Lemma von Jones

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Das Lemma von Jones ist ein Resultat aus dem mathematischen Teilgebiet der Topologie, welches auf den US-amerikanischen Mathematiker F. Burton Jones (1910–1999) zurückgeht.[1][2][3] Es liefert ein Kriterium, mit dem sich zeigen lässt, dass ein topologischer Raum kein normaler Raum ist. Die Frage der Normalität eines topologischen Raumes ist wegen des Zusammenhangs mit dem Metrisationsproblem[4][5][6][7][8] bedeutsam, denn ein metrischer Raum ist stets normal.[9]

Formulierung des Resultats

[Bearbeiten | Quelltext bearbeiten]

Gegeben seien ein topologischer Raum und darin eingelagert zwei Unterräume und , für welche die folgenden Nebenbedingungen erfüllt seien:

  • sei ein abgeschlossener Unterraum von und bzgl. der Unterraumtopologie diskret.
  • liege dicht in .
  • Es sei .

Dann ist nicht normal.

Beispiel: Der Niemytzki-Raum

[Bearbeiten | Quelltext bearbeiten]

Der Niemytzki-Raum , also die abgeschlossene obere Halbebene , versehen mit der Niemytzki-Topologie, erfüllt die Voraussetzungen des Lemmas von Jones mit und .[10][11]

Artikel

  • F. Burton Jones: Remarks on the Normal Moore Space Metrization Problem. In: R. H. Bing, Ralph J. Bean (Hrsg.): Topology Seminar Wisconsin, 1965 (= Annals of Mathematics Studies. Bd. 60, ISSN 0066-2313). Princeton University Press, Princeton NJ 1966, S. 115–119.

Monographien

  • James Dugundji: Topology. 8th printing. Allyn and Bacon, Boston MA 1973.
  • Lutz Führer: Allgemeine Topologie mit Anwendungen. Vieweg, Braunschweig 1977, ISBN 3-528-03059-3.
  • Gregory Naber: Set-theoretic Topology. With Emphasis on Problems from the Theory of Coverings, Zero Dimensionality and Cardinal Invariants. University Microfilms International, Ann Arbor MI 1977, ISBN 0-8357-0257-X.
  • Jun-iti Nagata: Modern General Topology (= North Holland Mathematical Library. Band 33). 2. überarbeitete Auflage. North-Holland Publishing, Amsterdam / New York / Oxford 1985, ISBN 0-444-87655-3 (MR0831659).
  • Horst Schubert: Topologie. Eine Einführung. 4. Auflage. B. G. Teubner, Stuttgart 1975, ISBN 3-519-12200-6.
  • Stephen Willard: General Topology. Addison-Wesley, Reading MA u. a. 1970.

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Jones: Remarks on the Normal Moore Space Metrization Problem. In: Bing, Bean (Hrsg.): Topology Seminar Wisconsin, 1965. 1966, S. 115–119, hier S. 117.
  2. Dugundji: Topology. 1973, S. 144.
  3. Willard: General Topology. 1970, S. 100.
  4. Dugundji: Topology. 1973, S. 193.
  5. Führer: Allgemeine Topologie mit Anwendungen. 1977, S. 127 ff.
  6. Nagata: Modern General Topology. 1985, S. 244 ff.
  7. Schubert: Topologie. 1975, S. 95 ff.
  8. Willard: General Topology. 1970, S. 161.
  9. Schubert: Topologie. 1975, S. 78.
  10. Naber: Set-theoretic Topology. 1977, S. 109–110.
  11. Nagata: Modern General Topology. 1985, S. 83–84.