Huber-Paar
Zur Navigation springen
Zur Suche springen
Ein Huber-Paar (auch affinoider Ring) ist ein spezielles Paar topologischer Ringe. Huber-Paare sind der Grundbaustein der von Roland Huber eingeführten adischen Räume, so wie kommutative Ringe die Grundbausteine von Schemata sind.
Definition
[Bearbeiten | Quelltext bearbeiten]Ein Huber-Paar besteht aus einem Huber-Ring und einem offenen und in ganzabgeschlossenen Teilring , der im Ring potenz-beschränkter Elemente enthalten ist.[1]
Ein Huber-Paar heißt Tate (bzw. vollständig), falls ein Tate-Ring (bzw. vollständiger Ring) ist.
Beispiele
[Bearbeiten | Quelltext bearbeiten]- mit der -adischen Topologie ist ein vollständiges Tate Huber-Paar. Es ist eine topologisch nilpotente Einheit, denn in der -adischen Topologie.
- Sei ein endlicher Körper. Das Paar mit der -adischen Topologie ist ein vollständiges Tate Huber-Paar. Es ist ist eine topologisch nilpotente Einheit, denn in der -adischen Topologie.
- Ist allgemeiner ein lokaler Körper mit Ganzheitsring und uniformisierendem Element , so ist ein vollständiges Tate Huber-Paar mit Definitionspaar .
Weblinks
[Bearbeiten | Quelltext bearbeiten]- Sophie Morel: Adic spaces.
Einzelnachweise
[Bearbeiten | Quelltext bearbeiten]- ↑ Sophie Morel: Adic spaces. (PDF; 1,0 MB) 22. April 2019, abgerufen am 30. Dezember 2020, Def. III.1.7.