Hyperganze Zahl

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

In der Nichtstandardanalysis ist eine hyperganze Zahl eine hyperreelle Zahl, die ihrem ganzzahligen Anteil gleicht. Eine hyperganze Zahl kann sowohl endlich als auch unendlich sein.

Die Gaußklammer kann mit dem Transferprinzip der Nichtstandardanalysis[1] verallgemeinert werden. Es existiert eine Erweiterung für alle hyperreelle . Eine hyperreelle Zahl ist eine hyperganze Zahl, wenn .

Die Menge aller hyperganzen Zahlen ist eine interne Teilmenge der hyperreellen Zahlen . Die Menge der endlichen hyperganzen Zahlen ist keine interne Teilmenge. Elemente von heißen nichtstandardisierte, unbegrenzte oder unendliche hyperganze Zahlen.

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. G. L. Cherlin: Model Theoretic Algebra. In: Journal of Symbolic Logic. Band 41, Nr. 2, Juni 1976, ISSN 0022-4812, S. 537–545, doi:10.1017/s0022481200051616.