Logarithmisches Konvergenzkriterium

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Das logarithmische Konvergenzkriterium ist ein Konvergenzkriterium der Analysis, einem der Teilgebiete der Mathematik. Es gibt hinreichende Bedingungen sowohl für die Konvergenz als auch für die Divergenz von Reihen, deren Glieder eine Folge positiver reeller Zahlen bilden.[1]

Formulierung des Kriterium

[Bearbeiten | Quelltext bearbeiten]

Das Kriterium besagt folgendes:

Sei eine Zahlenfolge in und sei dabei jede Zahl    .

Es sei vorausgesetzt, dass die dazu gebildete Zahlenfolge   mit

eigentlich oder uneigentlich konvergiere und dabei den Grenzwert

habe.

Dann gilt:

(I) Im Falle     ist die zugehörige Reihe konvergent:
  .
(II) Im Falle     ist die zugehörige Reihe divergent:
  .

Hinweise zum Beweis

[Bearbeiten | Quelltext bearbeiten]

Der Beweis beruht auf dem Majoranten- und Minorantenkriterium und darauf, dass die Reihe

für     konvergiert und für     divergiert.

Dabei kommt für den Konvergenzfall das Integralkriterium zum Tragen sowie die Tatsache, dass dann

ist.[2]

  • Für
hat man
 ,
was nach dem Kriterium einen Beweis für die Konvergenz der bekannten Reihe
darstellt.
  • Für
hat man
 ,
womit das Kriterium die Divergenz der harmonischen Reihe beweist.

Über den „Zweifelsfall“     sind keine Aussagen hinsichtlich Konvergenz oder Divergenz zu machen. D. h., es können je nach vorgelegter Zahlenfolge beide Fälle eintreten.

  • Kazimierz Kuratowski: Introduction to Calculus (= International Series of Monographs in Pure and Applied Mathematics. Band 17). 2. Auflage. Pergamon Press, Oxford u. a. 1969 (MR0349918).

Einzelnachweise und Anmerkungen

[Bearbeiten | Quelltext bearbeiten]
  1. Kazimierz Kuratowski: Introduction to Calculus (= International Series of Monographs in Pure and Applied Mathematics. Band 17). 2. Auflage. Pergamon Press, Oxford u. a. 1969, S. 298–299, 329 (MR0349918).
  2. Kazimierz Kuratowski: Introduction to Calculus (= International Series of Monographs in Pure and Applied Mathematics. Band 17). 2. Auflage. Pergamon Press, Oxford u. a. 1969, S. 296–297, 298–299 (MR0349918).