässt den Zusammenhang zwischen der Kraft und der von ihr bewirkten Änderung der Geschwindigkeit weit komplizierter werden, als in der klassischen Definition der Masse (Eigenschaft Nr. 1) angenommen. Außerdem folgt, dass ein System bei Änderung seiner inneren Energie (das ist der Energieinhalt, den er in seinem Ruhesystem hat) eine dazu proportionale Änderung seiner Masse erfährt. Die Masse eines zusammengesetzten Körpers hängt also nicht nur von den Massen seiner Bestandteile ab, sondern auch von den kinetischen und potenziellen Energien, die diese haben, wenn der Körper als Ganzes ruht. So verliert ein Körper beim Zusammensetzen aus einzelnen Bestandteilen an Masse, wenn Bindungsenergie frei wird, man spricht vom Massendefekt. Umgekehrt vergrößert sich seine Masse, wenn seine Bestandteile sich heftiger bewegen, wie das etwa bei Erwärmung der Fall ist. Dabei ergeben sich die betreffenden Energiewerte stets so, dass man den Wert der Masse bzw. Massenänderung mit dem Quadrat der Lichtgeschwindigkeit multipliziert. Dieser Umrechnungsfaktor ist eine universelle Konstante. Mithin lassen sich Veränderungen der Masse und der Energie überhaupt nicht voneinander trennen, vielmehr besteht eine allgemeine Äquivalenz von Masse und Energie.

Die Äquivalenz von Masse und Energie gilt immer. Einem in Ruhe befindlichen Körper muss man entsprechend seiner Masse eine Ruheenergie zuschreiben (Einsteinsche Gleichung). Umgekehrt muss man nach derselben Gleichung einem System immer auch eine Masse zuschreiben, wenn es Ruheenergie besitzt, d. h. wenn es beim Gesamtimpuls null noch Energie hat. Dies bleibt im Alltag meist verborgen, wird aber besonders deutlich bei der gegenseitigen Vernichtung (Annihilation) von zwei massebehafteten Elementarteilchen, wenn man den Prozess in deren Schwerpunktsystem betrachtet, also im Ruhesystem des Zweiteilchensystems. Es entsteht Vernichtungsstrahlung mit einer Energie, die durch die Ruheenergie des verschwundenen Zweiteilchensystems gegeben ist. Sie hat den Gesamtimpuls null, wie vorher das Zweiteilchensystem auch. Diesem Strahlungsfeld muss auch dieselbe Masse zugeschrieben werden wie dem Zweiteilchensystem, denn es lässt sich kein Unterschied feststellen. Auch masselose Objekte (z. B. zwei oder mehr Lichtquanten) können also Systeme bilden, die eine Masse haben.

Die oben angegebenen klassischen Eigenschaften der Masse können daher nur näherungsweise gültig bleiben, nämlich für den klassischen oder nichtrelativistischen Grenzfall, d. h. für massebehaftete Körper mit geringer Geschwindigkeit. Nach den Erfordernissen der Speziellen und der Allgemeinen Relativitätstheorie müssen sie wie folgt umformuliert werden:

  1. Trägheit: Aufgrund seiner Masse setzt ein System einer Kraft, die seine Geschwindigkeit in Größe und/oder Richtung ändert, einen Widerstand entgegen: Die Geschwindigkeitsänderung ist umgekehrt proportional zur Masse, hängt aber in Richtung und Größe auch von der Größe der Geschwindigkeit und dem Winkel zwischen der Kraft und der Geschwindigkeit ab.
  2. Gravitationsladung: Zwei Systeme ziehen sich aufgrund der in ihnen enthaltenen Massen, Energien und Impulse gegenseitig an.
  3. Invariante Größe Masse: Die Masse eines Systems hängt nicht von seiner Geschwindigkeit ab; sie bleibt unverändert, wenn man durch eine Lorentz-Transformation das Bezugssystem wechselt, in dem das System betrachtet wird.
  4. Additivität: Die Masse eines zusammengesetzten Systems ist gleich der Summe der Massen seiner Einzelteile, abzüglich des Massenäquivalents der Bindungsenergie, die zur vollständigen Trennung der gebundenen Einzelteile zugeführt werden müsste, und zuzüglich des Massenäquivalents der kinetischen Energien derjenigen Einzelteile, die als freie Teilchen zum System gehören.
  5. Energieerhaltung: Bei allen Prozessen bleibt die Summe aller Energien erhalten. Die mit den Massen verknüpften Ruheenergien sind darin enthalten. Die Summe der Massen allein bleibt nicht immer erhalten.

Im Endergebnis definiert man ganz allgemein die Masse mittels der Gleichung durch die Ruheenergie. Damit ist die Masse eine Lorentzinvariante, so wie die nach Newton definierte Masse eine Galilei-Invariante ist. Daher stimmen beide Definitionen der Masse nicht nur im Wert überein, sondern teilen eine tiefliegende Beziehung, an der aber auch ihr Unterschied deutlich wird: Beide Definitionen der Masse ergeben sich in gleicher Weise allein aus dem Erhaltungssatz für den Impuls, wenn man ihn einmal im Ruhesystem formuliert und ein zweites Mal in einem dagegen bewegten Bezugssystem (s. u.). Vollzieht man den Übergang von einer zur anderen Beschreibung mit der nur näherungsweise richtigen Galilei-Transformation, gelangt man zum klassischen Begriff der Masse, vollzieht man ihn mit der Lorentz-Transformation, gelangt man zum modernen Begriff der Masse.[3][4][5]

Die ursprüngliche Bedeutung der Masse als Maß für die Menge der Materie ist nicht mehr aufrechtzuerhalten.[3]

Die SI-Basiseinheit der Masse ist das Kilogramm mit dem Einheitenzeichen kg. Im Zusammenhang mit geschäftlichen Vorgängen ist in den meisten Industrieländern die Verwendung des Kilogramms als Masseneinheit rechtlich vorgeschrieben. Historisch waren zahllose Gewichtsmaße in Verwendung, die teilweise auch unspezifisch je nach Gegend, Zeit und Produkt Hohlmaßen, Packeinheiten, Traglasten und anderem entsprachen und daher schwer präzise anzugeben sind; siehe Alte Maße und Gewichte.

Für die Angabe der Masse von Atomen und Molekülen ist die atomare Masseneinheit (u oder amu) weit verbreitet.

In der Teilchenphysik ist eine Angabe in Elektronenvolt geteilt durch das Quadrat der Lichtgeschwindigkeit (MeV/c2) üblich.

Sprachgebrauch: Masse und Gewicht

[Bearbeiten | Quelltext bearbeiten]

Im allgemeinen Sprachgebrauch wird die Masse eines Objekts auch als Gewicht bezeichnet. Beispiele sind das Übergewicht, Leergewicht, Abtropfgewicht oder Gewichtsangaben in Kochrezepten. Dies trifft auch auf viele Gesetze und Verordnungen zu. Beispiele sind das Deutsche Mutterschutzgesetz[6] und das Schweizer Strassenverkehrsgesetz.[7]

Beim Gleichsetzen von Masse und Gewichtskraft kann der Eindruck entstehen, die Masse hänge von der vor Ort herrschenden Schwerkraft ab. So ist die folgende Aussage missverständlich: „Auf dem Mond wiegt ein 60 kg schwerer Mensch nur ungefähr 10 kg.“ Klarer ist: „Ein Mensch mit einem ‚Gewicht‘ auf der Erde von 60 kg wiegt auf dem Mond ungefähr so viel, wie ein Mensch mit einem ‚Gewicht‘ von 10 kg auf der Erde wiegt.“

Direkte Massenbestimmung

[Bearbeiten | Quelltext bearbeiten]

Die direkte Messung der Masse erfolgt am ruhenden Körper durch Vergleich mit einer Referenzmasse. Zwei Massen sind gleich, wenn sie im selben Schwerefeld die gleiche Gewichtskraft haben. Dies kann man z. B. mit einer Balkenwaage überprüfen. Dabei ist die Stärke des Schwerefeldes unerheblich, es muss nur von Null verschieden und an den Orten der beiden Körper gleich sein. Zur Festlegung der Masseneinheit siehe Kilogramm.

Dieses vereinfacht dargestellte Verfahren für die direkte Massenbestimmung ist nur im absoluten Vakuum korrekt: Bei Anwesenheit einer Atmosphäre muss der statische Auftrieb berücksichtigt werden, der auf die Volumina der beiden Körper wirkt. Sind die Volumen der beiden Körper gleich groß, wirken auf beide Körper die gleichen Auftriebskräfte, die sich somit für die Massebestimmung aufheben.

Indirekte Massenbestimmung

[Bearbeiten | Quelltext bearbeiten]

Die Masse kann auch über Kräfte und Beschleunigungen bestimmt werden. In der newtonschen Mechanik ist jede Bewegungsänderung proportional zu der Kraft, welche die Bewegungsänderung verursacht hat (s. u.: ). Masse ist somit die Proportionalitätskonstante zwischen Kraft und Beschleunigung:

Hierbei ist die durch eine Kraft verursachte Beschleunigung.

Die meisten Messgeräte zur Bestimmung von makroskopischen Massen (Waagen) beruhen darauf, dass bei einer bekannten Beschleunigung die entsprechende Kraft gemessen wird. Im Schwerefeld der Erde mit der Fallbeschleunigung wird die Gewichtskraft gemessen. Da sich die gemessene Größe (hier: die Kraft) von der Masse nur durch einen konstanten Faktor unterscheidet, kann die Anzeige des Messgerät auch in Einheiten der Masse ausgeführt werden. Dies wird beispielsweise bei Federwaagen verwendet, deren Messprinzip auch den meisten mechanischen Haushaltswaagen zugrunde liegt. Auch elektronische Waagen, die Piezoelemente oder Dehnungsmessstreifen oder eine elektromagnetische Kraftkompensation verwenden, messen eigentlich Kräfte, obwohl sie Massen anzeigen. Je nach Genauigkeitsanforderung an das Messergebnis muss die Abhängigkeit der Fallbeschleunigung vom geografischen Ort durch eine entsprechende Justierung berichtigt werden oder kann vernachlässigt werden.

Umgekehrt kann man auch die Masse bestimmen, indem man die Beschleunigung bei bekannter Kraft misst. Darauf beruhen verschiedene Bauformen von Massenspektrometern. So werden beispielsweise geladene Teilchen mit gegebener Geschwindigkeit im Magnetfeld eines Sektorfeld-Massenspektrometers umso stärker abgelenkt, je geringer ihre Masse ist. Aus dem Kurvenradius der Bahnkurve kann somit auf die Masse rückgeschlossen werden. Beim Flugzeitmassenspektrometer hingegen werden die geladenen Teilchen in einem elektrischen Feld beschleunigt. Ihre Endgeschwindigkeit ist dann umso größer, je geringer ihre träge Masse ist.

Die Masse von Himmelskörpern kann auch durch ihre Gravitationswirkung bestimmt werden. Man kann beispielsweise die Masse der Sonne mithilfe des Gravitationsgesetzes aus den Bahndaten der Planeten berechnen, weil deren Zentralbeschleunigung ausschließlich von der Masse und Entfernung des Zentralkörpers abhängt.

Bei homogenen Körpern bekannter Dichte kann die Masse auch durch Volumenmessung bestimmt werden. Am einfachsten gelingt dies bei Flüssigkeiten und Schüttgütern (z. B. Mehl, Zucker, Reis, …) durch geeichte Messbecher.

Verwandte Größen

[Bearbeiten | Quelltext bearbeiten]

Dichte und Stoffmenge

[Bearbeiten | Quelltext bearbeiten]

In der newtonschen Mechanik ist die Masse eine extensive Größe. Das bedeutet, dass zwei Körper der Masse insgesamt die doppelte Masse haben. Intensive Größen ändern sich bei der Systemverdopplung nicht. Mit der Masse verwandt sind folgende intensive Größen:

  • Bezieht man die Masse auf das Volumen , erhält man die Dichte mit der SI-Einheit
Man kann also die Masse eines homogenen Körpers berechnen, wenn sein Volumen und seine Dichte bekannt sind.
  • Bezieht man die Masse auf die Stoffmenge , erhält man die molare Masse mit der SI-Einheit

Positive und negative effektive Masse

[Bearbeiten | Quelltext bearbeiten]

Die vor allem in der Festkörperphysik gebräuchliche effektive Masse von Teilchen ist eine Größe, die in gewisser Hinsicht zu ihrer Masse analog ist. Sie wird aus der Dispersionsrelation der Teilchen gewonnen, indem diese in einem bestimmten Bereich durch die nicht-relativistische Gleichung angenähert wird. Die effektive Masse kann im Gegensatz zur echten Masse vom Impuls abhängen und in bestimmten Wertebereichen sogar negativ werden.

Klassische Physik

[Bearbeiten | Quelltext bearbeiten]

In der klassischen Physik ist die Masse eine Erhaltungsgröße. Das bedeutet, dass sich die Masse in einem geschlossenen System nicht ändert. Wenn beispielsweise ein Stück Holz verbrennt, dann haben nach der klassischen Physik die entstehenden Verbrennungsabgase und die Asche nach der Verbrennung exakt die gleiche Masse wie das Holzstück und der verbrauchte Luftsauerstoff vor der Verbrennung. Dies wird als selbstverständliche empirische Tatsache angenommen, ohne dafür eine Begründung zu geben.

Ebenso wenig erklärt die klassische Mechanik die Äquivalenz von schwerer und träger Masse.

Als schwere Masse bezeichnet man sowohl die Quelle der Gravitationskraft als auch die „Gravitationsladung“. Die von der Masse auf die Masse ausgeübte Kraft ist

wobei die Massen punkt- oder kugelförmig gedacht sind und der Vektor von nach ist. ist die Gravitationskonstante, eine Naturkonstante.

Die träge Masse ist in der newtonschen Mechanik das, was sich einer Beschleunigung widersetzt. Um den Bewegungszustand eines Körpers zu ändern, muss man daher eine Kraft aufwenden. Je größer diese Kraft ist, umso stärker ändert sich der Impuls. Dies wird durch das 2. newtonsche Axiom, das Aktionsprinzip, ausgedrückt:

Daraus ergibt sich mit dem Impuls für Körper mit konstanter Masse die Bewegungsgleichung zu „Kraft ist gleich Masse mal Beschleunigung“, der „Grundgleichung der Mechanik“:

Hier ist die träge Masse also der Proportionalitätsfaktor zwischen Kraft und Beschleunigung.

Spezielle Relativitätstheorie

[Bearbeiten | Quelltext bearbeiten]

Definition der Masse als Lorentzinvariante

[Bearbeiten | Quelltext bearbeiten]

In der speziellen Relativitätstheorie wird die Masse so definiert, dass sie eine lorentzinvariante Größe ist. Dazu geht man von der Energie-Impuls-Relation

aus und stellt sie nach der Masse um:

Darin ist die Energie und der Impuls des Systems.

Damit ist die so definierte Größe die durch die Konstante dividierte Norm des relativistischen Vierervektors (siehe Energie-Impuls-Vektor), folglich eine Lorentz-Invariante. Im vierdimensionalen Raum aller denkbaren Energie- und Impulswerte liegen die physikalisch möglichen Energien und Impulse eines Teilchens auf einer dreidimensionalen Fläche, der sogenannten Massenschale. Sie ist ein zweischaliges Hyperboloid. Im zweidimensionalen Raum von Energie und Impulsbetrag ist die Massenschale eine Hyperbel.

Diese Größe stimmt mit der im Gültigkeitsbereich der klassischen Mechanik definierten Masse überein, d. h. für Geschwindigkeiten, die klein gegenüber der Lichtgeschwindigkeit sind. Dies geht aus der Beziehung zwischen Impuls und Geschwindigkeit hervor (→ siehe Relativistischer Impuls):

Der Lorentzfaktor
.

Der Faktor

heißt Lorentzfaktor.

In der speziellen Relativitätstheorie ist der Impuls also nicht wie bei Newton das Produkt von Masse und Geschwindigkeit . Die newtonsche Formel gilt aber als Näherung im nichtrelativistischen Grenzfall .

Äquivalenz von Masse und Energie

[Bearbeiten | Quelltext bearbeiten]

Die Ruheenergie ist die Energie eines Körpers oder Systems in seinem Ruhesystem, d. h. in dem Bezugssystem, in dem sein Gesamtimpuls null ist. Die Ruheenergie ist eine Eigenschaft des Systems, die nicht von seinem Bewegungszustand abhängt. Aus der oben angegebenen Energie-Impuls-Relation folgt die berühmte einsteinsche Gleichung:

Damit ist die Ruheenergie durch die Masse des Systems eindeutig bestimmt und umgekehrt. Beide Größen unterscheiden sich nur durch den konstanten Faktor und sind daher äquivalent, siehe Äquivalenz von Masse und Energie.

Die Ruheenergie von Teilchen wirkt sich insbesondere bei Erzeugungs- (z. B. Paarbildung) und Vernichtungsvorgängen (z. B. Annihilation) aus. Die Ruheenergie des Elektrons beträgt 0,511 MeV, diejenige eines Protons 938 MeV.

Von der Ruheenergie eines Photons zu sprechen, ist ein Widerspruch in sich, denn es gibt kein Bezugssystem, in dem das Photon keinen Impuls hat. Richtig ist stattdessen für das Photon die Aussage sowie .

Masse als relative Größe

[Bearbeiten | Quelltext bearbeiten]

Mit der oben genannten Definition ist „Masse“ eine vom Beobachter unabhängige Eigenschaft eines Körpers, also unabhängig von dessen Relativgeschwindigkeit zum Beobachter. Es ist nicht möglich, allein durch Beschleunigung einem System Masse hinzuzufügen.

Vergleich der Konzepte
Masse ist… … invariant … relativ
„Masse“
„Ruhemasse“
Impuls
Energie
Äquivalenz

Relativistische Massenzunahme

[Bearbeiten | Quelltext bearbeiten]

Es gibt jedoch eine alternative Definition von „Masse“, die aus der Zeit der Einführung der Relativitätstheorie stammt und u. a. von Lorentz eingeführt wurde.[8] Es handelt sich um die sogenannte relativistische Masse (im Folgenden zur Verdeutlichung als geschrieben), die mit der Geschwindigkeit gemäß

anwächst. Hierbei ist die Ruhemasse – die Masse, die der Körper hat, wenn er in Ruhe ist.

Vorteile des Konzepts

[Bearbeiten | Quelltext bearbeiten]

Mit dieser Definition kann man für die Impuls-Geschwindigkeit-Beziehung weiterhin die newtonsche Formel verwenden, denn im bewegten System gilt:

.

Für die gesamte Energie einschließlich der (vom Bezugssystem abhängigen) kinetischen Energie gilt:

Man kann dann didaktisch recht einfach argumentieren: „Die Trägheit eines Objekts nimmt mit wachsender Geschwindigkeit zu, weil die Masse zunimmt.“ und: „Lichtgeschwindigkeit ist für massebehaftete Objekte unerreichbar, weil dann die Masse und damit die erforderliche Energie unendlich groß sein müssten.“[9] Die Rückführung dieser Phänomene auf die Raum-Zeit-Geometrie (Viererimpuls) ist hierfür nicht nötig.

Nachteile des Konzepts

[Bearbeiten | Quelltext bearbeiten]

Mit der relativistischen Masse kann man die newtonsche Beziehung zwar „retten“, ins zweite newtonsche Gesetz eingesetzt, bringt die relativistische Masse jedoch falsche Ergebnisse hervor. Im Allgemeinen ist

.

Dieser Mangel ergibt sich aus der Definition der Kraft als die zeitliche Änderung des Impulses,[10] in der speziellen Relativitätstheorie also:

.

Dies lässt sich umstellen zu

Man sieht, dass die Richtung der Beschleunigung nur dann parallel zur Kraft ist, wenn diese genau senkrecht zur Geschwindigkeit (transversal) oder parallel dazu (longitudinal) einwirkt. Nur im Fall transversal einwirkender Kraft (Beispiel: Zyklotron) ist die Beziehung korrekt. Abgesehen von diesen Spezialfällen hat die Beschleunigung zusätzlich einen Anteil, der parallel oder antiparallel zur Geschwindigkeit ist und mit zunehmender Geschwindigkeit anwächst. Zudem ist die Beschleunigung bei longitudinaler Krafteinwirkung um einen Faktor geringer als bei transversaler. Die unterschiedliche Trägheit hatte man bei der Entwicklung der Relativitätstheorie anfangs mit den Begriffen der „longitudinalen Masse“ und „transversalen Masse“ zu erfassen versucht,[8] die aber heute so nicht mehr verwendet werden.[11] Bereits 1921 gab Wolfgang Pauli in seinem Werk „Relativitätstheorie“ die longitudinale Masse auf, behielt jedoch die transversale Masse als „Masse“ (im Sinne von „relativistischer Masse“).[10]

Die scheinbar didaktisch einfache Erklärung „Die Massenzunahme entspricht der Energie, die man zur Beschleunigung aufgewendet hat.“ ist unverträglich mit dem Relativitätsprinzip: Aus Sicht eines schnellen Raumschiffs, das an der Erde vorbeifliegt, hätte die Masse der gesamten Erde um den Faktor zugenommen.

Die relativistische Masse kann zwar erklären, warum ein Körper mit Masse die Lichtgeschwindigkeit nicht erreichen kann, versagt aber bei der Erklärung des relativistischen Additionstheorems für Geschwindigkeiten.[11]

Frühere und heutige Verwendung des Konzepts

[Bearbeiten | Quelltext bearbeiten]

Die „relativistische Massenzunahme“ unterscheidet sich grundsätzlich von der relativistischen Längenkontraktion und Zeitdilatation. Länge und Zeit lassen sich mit Maßstäben und Uhren direkt und objektiv messen, Massenänderungen hingegen können nur geschlussfolgert werden und sind eine Frage der Definition von „Masse“. Daher kann die Frage, welches Konzept „richtig“ ist, nicht experimentell entschieden werden.

In der ersten Hälfte des 20. Jahrhunderts existierten in der Fachwelt beide Begrifflichkeiten nebeneinander. Im weiteren Verlauf setzte sich aber mehr und mehr die Konvention durch, dass „Masse“ eine vom Bezugssystem unabhängige Eigenschaft des Teilchens oder Systems bezeichnet.[10][5] Einstein selbst begründete die Wortwahl im Jahre 1948:

„Es ist nicht gut, von der Masse eines bewegten Körpers zu sprechen, da für keine klare Definition gegeben werden kann. Man beschränkt sich besser auf die „Ruhe-Masse“ . Daneben kann man ja den Ausdruck für momentum[12] und Energie geben, wenn man das Trägheitsverhalten rasch bewegter Körper angeben will.“

Albert Einstein: Brief an Lincoln Barnett[10]

In der Fachsprache wird heute meist diese moderne Begrifflichkeit verwendet. Um dies zu verdeutlichen, spricht man manchmal auch von invarianter Masse, einem Begriff aus der Teilchenphysik, der der Schwerpunktsenergie eines Systems mehrerer Teilchen entspricht (s. u.).

Die eher historische Begrifflichkeit von „relativistischer Massenzunahme“ und „Ruhemasse“ ist aber in populärwissenschaftlicher Literatur[9] und in Schulbüchern[13][14][15] durchaus noch präsent. Es gibt auch moderne Lehrbücher der theoretischen Physik, die den Begriff „Masse“ in diesem Sinne verwenden.[16][17] Dabei wird meist einfach das Symbol verwendet, ohne „*“ oder einen anderen Zusatz. Dies spiegelt sich auch in der populären Schreibweise der Masse-Energie-Äquivalenz als wider; sie lautet in moderner Terminologie , mit als Ruheenergie und als Masse in moderner Definition.

Eine Untersuchung aus dem Jahr 2008 ergab, dass in Publikationen aller Art das Konzept der „relativistischen Masse“ in der Mehrheit war, es aber seit ungefähr den 1970er Jahren einen deutlichen Trend hin zur Masse als invarianter Eigenschaft gibt.[11]

Auch heute gibt es keinen Konsens. Auf der einen Seite gibt es vehemente Befürworter des Konzeptes der relativistischen Masse. Eckhard Rebhan schreibt z. B. über die Masse:[17] „Ihre universelle und auch von Einstein so vorgesehene Gültigkeit erlangt diese erst dadurch, daß in ihr für m auch bewegte Massen zugelassen werden“. Auf der anderen Seite schreibt David Griffiths[18] „Da E und mrel sich nur um einen konstanten Faktor (c2) unterscheiden, besteht kein Vorteil darin, beide Termini am Leben zu erhalten, und mrel erfährt das Schicksal der 10-Euro Münze: Gibt’s, kann man nehmen, aber der Sammlerwert ist höher, als der praktische Nutzen.“

Mehrteilchensysteme

[Bearbeiten | Quelltext bearbeiten]

Für ein System aus mehreren nicht wechselwirkenden Teilchen sind die Gesamtenergie und der Gesamtimpuls die Summen der jeweiligen Größen aller Teilchen. Entsprechend ist die Ruheenegie des Systems

.

Die Summe der Massen der Einzelteilchen

ist im Allgemeinen nicht gleich der Masse des Systems. Der Unterschied ergibt sich daraus, dass die Gesamtmasse nicht nur die Ruheenergien der einzelnen Teilchen umfasst, sondern auch deren Relativbewegung gegenüber dem Schwerpunkt. Zur Erläuterung stelle man sich ein Gefäß vor, das ein Gas enthält. Fügt man dem Gas Energie zu, indem man es komprimiert oder erhitzt, so hat der Gefäßinhalt eine größere Schwerpunktsenergie und damit eine größere Masse. Im Detail betrachtet verändert sich die Masse der einzelnen Gasmoleküle dabei nicht, wohl aber ihre kinetische Energie relativ zum gemeinsamen Schwerpunkt.

In der experimentellen Teilchenphysik wird die Ruheenergie des Systems als Schwerpunktsenergie bezeichnet und die Masse als invariante Masse. Sie gibt den Energiebetrag an, der für die Erzeugung neuer Teilchen bei einer Teilchenkollision zur Verfügung steht.

Gibt ein geschlossenes System Energie über die Systemgrenzen z. B. in Form von Strahlung ab, so verringert sich der Energieinhalt des Systems und damit seine Masse. In diesem Sinne ist die Masse in der modernen Physik keine Erhaltungsgröße mehr, wenngleich sich dies in alltäglichen Situationen kaum bemerkbar macht.

Bei Kernreaktionen werden jedoch Energiemengen umgesetzt, die gegenüber der Ruheenergie der Kernbausteine nicht mehr zu vernachlässigen sind. Die Bindungsenergie führt dazu, dass ein Atomkern eine wägbar geringere Masse hat als die Summe seiner Bausteine. Die Differenz wird Massendefekt genannt. Die Bindungsenergie liegt bei den meisten Atomkernen zwischen 7 und 9 MeV pro Nukleon und bewirkt dadurch einen Massendefekt zwischen 0,7 und 0,9 %. Sehr leichte Atomkerne (2H, 3H, 3He, Li, Be, B) weisen mit 1 bis 6 MeV geringere Bindungsenergien pro Nukleon und mit 0,1 und 0,6 % geringere Massendefekte auf.

Die Bindungsenergie chemischer Bindungen liegt mit typischen 2 bis 7 eV pro Bindung (pro Nukleon wäre sie entsprechend dem Molekülgewicht noch einmal deutlich kleiner) um 7 bis 9 Größenordnungen darunter. Bei einigen Reaktionen liegen die Werte im Bereich der Nachweisgrenze aktueller Massekomparatoren (1…2e-10). Der größte chemische Massendefekt ist 2.25e-9 bei der Bindung . Aber bislang konnte noch kein chemischer Massendefekt durch Wägung nachgewiesen werden.

Da bei chemischer Bindung der Massendefekt so klein ist, dass er bei keiner Wägung zu bemerken wäre, konnte Ende des 18. Jahrhunderts von Antoine de Lavoisier der Massenerhaltungssatz aufgestellt werden. Diese Erkenntnis trug maßgeblich zur Abkehr von der Alchemie und Phlogistontheorie bei und wurde damit eine wichtige Grundlage der auf den Begriff der chemischen Elemente gestützten Chemie.

Definition der Masse mithilfe der Impulserhaltung

[Bearbeiten | Quelltext bearbeiten]

Die Herleitung des Massenbegriffs aus der Impulserhaltung beleuchtet sowohl Unterschiede als auch Ähnlichkeiten zwischen der klassischen und der relativistischen Physik. Als Ergebnis der Herleitung sieht man: Wenn jedem Körper einzeln eine zu seiner Geschwindigkeit parallele Größe zugeordnet werden kann, so dass die Summe dieser beiden Größen bei einem inelastischen Stoß konstant bleibt, dann muss es zu jedem Körper einen vom Bezugssystem unabhängigen Wert geben, mit dem (klassisch) bzw. (relativistisch) gilt. Man bezeichnet als den Impuls und als die Masse des Körpers. Hiermit ist eine eigenständige Definition der Masse gegeben, die allein auf der Impulserhaltung beruht.[3] Weiter ergibt sich, dass außer der Summe der Impulse in der klassischen Physik auch die Summe der Massen erhalten bleibt, in der relativistischen Physik aber die Summe der Größen , die (bis auf den universellen Faktor ) die Energien der einzelnen Körper angibt.

Für diese Herleitung betrachtet man den vollkommen unelastischen Stoß, d. h. zwei Körper (), die sich aufeinander zubewegen und zu einem einzigen () vereinigen. Die Impulse () sind jeweils parallel zur Geschwindigkeit (), mit zunächst unbekannten Faktoren (). Impulserhaltung bedeutet:

Das ergibt die Gleichung:

Die Faktoren können in noch unbekannter Weise auch von der jeweiligen Geschwindigkeit abhängen. Sicher sind sie aber gleich in dem Fall, dass beide Körper vollkommen gleich beschaffen sind: . In diesem Fall gilt, wenn der Stoß in dem Ruhesystem () des im Stoß gebildeten Körpers betrachtet wird:

Daher ergibt sich, dass in diesem Bezugssystem die Geschwindigkeiten der beiden gleichen stoßenden Körper entgegengesetzt gleich sein müssen:

Die beiden Geschwindigkeiten sind aber nicht entgegengesetzt gleich, wenn derselbe Stoß in einem mit der Geschwindigkeit bewegten Bezugssystem betrachtet wird. Darin bewegt sich nach dem Stoß der Körper mit Geschwindigkeit . Die Gleichung der Impulserhaltung lautet nun:

Darin sind die Geschwindigkeiten der beiden stoßenden Körper im bewegten Bezugssystem.

Betrachtung mit klassischer Physik

Nach der in der klassischen Physik gültigen Galilei-Transformation gilt die einfache Addition der Geschwindigkeiten

und folglich

Diese Gleichung zwischen den drei Geschwindigkeiten ist mit der obigen Gleichung zwischen den drei Impulsen nur dann verträglich, wenn

sowie

Denn mit zwei verschiedenen Faktoren kann sich kein zu paralleler Vektor ergeben. Aus der ersten Gleichung der vorigen Zeile folgt nun, dass der Faktor für alle Geschwindigkeiten gleich ist. Er ist identisch mit der aus der älteren Definition bekannten Masse. Damit gilt allgemein (mit den üblichen Symbolen):

Mit Kenntnis dieser Gleichung kann die Überlegung auf den Fall verschiedener Massen verallgemeinert werden. Einsetzen in die Gleichung der Impulserhaltung führt auf das Ergebnis:

Demnach ist in der klassischen Mechanik die Masse eine additive Erhaltungsgröße.

Betrachtung mit relativistischer Physik

In diesem Fall muss man statt der Galilei-Transformation die Lorentz-Transformation zugrunde legen. Dann gilt statt der einfachen Addition der Geschwindigkeitsvektoren das relativistische Additionstheorem. Daraus folgt (nach längerer Rechnung): Nicht ist parallel zu , sondern der Vektor . Multipliziert mit einer Konstante, die hier im Vorgriff schon mit bezeichnet wird, muss sich der Gesamtimpuls ergeben. Folglich sind die beiden Impulse der stoßenden Körper durch

gegeben. Dies geht für kleine Geschwindigkeiten, wo gesetzt werden kann, in die nichtrelativistische Formel über, womit der konstante Faktor sich tatsächlich als die Masse in relativistischer Definition erweist. Die Gleichung der Impulserhaltung lautet nun

und ermöglicht damit wieder die Bestimmung von . Es zeigt sich, dass die Masse in der relativistischen Mechanik keine additive Erhaltungsgröße ist, denn es gilt:

Nach dieser Gleichung ist vielmehr die nach der relativistischen Formel berechnete Energie eine additive Erhaltungsgröße.

Allgemeine Relativitätstheorie

[Bearbeiten | Quelltext bearbeiten]

In der allgemeinen Relativitätstheorie wird der freie Fall von Körpern im Gravitationsfeld als kräftefrei verstanden. Eventuell wirkende Kräfte würden bewirken, dass die Bahnkurven vom freien Fall abweichen. Wird der Körper vom freien Fall abgehalten, ist eine Kraft nötig, deren Größe zur trägen Masse des Körpers proportional ist.

Die Weltlinien frei fallender Teilchen sind die Geraden (genauer: Geodäten) der Raumzeit. Sie sind vollständig durch den anfänglichen Ort und die anfängliche Geschwindigkeit festgelegt und hängen nicht von anderen Eigenschaften wie Größe oder Masse des frei fallenden Teilchens ab (Äquivalenzprinzip). Da die Raumzeit gekrümmt ist, ergibt die Projektion der Geodäten auf den dreidimensionalen Ortsraum normalerweise keine Geraden, sondern beispielsweise Wurfparabeln.

Quelle der Gravitation ist in der Grundgleichung der Allgemeinen Relativitätstheorie der Energie-Impuls-Tensor, der sich aus Energiedichte, Impulsdichten, Energieströmen und Impulsströmen zusammensetzt. Da die Energie ruhender Körper durch ihre Masse bestimmt ist, bewirkt allein deren Masse die Gravitation. Kann man die Bewegung der gravitationserzeugenden Körper vernachlässigen und ist die Geschwindigkeit der frei fallenden Teilchen klein gegen die Lichtgeschwindigkeit, so wirkt sich die Masse der gravitationserzeugenden Körper wie in Newtons Gravitationstheorie aus. Für Licht als Testteilchen trifft diese Einschränkung nicht zu: Es wird an der Sonne doppelt so stark abgelenkt, wie nach Newton zu erwarten wäre.

Ursprung der Massen der Elementarteilchen

[Bearbeiten | Quelltext bearbeiten]

Im Standardmodell der Elementarteilchenphysik wird der Ursprung der Massen der Elementarteilchen durch den Higgs-Mechanismus erklärt. Durch Wechselwirkung mit dem Higgs-Feld, das indirekt durch die Beobachtung des Higgs-Bosons nachgewiesen wird,[19] erhalten sie eine Masse, da das Higgs-Feld auch im Vakuum nicht verschwindet. Nur die Masse des Higgs-Bosons selbst wird hierdurch nicht erklärt. In supersymmetrischen Theorien könnte ein ähnlicher Mechanismus auch durch andere Teilchen (Goldstinos) vermittelt werden (siehe auch Goldstonetheorem und Gravitino).[20]

Die Massen der Baryonen, zu denen auch Proton und Neutron gehören, sind allerdings ca. 100-mal größer als die Massen der drei Quarks, aus denen sie bestehen. Die Baryonenmassen werden dynamisch erklärt (siehe auch: Gebundener Zustand). Ansätze zur Berechnung liefern Gitterrechnungen in der Quantenchromodynamik (QCD). Halb anschaulich kann man mit der geringen Ausdehnung der Baryonen von etwa 10−15 m argumentieren: Wenn sich die Quarks im Baryon auf so kleinem Raum konzentrieren, haben sie eine so kurze De-Broglie-Wellenlänge, dass ihre kinetische Energie nach Einsteins Formel erhebliche Masse bedeutet. Drei solcher Konstituenten-Quarks ergeben dann tatsächlich etwa die Masse des Protons oder Neutrons.

Die Baryonen machen den größten Teil der Masse sichtbarer Materie aus. Es wird vermutet, dass schwach wechselwirkende massereiche Teilchen (englisch weakly interacting massive particles, abgekürzt WIMP) wie etwa das hypothetische leichteste supersymmetrische Teilchen (englisch lightest supersymmetric particle, abgekürzt LSP) die nicht sichtbare Dunkle Materie aufbauen könnten.

  • Max Jammer: Der Begriff der Masse in der Physik. Wissenschaftliche Buchgesellschaft, Darmstadt 1964 (Concepts of Mass in Classical and Modern Physics, Harvard 1961, deutsch).
  • Gordon Kane: Das Geheimnis der Masse. In: Spektrum der Wissenschaft. Nr. 2. Spektrum der Wissenschaft Verlag, 2006, ISSN 0170-2971, S. 36–43.
Commons: Masse – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Isaac Newton: Philosophiae Naturalis Principia Mathematica. Vorrede zur 3. Auflage, Erklärungen, Deutsche Übersetzung.
  2. Lev B. Okun (2006): The Concept of Mass in the Einstein Year. Abgerufen am 28. Mai 2015.
  3. a b c d Hermann Weyl: Was ist Materie? (Kap 2.). In: Die Naturwissenschaften. Band 12, Nr. 29, 1924, S. 585–593.
  4. Peter Mittelstaedt: Klassische Mechanik. BI Wissenschaftsverlag, Mannheim u. a. 1994.
  5. a b Cornelius C. Noack: Was ist eigentlich eine ‚Ruhemasse‘? (Memento vom 2. Oktober 2014 im Internet Archive) (PDF; 279 kB), abgerufen am 28. Mai 2015.
  6. Etwa § 11 Abs. 5 Nr. 1 MuSchG: „Lasten von mehr als fünf Kilogramm Gewicht“
  7. Etwa Art. 9: „Das höchstzulässige Gewicht für Fahrzeuge oder Fahrzeugkombinationen beträgt 40 t“, vgl. Strassenverkehrsgesetz (SVG): Artikel 9. In: swissrights.ch. Abgerufen am 6. August 2023.
  8. a b H.A. Lorentz, Electromagnetic phenomena in a system moving with any velocity smaller than that of light, in: KNAW, Proceedings, 6, 1903–1904, Amsterdam, 1904, pp. 809–831
  9. a b Stephen Hawking: A Brief History of Time (Bantam, New York, 1988): „Because of the equivalence of energy and mass, the energy which an object has due to its motion will add to its mass. In other words, it will make it harder to increase its speed.“ – Eine kurze Geschichte der Zeit (Rowohlt, 1988, ISBN 3-498-02884-7): „Infolge der Äquivalenz von Energie und Masse muß die Energie, die ein Objekt aufgrund seiner Bewegung besitzt, zu seiner Masse hinzugerechnet werden. Mit anderen Worten: Sie erschwert es ihm, seine Geschwindigkeit zu steigern.“
  10. a b c d Lev B. Okun: The Concept of Mass. In: Physics Today. 43, 32 (1989). doi:10.1063/1.881171 PDF, abgerufen am 22. Dezember 2016.
  11. a b c Gary Oas, On the abuse and use of relativistic mass, Education Program for Gifted Youth, Stanford University (2008) doi:10.48550/arXiv.physics/0504110
  12. Mit „momentum“ meint Einstein den Impuls des Körpers.
  13. Kniesel et al.: Physik Oberstufe - Quanten-, Atom- und Kernphysik, Relativitätstheorie, Astrophysik. Klett 2021, ISBN 978-3-12-773007-4
  14. Martin Apolin: Big Bang 2. Ernst Klett Verlag 2019, ISBN 978-3-12-767004-2
  15. Grehn, Joachim; Krause, Joachim: Metzler Physik 11, Ausgabe Bayern. Westermann 2009, ISBN 978-3-507-10705-2
  16. Ray d’Inverno: Einführung in die Relativitätstheorie. Dt. Ausgabe, hrsg. von Gerhard Schäfer, VCH-Verlagsgesellschaft (1995)
  17. a b Eckhard Rebhahn: Theoretische Physik: Relativitätstheorie und Kosmologie, Spektrum Akademischer Verlag Berlin Heidelberg (2012)
  18. David J. Griffiths: Elektrodynamik – Eine Einführung. 3., aktualisierte Ausgabe, Dt. Ausgabe (2011) (Fußnote auf Seite 632)
  19. CERN experiments observe particle consistent with long-sought Higgs boson. In: Pressemitteilung von CERN. 4. Juli 2012, abgerufen am 4. Juli 2012 (englisch).
  20. DELPHI Collaboration: P. Abreu u. a.: Search for the sgoldstino at √s from 189 to 202 GeV. In: CERN-EP/2000-110. 16. August 2000 (englisch, archives-ouvertes.fr [PDF]).